1
|
Kara S, Polat S, Akillioglu K, Saker D, Evli Ce AT, Sencar L, Aydın UF, Polat S. Effects of TGF-β1 on Aβ-40 and α- β- γ secretase expression in hippocampus and prefrontal cortex in experimental Alzheimer's disease. Behav Brain Res 2025; 482:115432. [PMID: 39828086 DOI: 10.1016/j.bbr.2025.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease is a chronic complex neurodegenerative disease characterized with amyloid plaques and loss of neurons. TGF-β1 is important growth factor, plays critical roles in cell metabolism, tissue homeostasis, neuronal development, and synaptic plasticity. In this study, we aimed to examine the effect of TGF-β1 on the regulation of α, β, and γ-secretase enzymes, Aβ-40 accumulation, apoptosis, and neuronal damage in an experimental Scopolamine-induced AD-like model. The subjects were divided into 5 groups such as control, sham, TGF-β1 control, Scopolamin group, TGF-β1 treatment groups.Then all groups were divided into 2 subgroups according to 28th-56th days. Except for Morris water maze (MWM) test, hippocampus and prefrontal cortex tissues were taken for light-electron microscopic, immunohistochemical, and biochemical examinations. It was observed that learning and memory abilities, which decreased in the MWM test of the Scopolamine group, increased in the treatment groups. In addition, α-secretase expression decreased in the Scopolamin group, while it increased in the TGF-β1 treatment group. It was determined that Aβ-40 and caspase-3 immunoreactivity, β and γ-secretase enzyme levels increased in the Scopolamin group and decreased in TGF-β1 treatment group. Cellular degenerations were relatively decreased in TGF-β1 treatment group. It was thought that TGF-β1 might have a therapeutic effect on Alzheimer's disease by increasing memory performance and preventing Aβ-40 accumulation in the AD-like model induced by Scopolamine and also, may be effective preventing neuronal damage by down-regulating caspase-3 expression. When all the findings evaluated together, it was concluded that TGF-β1 could be evaluated as a therapeutic agent in Alzheimer's disease.
Collapse
Affiliation(s)
- Samet Kara
- Department of Histology and Embryology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey.
| | - Sema Polat
- Department of Anatomy, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Kübra Akillioglu
- Department of Physiology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Dilek Saker
- Department of Histology and Embryology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Ahmet Turan Evli Ce
- Department of Neurology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Leman Sencar
- Department of Histology and Embryology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Ummuhan Fulden Aydın
- Department of Biochemistry, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| | - Sait Polat
- Department of Histology and Embryology, Faculty of Medicine, University of Çukurova, Adana, Balcali 01330, Turkey
| |
Collapse
|
2
|
Fedorova EV, Chernomorets IY, Fedorov DA, Arkhipov VI. Delayed treatment with TGF-β1 associated neuroprotection in trimethyltin-induced hippocampal neurodegeneration. Neurosci Lett 2025; 852:138182. [PMID: 40049360 DOI: 10.1016/j.neulet.2025.138182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
In experiments conducted on Wistar rats, the effects of the multifunctional cytokine TGF-β1 were investigated using a neurodegeneration model induced by a single injection of the neurotoxicant trimethyltin chloride (TMT). Animals in the experimental group received intranasal administration of TGF-β1 on days 7 and 9 following TMT injection. Behavioral tests were performed to assess cognitive function, and three weeks after TMT administration, hippocampal morphology was analyzed using Nissl staining. Additionally, the state of microglia was evaluated through immunohistochemical labeling of IBA1. The results revealed that exogenous TGF-β1 significantly modulated the progression of hippocampal neurodegeneration. In the passive avoidance test, TGF-β1 ameliorated TMT-induced long-term memory impairment and promoted neuronal preservation in the CA1 region of the hippocampus, although no such effect was observed in the CA3 and CA4 regions. Furthermore, TGF-β1 treatment reduced microglial activation levels in the hippocampal CA1 region compared to animals treated with TMT alone. These findings suggest that the multifunctional cytokine TGF-β1 exerts a neuroprotective effect in the context of ongoing neurodegeneration when delivered intranasally to the brain. The cytokine's ability to regulate microglial activity appears to contribute, at least in part, to its protective properties.
