1
|
Ebrahimi A, Ahmadi H, Ghasrodashti ZP, Tanideh N, Shahriarirad R, Erfani A, Ranjbar K, Ashkani-Esfahani S. Therapeutic effects of stem cells in different body systems, a novel method that is yet to gain trust: A comprehensive review. Bosn J Basic Med Sci 2021; 21:672-701. [PMID: 34255619 PMCID: PMC8554700 DOI: 10.17305/bjbms.2021.5508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/25/2021] [Indexed: 11/30/2022] Open
Abstract
Stem cell therapy has been used to treat several types of diseases, and it is expected that its therapeutic uses shall increase as novel lines of evidence begin to appear. Furthermore, stem cells have the potential to make new tissues and organs. Thus, some scientists propose that organ transplantation will significantly rely on stem cell technology and organogenesis in the future. Stem cells and its robust potential to differentiate into specific types of cells and regenerate tissues and body organs, have been investigated by numerous clinician scientists and researchers for their therapeutic effects. Degenerative diseases in different organs have been the main target of stem cell therapy. Neurodegenerative diseases such as Alzheimer's, musculoskeletal diseases such as osteoarthritis, congenital cardiovascular diseases, and blood cell diseases such as leukemia are among the health conditions that have benefited from stem cell therapy advancements. One of the most challenging parts of the process of incorporating stem cells into clinical practice is controlling their division and differentiation potentials. Sometimes, their potential for uncontrolled growth will make these cells tumorigenic. Another caveat in this process is the ability to control the differentiation process. While stem cells can easily differentiate into a wide variety of cells, a paracrine effect controlled activity, being in an appropriate medium will cause abnormal differentiation leading to treatment failure. In this review, we aim to provide an overview of the therapeutic effects of stem cells in diseases of various organ systems. In order to advance this new treatment to its full potential, researchers should focus on establishing methods to control the differentiation process, while policymakers should take an active role in providing adequate facilities and equipment for these projects. Large population clinical trials are a necessary tool that will help build trust in this method. Moreover, improving social awareness about the advantages and adverse effects of stem cell therapy is required to develop a rational demand in the society, and consequently, healthcare systems should consider established stem cell-based therapeutic methods in their treatment algorithms.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanie Ahmadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Pourfraidon Ghasrodashti
- Molecular Pathology and Cytogenetics Laboratory, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Department of Pharmacology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shahriarirad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Erfani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keivan Ranjbar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheil Ashkani-Esfahani
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Engrafted stem cell therapy for Alzheimer's disease: A promising treatment strategy with clinical outcome. J Control Release 2021; 338:837-857. [PMID: 34509587 DOI: 10.1016/j.jconrel.2021.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022]
Abstract
To date, although the microscopic alterations present in Alzheimer's disease (AD) have been well known for over a century only a handful of symptomatic treatments have been developed which are a far cry from a full cure providing volatile benefits. In this context, the intervention of stem cell therapy (SCT) has been proposed as an auxiliary treatment for AD as suggested by the rising number of pre-clinical studies that stem cell engraftment could provide an exciting future treatment regimen against neurodegeneration. Although, most of the primary enthusiasm about this approach was based on replacing deteriorating neurons, the latest studies have implied that the positive modulations fostered by stem cells are fuelled by bystander effects. Present review provides a detailed update on stem cell therapy for AD along with meticulous discussion regarding challenges in developing different stem cells from an aspect of experiment to clinical research and their potential in the milieu of AD hallmarks. Specifically, we focus and provide in depth view on recent advancements in the discipline of SCT aiming to repopulate or regenerate the degenerating neuronal circuitry in AD using stem-cell-on-a-chip and 3D bioprinting techniques. The focus is specifically on the successful restoration of cognitive functions upon engraftment of stem cells on in vivo models for the benefit of the current researchers and their understanding about the status of SCT in AD and finally summarizing on what future holds for SCT in the treatment of AD.
Collapse
|
3
|
Sivakumar M, Dineshshankar J, Sunil PM, Nirmal RM, Sathiyajeeva J, Saravanan B, Senthileagappan AR. Stem cells: An insight into the therapeutic aspects from medical and dental perspectives. J Pharm Bioallied Sci 2015; 7:S361-71. [PMID: 26538878 PMCID: PMC4606620 DOI: 10.4103/0975-7406.163453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The recent advancements in the field of stem cell (SC) biology have increased the hope of achieving the definitive treatments for the diseases which are now considered incurable such as diabetes, Parkinson's disease and other chronic long standing conditions. To achieve this possibility, it is necessary to understand the basic concepts of SC biology to utilize in various advanced techniques of regenerative medicine including tissue engineering and gene therapy. This article highlights the types of SCs available and their therapeutic capacity in regenerative medical and dental fields.
Collapse
Affiliation(s)
- Muniapillai Sivakumar
- Department of Oral Pathology and Microbiology, Madha Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Janardhanam Dineshshankar
- Department of Oral Pathology and Microbiology, Vivekanandha Dental College for Women, Tiruchengode, Namakkal, Tamil Nadu, India
| | - P M Sunil
- Department of Oral Pathology and Microbiology, Sree Anjaneya Institute of Dental Sciences, Calicut, Kerala, India
| | - R Madhavan Nirmal
- Department of Oral Pathology and Microbiology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India
| | - J Sathiyajeeva
- Department of Oral Pathology and Microbiology, Thai Moogambigai Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Balasubramanian Saravanan
- Department of Oral and Maxillofacial Surgery, Madha Dental College and Hospital, Kundrathur, Chennai, Tamil Nadu, India
| | - A R Senthileagappan
- Department of Pedodontics, Chettinad Dental College and Research Institute, Chettinad Health City, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Stem Cells from Dental Tissue for Regenerative Dentistry and Medicine. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Kanherkar RR, Bhatia-Dey N, Makarev E, Csoka AB. Cellular reprogramming for understanding and treating human disease. Front Cell Dev Biol 2014; 2:67. [PMID: 25429365 PMCID: PMC4228919 DOI: 10.3389/fcell.2014.00067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/27/2014] [Indexed: 12/15/2022] Open
Abstract
In the last two decades we have witnessed a paradigm shift in our understanding of cells so radical that it has rewritten the rules of biology. The study of cellular reprogramming has gone from little more than a hypothesis, to applied bioengineering, with the creation of a variety of important cell types. By way of metaphor, we can compare the discovery of reprogramming with the archeological discovery of the Rosetta stone. This stone slab made possible the initial decipherment of Egyptian hieroglyphics because it allowed us to see this language in a way that was previously impossible. We propose that cellular reprogramming will have an equally profound impact on understanding and curing human disease, because it allows us to perceive and study molecular biological processes such as differentiation, epigenetics, and chromatin in ways that were likewise previously impossible. Stem cells could be called “cellular Rosetta stones” because they allow also us to perceive the connections between development, disease, cancer, aging, and regeneration in novel ways. Here we present a comprehensive historical review of stem cells and cellular reprogramming, and illustrate the developing synergy between many previously unconnected fields. We show how stem cells can be used to create in vitro models of human disease and provide examples of how reprogramming is being used to study and treat such diverse diseases as cancer, aging, and accelerated aging syndromes, infectious diseases such as AIDS, and epigenetic diseases such as polycystic ovary syndrome. While the technology of reprogramming is being developed and refined there have also been significant ongoing developments in other complementary technologies such as gene editing, progenitor cell production, and tissue engineering. These technologies are the foundations of what is becoming a fully-functional field of regenerative medicine and are converging to a point that will allow us to treat almost any disease.
Collapse
Affiliation(s)
- Riya R Kanherkar
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | - Naina Bhatia-Dey
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | - Evgeny Makarev
- InSilico Medicine, Emerging Technology Center, Johns Hopkins University Eastern Baltimore, MD, USA
| | - Antonei B Csoka
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| |
Collapse
|
6
|
Joshi KS, Bhonde R. Insights from Ayurveda for translational stem cell research. J Ayurveda Integr Med 2014; 5:4-10. [PMID: 24812469 PMCID: PMC4012361 DOI: 10.4103/0975-9476.128846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 12/22/2022] Open
Abstract
Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Ayurveda therapies are based on restoration of body balance and nourishment of dhatus or tissues. Rasayana concept of Ayurveda explains tissue regeneration and cell renewal. The drugs and therapies explained as rasayana provide research opportunities for biology of regeneration. Specific rasayana stimulate and nourish respective dhatus. Interpretation of this description offers clues for specific differentiation of stem cells with appropriate extract. The preliminary experiments on Medhya drugs suggest neuronal stem cells differentiation. Authors highlight the potential of Ayurveda and its possible contributions in regenerative medicine. Authors propose a protocol based on integrative approach derived from Ayurveda concepts and current understanding of regenerative medicine. The advanced understanding about adult and embryonic stem cells along with concepts of regeneration in Ayurveda has immense potential in the development of regenerative medicine.
Collapse
Affiliation(s)
- Kalpana S Joshi
- Department of Biotechnology, Sinhgad College of Engineering, University of Pune, Maharashtra, India
| | - Ramesh Bhonde
- Department of Biotechnology, Manipal School of Regenerative Medicine, Bangalore, Karnataka, India
| |
Collapse
|
7
|
Dadheech N, Srivastava A, Belani M, Gupta S, Pal R, Bhonde RR, Srivastava AS, Gupta S. Basal expression of pluripotency-associated genes can contribute to stemness property and differentiation potential. Stem Cells Dev 2013; 22:1802-17. [PMID: 23343006 DOI: 10.1089/scd.2012.0261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pluripotency and stemness is believed to be associated with high Oct-3/4, Nanog, and Sox-2 (ONS) expression. Similar to embryonic stem cells (ESCs), high ONS expression eventually became the measure of pluripotency in any cell. The threshold expression of ONS genes that underscores pluripotency, stemness, and differentiation potential is still unclear. Therefore, we raised a question as to whether pluripotency and stemness is a function of basal ONS gene expression. To prove this, we carried out a comparative study between basal ONS expressing NIH3T3 cells with pluripotent mouse bone marrow mesenchymal stem cells (mBMSC) and mouse ESC. Our studies on cellular, molecular, and immunological biomarkers between NIH3T3 and mBMSC demonstrated stemness property of undifferentiated NIH3T3 cells that was similar to mBMSC and somewhat close to ESC as well. In vivo teratoma formation with all three germ layer derivatives strengthen the fact that these cells in spite of basal ONS gene expression can differentiate into cells of multiple lineages without any genetic modification. Conclusively, our novel findings suggested that the phenomenon of pluripotency which imparts ability for multilineage cell differentiation is not necessarily a function of high ONS gene expression.
Collapse
Affiliation(s)
- Nidheesh Dadheech
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 2013; 60:691-9. [PMID: 23372076 DOI: 10.1109/tbme.2013.2243912] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue engineering has been a promising field of research, offering hope for bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3-D) vascularized organs remains the main technological barrier to be overcome. Organ printing, which is defined as computer-aided additive biofabrication of 3-D cellular tissue constructs, has shed light on advancing this field into a new era. Organ printing takes advantage of rapid prototyping (RP) technology to print cells, biomaterials, and cell-laden biomaterials individually or in tandem, layer by layer, directly creating 3-D tissue-like structures. Here, we overview RP-based bioprinting approaches and discuss the current challenges and trends toward fabricating living organs for transplant in the near future.
Collapse
Affiliation(s)
- Ibrahim T Ozbolat
- Mechanical and Industrial Engineering Department, The University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
9
|
Kaneko T, Arayatrakoollikit U, Yamanaka Y, Ito T, Okiji T. Immunohistochemical and gene expression analysis of stem-cell-associated markers in rat dental pulp. Cell Tissue Res 2012; 351:425-32. [DOI: 10.1007/s00441-012-1539-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/23/2012] [Indexed: 02/07/2023]
|
10
|
Sunil P, Manikandhan R, Muthu M, Abraham S. Stem cell therapy in oral and maxillofacial region: An overview. J Oral Maxillofac Pathol 2012; 16:58-63. [PMID: 22434942 PMCID: PMC3303525 DOI: 10.4103/0973-029x.92975] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cells with unique capacity for self-renewal and potency are called stem cells. With appropriate biochemical signals stem cells can be transformed into desirable cells. The idea behind this article is to shortly review the obtained literature on stem cell with respect to their properties, types and advantages of dental stem cells. Emphasis has been given to the possibilities of stem cell therapy in the oral and maxillofacial region including regeneration of tooth and craniofacial defects.
Collapse
Affiliation(s)
- Pm Sunil
- Department of Oral and Maxillofacial Pathology, Rajah Mutiah Dental College, Annamalai University, Annamalai Nagar, Chidambaram, India
| | | | | | | |
Collapse
|
11
|
Malhotra N, Mala K. Regenerative endodontics as a tissue engineering approach: Past, current and future. AUST ENDOD J 2012; 38:137-48. [DOI: 10.1111/j.1747-4477.2012.00355.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Clover AJP, Lane O'Neill B, Kumar AHS. Analysis of attitudes toward the source of progenitor cells in tissue-engineered products for use in burns compared with other disease states. Wound Repair Regen 2012; 20:311-6. [DOI: 10.1111/j.1524-475x.2012.00779.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Arun H. S. Kumar
- Centre for Research in Vascular Biology; University College Cork; Cork; Ireland
| |
Collapse
|
13
|
Casagrande L, Cordeiro MM, Nör SA, Nör JE. Dental pulp stem cells in regenerative dentistry. Odontology 2011; 99:1-7. [DOI: 10.1007/s10266-010-0154-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 12/12/2022]
|
14
|
Kumar R, Sharma A, Pattnaik AK, Varadwaj PK. Stem cells: An overview with respect to cardiovascular and renal disease. J Nat Sci Biol Med 2010; 1:43-52. [PMID: 22096336 PMCID: PMC3217290 DOI: 10.4103/0976-9668.71674] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In recent years, there has been a tremendous increase in the understanding of stem cell biology. Stem cells have clonogenic and self-renewing capabilities, and under certain conditions, can differentiate into multiple lineages of mature cells. Recent studies have shown that adult stem cells can be isolated from a wide variety of tissues, including bone marrow, peripheral blood, muscle, and adipose tissue. The potential clinical applications lead to an extended interest in the use of stem cells in many medical disciplines. In this article, we present an overview of stem cells with special reference to cardiovascular and renal diseases treatments by stem cells.
Collapse
Affiliation(s)
- Rajnish Kumar
- Department of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | | | | | | |
Collapse
|
15
|
Nixon K, Morris SA, Liput DJ, Kelso ML. Roles of neural stem cells and adult neurogenesis in adolescent alcohol use disorders. Alcohol 2010; 44:39-56. [PMID: 20113873 DOI: 10.1016/j.alcohol.2009.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 10/24/2009] [Accepted: 11/07/2009] [Indexed: 01/19/2023]
Abstract
This review discusses the contributions of a newly considered form of plasticity, the ongoing production of new neurons from neural stem cells, or adult neurogenesis, within the context of neuropathologies that occur with excessive alcohol intake in the adolescents. Neural stem cells and adult neurogenesis are now thought to contribute to the structural integrity of the hippocampus, a limbic system region involved in learning, memory, behavioral control, and mood. In adolescents with alcohol use disorders (AUDs), the hippocampus appears to be particularly vulnerable to the neurodegenerative effects of alcohol, but the role of neural stem cells and adult neurogenesis in alcoholic neuropathology has only recently been considered. This review encompasses a brief overview of neural stem cells and the processes involved in adult neurogenesis, how neural stem cells are affected by alcohol, and possible differences in the neurogenic niche between adults and adolescents. Specifically, what is known about developmental differences in adult neurogenesis between the adult and adolescent is gleaned from the literature, as well as how alcohol affects this process differently among the age groups. Finally, this review suggests differences that may exist in the neurogenic niche between adults and adolescents and how these differences may contribute to the susceptibility of the adolescent hippocampus to damage. However, many more studies are needed to discern whether these developmental differences contribute to the vulnerability of the adolescent to developing an AUD.
Collapse
|
16
|
Huan Q, Gao X, Wang Y, Shen Y, Ma W, Chen ZJ. Comparative evaluation of human embryonic stem cell lines derived from zygotes with normal and abnormal pronuclei. Dev Dyn 2009; 239:425-38. [DOI: 10.1002/dvdy.22175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Peddie VL, Porter M, Counsell C, Caie L, Pearson D, Bhattacharya S. 'Not taken in by media hype': how potential donors, recipients and members of the general public perceive stem cell research. Hum Reprod 2009; 24:1106-13. [PMID: 19168873 PMCID: PMC2667789 DOI: 10.1093/humrep/den496] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Views of embryo donors, scientists and members of the general public on embryonic stem cell research (eSCR) have been widely reported. Less is known about views of potential beneficiaries of stem cell therapy and the influence of media 'hype' on perceptions of eSCR among different groups of stakeholders. This study aimed to examine the perceptions of members of the general public as well as two patient groups likely to benefit from eSCR and to explore the role of the media in shaping these views. METHODS A qualitative study carried out in Aberdeen, Scotland included 15 people living with Parkinson's disease (PD), 15 people living with diabetes mellitus (DM), 15 couples with infertility and 21 members of the general public who volunteered for the study. Interview transcripts were analysed thematically using grounded theory. RESULTS The two patient groups likely to benefit from eSCR in the future differed in their knowledge (mainly gained from the media) and understanding of eSCR. Those living with PD were older, more debilitated and better informed than those with DM who showed limited interest in potential future benefits of eSCR. Infertile couples learnt about eSCR from health professionals who explained the process of embryo donation to them, and had sought no further information. Most of the general public had accessed information on eSCR and believed themselves to be more discerning than others because of their objectivity, intelligence and 'scientific awareness'. Although, the media and internet were primary sources of information for all except couples with infertility, members of all four groups claimed not to be taken in by the media 'hype' surrounding eSCR. CONCLUSIONS Those who expected to benefit from eSCR in the future as well as members of the general public differ in their susceptibility to media 'hype', while believing that they are not taken in by exaggerated claims of benefits. As respondents were a selected group who were not drawn from a representative sample, the findings cannot be generalized to a wider population.
Collapse
Affiliation(s)
- V L Peddie
- Obstetrics and Gynaecology, Division of Applied Health Sciences, University of Aberdeen, School of Medicine and Dentistry, Aberdeen AB25 2ZD, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Farin A, Liu CY, Elder JB, Langmoen IA, Apuzzo MLJ. The biological restoration of central nervous system architecture and function: part 1-foundations and historical landmarks in contemporary stem cell biology. Neurosurgery 2009; 64:15-39; discussion 34. [PMID: 19145154 DOI: 10.1227/01.neu.0000337580.02706.dc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Since their discovery, stem cells have fascinated scientists with their ultimate potential: the ability to cure disease, repair altered physiology, and reverse neurological deficit. Stem cell science unquestionably promises to eliminate many of the tragic limitations contemporary medicine must acknowledge, and cloning may provide young cells for an aging population. Although it is widely believed that stem cells will transform the way medicine is practiced, therapeutic interventions using stem cell technology are still in their infancy. The 3 most common stem cell sources studied today are umbilical cord blood, bone marrow, and human embryos. Although cord blood is currently used to treat dozens of disorders and bone marrow stem cells have been used clinically since the 1960s, human embryonic stem cells have yet to be successfully applied to any disease. Undeniably, stem cell therapy has the potential to be one of the most powerful therapeutic options available. In this introductory article of a 5-part series on stem cells, we narrate the evolution of modern stem cell science, delineating major landmarks that will prove responsible for taking stem cell technology from the laboratory into revolutionary clinical applications: from the first milestone of identifying the mouse hematopoietic stem cell to the latest feats of producing pluripotent stem cells without embryos at all. In Part 2, we present the evidence demonstrating the certainty of adult mammalian neurogenesis; in Parts 3 and 4, we describe neurosurgical applications of stem cell technology; and in Part 5, we discuss the philosophical and ethical issues surrounding stem cell therapy, as well as future areas of exploration.
Collapse
Affiliation(s)
- Azadeh Farin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | |
Collapse
|
19
|
Mardanpour P, Guan K, Nolte J, Lee JH, Hasenfuss G, Engel W, Nayernia K. Potency of germ cells and its relevance for regenerative medicine. J Anat 2008; 213:26-9. [PMID: 18565110 DOI: 10.1111/j.1469-7580.2008.00930.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Germline stem cells, which can self-renew and generate gametes, are unique stem cells in that they are solely dedicated to transmit genetic information from generation to generation. The germ cells have a special place in the life cycle because they must be able to retain the ability to recreate the organism, a property known as developmental totipotency. Several lines of evidence have suggested the extensive proliferation activity and pluripotency of prenatal, neonatal and adult germline stem cells. We showed that adult male germline stem cells, spermatogonial stem cells, can be converted into embryonic stem cell-like cells, which can differentiate into the somatic stem cells of three germ layers. Different cell types such as vascular, heart, liver, pancreatic and blood cells could also be obtained from these stem cells. Understanding how spermatogonial stem cells can give rise to pluripotent stem cells and how somatic stem cells differentiate into germ cells could give significant insight into the regulation of developmental totipotency as well as having important implications for male fertility and regenerative medicine.
Collapse
Affiliation(s)
- Parisa Mardanpour
- Department of Cardiology and Pneumology, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Stem cells derived from testis show promise for treating a wide variety of medical conditions. Cell Res 2007; 17:895-7. [DOI: 10.1038/cr.2007.96] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
21
|
Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod 2007; 33:377-90. [PMID: 17368324 DOI: 10.1016/j.joen.2006.09.013] [Citation(s) in RCA: 542] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/10/2006] [Accepted: 09/18/2006] [Indexed: 12/16/2022]
Abstract
Millions of teeth are saved each year by root canal therapy. Although current treatment modalities offer high levels of success for many conditions, an ideal form of therapy might consist of regenerative approaches in which diseased or necrotic pulp tissues are removed and replaced with healthy pulp tissue to revitalize teeth. Researchers are working toward this objective. Regenerative endodontics is the creation and delivery of tissues to replace diseased, missing, and traumatized pulp. This review provides an overview of regenerative endodontics and its goals, and describes possible techniques that will allow regenerative endodontics to become a reality. These potential approaches include root-canal revascularization, postnatal (adult) stem cell therapy, pulp implant, scaffold implant, three-dimensional cell printing, injectable scaffolds, and gene therapy. These regenerative endodontic techniques will possibly involve some combination of disinfection or debridement of infected root canal systems with apical enlargement to permit revascularization and use of adult stem cells, scaffolds, and growth factors. Although the challenges of introducing endodontic tissue engineering therapies are substantial, the potential benefits to patients and the profession are equally ground breaking. Patient demand is staggering both in scope and cost, because tissue engineering therapy offers the possibility of restoring natural function instead of surgical placement of an artificial prosthesis. By providing an overview of the methodological issues required to develop potential regenerative endodontic therapies, we hope to present a call for action to develop these therapies for clinical use.
Collapse
Affiliation(s)
- Peter E Murray
- Department of Endodontics, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | | | | |
Collapse
|
22
|
Daldrup-Link HE, Rudelius M, Oostendorp RAJ, Jacobs VR, Simon GH, Gooding C, Rummeny EJ. Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad Radiol 2005; 12:502-10. [PMID: 15831425 DOI: 10.1016/j.acra.2004.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 12/20/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
RATIONALE AND OBJECTIVES To compare and optimize ferumoxides labeling of human hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking with a clinical 1.5 T MR scanner. MATERIALS AND METHODS Human hematopoietic progenitor cells, derived from umbilical cord blood or peripheral blood, were labeled with Ferumoxides by simple incubation or lipofection. Cellular iron uptake was quantified with spectrometry. Then, 3 x 10(7)-labeled cells were injected into the tail vein of 12 female nude Balb/c mice. The mice underwent magnetic resonance imaging before and 24 hours after injection. Precontrast and postcontrast signal intensities of liver, spleen, and bone marrow were measured and tested for significant differences with the t-test. Immunostains served as a histopathologic standard of reference. RESULTS After labeling by simple incubation, only umbilical cord blood cells, but not peripheral blood cells, showed a significant iron uptake and could be tracked in vivo with magnetic resonance imaging. Using lipofection, both cell types could be tracked in vivo. A significant decline in signal intensity was observed in liver, spleen, and bone marrow at 24 hours after injection of efficiently labeled ferumoxides cells (P < .05). Histopathology proved the distribution of iron oxide-labeled cells to these organs. CONCLUSION Hematopoietic progenitor cells from umbilical cord blood can be labeled by simple incubation with an Food and Drug Administration-approved magnetic resonance contrast agent with sufficient efficiency to provide an in vivo cell tracking at 1.5 T. Progenitor cells from peripheral blood need to be labeled with adjunctive transfection techniques to be depicted in vivo at 1.5 T.
Collapse
Affiliation(s)
- Heike E Daldrup-Link
- Department of Radiology, University of California San Francisco, UCSF Medical Center, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Several types of stem cell have been discovered from germ cells, the embryo, fetus and adult. Each of these has promised to revolutionize the future of regenerative medicine through the provision of cell-replacement therapies to treat a variety of debilitating diseases. Stem cell research is politically charged, receives considerable media coverage, raises many ethical and religious debates and generates a great deal of public interest. The tremendous versatility of embryonic stem cells versus the unprecedented reports describing adult stem cell plasticity have ignited debates as to the choice of one cell type over another for future application. However, the biology of these mysterious cells have yet to be understood and a lot more basic research is needed before new therapies using stem-cell-differentiated derivatives can be applied. Stem cell research opens-up the new field of 'cell-based therapies' and, as such, several safety measures have also to be evaluated.
Collapse
Affiliation(s)
- Ariff Bongso
- Department of Obstetrics and Gynaecology, National University Hospital, Kent Ridge, Singapore 119074.
| | | |
Collapse
|
24
|
Abstract
The fundamental problem of development is to explain how the progeny of a single cell, the fertilised egg, differentiates to form all the tissues of the body in the right place at the right time. It has only been during the last couple of years that the mechanisms and molecules mediating interactions between cells and tissues have begun to be delineated. This article reviews some of these recent studies. Sequences of topographically defined cellular interactions lead not only to the development of the body but also to the obvious and remarkable inference that the body more or less automatically builds itself.
Collapse
Affiliation(s)
- David Edgar
- Human Anatomy, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, UK.
| | | | | | | |
Collapse
|
25
|
Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J, Rao MS. Differences between human and mouse embryonic stem cells. Dev Biol 2004; 269:360-80. [PMID: 15110706 DOI: 10.1016/j.ydbio.2003.12.034] [Citation(s) in RCA: 498] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 12/18/2003] [Accepted: 12/18/2003] [Indexed: 12/16/2022]
Abstract
We compared gene expression profiles of mouse and human ES cells by immunocytochemistry, RT-PCR, and membrane-based focused cDNA array analysis. Several markers that in concert could distinguish undifferentiated ES cells from their differentiated progeny were identified. These included known markers such as SSEA antigens, OCT3/4, SOX-2, REX-1 and TERT, as well as additional markers such as UTF-1, TRF1, TRF2, connexin43, and connexin45, FGFR-4, ABCG-2, and Glut-1. A set of negative markers that confirm the absence of differentiation was also developed. These include genes characteristic of trophoectoderm, markers of germ layers, and of more specialized progenitor cells. While the expression of many of the markers was similar in mouse and human cells, significant differences were found in the expression of vimentin, beta-III tubulin, alpha-fetoprotein, eomesodermin, HEB, ARNT, and FoxD3 as well as in the expression of the LIF receptor complex LIFR/IL6ST (gp130). Profound differences in cell cycle regulation, control of apoptosis, and cytokine expression were uncovered using focused microarrays. The profile of gene expression observed in H1 cells was similar to that of two other human ES cell lines tested (line I-6 and clonal line-H9.2) and to feeder-free subclones of H1, H7, and H9, indicating that the observed differences between human and mouse ES cells were species-specific rather than arising from differences in culture conditions.
Collapse
Affiliation(s)
- Irene Ginis
- Stem Cell Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|