Collapse
Affiliation(s)
| | | | - Dmitry A Fedorov
- Institute of Theoretical and Experimental Biophysics, Pushchino, Russia
| | | |
Collapse
|
3
|
Saloman JL, Jennings K, Stello K, Li S, Evans Phillips A, Hall K, Fogel EL, Vege SS, Andersen DK, Fisher WE, Forsmark CE, Hart PA, Pandol SJ, Park WG, Topazian MD, Van Den Eeden SK, Serrano J, Conwell DL, Li L, Yadav D. Pancreatitis pain quality changes at year 1 follow-up, but GP130 remains a biomarker for pain. Pancreatology 2024; 24:993-1002. [PMID: 39322454 PMCID: PMC11893097 DOI: 10.1016/j.pan.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND/OBJECTIVES Debilitating abdominal pain is a common symptom affecting patients with chronic pancreatitis (CP). CP pain is dynamic due to multiple underlying mechanisms. The objective of this study was to 1) evaluate changes in pain phenotype at one year follow-up and 2) validate putative pain biomarkers in a prospective cohort study. METHODS The Neuropathic and Nociceptive PROMIS-PQ questionnaires were used to classify pain for participants with in the PROCEED study. Putative serum biomarkers were measured via immunoassay. RESULTS At enrollment, 17.6 % (120/681) subjects with CP reported no pain in the previous year. Of those, 29 % experienced pain during the 1 yr follow-up whereas 18 % of those with pain prior to enrollment reported no pain during the 1 yr follow-up period. Of the 393 subjects with PROMIS-PQ data at enrollment, 212 also had follow-up data at 1 yr. Approximately half (53.3 %) of those individuals changed pain phenotype between baseline and follow-up. At 1 yr, serum TGFβ1 level was negatively correlated with nociceptive T-scores (p = 0.006). GP130 was significantly correlated with both nociceptive (p = 0.012) and neuropathic T-scores (p = 0.043) at 1 yr, which is consistent with the previously published findings. CONCLUSIONS The positive association between TGFβ1 and pain is not maintained over time, suggesting it is a poor pain biomarker. However, serum GP130 is a consistent biomarker for mixed-type pain in CP. Preclinical studies show that targeting TGFβ1 or IL-6 (ligand for GP130) is sufficient to inhibit CP pain supporting further investigation of this as a potential therapeutic target.
Collapse
Affiliation(s)
- Jami L Saloman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, United States; Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, PA, United States; Department of Neurobiology, School of Medicine, University of Pittsburgh, PA, United States.
| | - Kristofer Jennings
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Kimberly Stello
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, United States
| | - Shuang Li
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Anna Evans Phillips
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, United States
| | - Kristen Hall
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, United States
| | - Evan L Fogel
- Digestive and Liver Disorders, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Santhi Swaroop Vege
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Dana K Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - William E Fisher
- Division of General Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Christopher E Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition. University of Florida, Gainesville, FL, United States
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Stephen J Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Walter G Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Mark D Topazian
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | | | - Jose Serrano
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Darwin L Conwell
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Liang Li
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, United States
| |
Collapse
|
4
|
Nanda D, Venkatraman AC, Kalaivanan K. A cross talk study on sitagliptin mediated reclamation on TGF β signalling, DPP 4, miR-29a and miR-24 expression in PCOS rats fed with high fat-high fructose diet. Tissue Cell 2024; 88:102375. [PMID: 38604038 DOI: 10.1016/j.tice.2024.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Polycystic Ovary Syndrome (PCOS) is a multifactorial reproductive, endocrine and metabolic disturbance which is very commonly observed in females of reproductive age group. The disease is still incurable however the use of synthetic drugs in combination with lifestyle is recommended. Accordingly, the present study was conducted to investigate the possible beneficial effects of sitagliptin on PCOS induced rats on control diet (CD)/high fat- high fructose diet (HFFD). PCOS was induced by giving testosterone propionate (TP) for 28 days to both the CD/HFFD rats and treated with STG i.p. for last 15 days. At the end of the experiment lipid profile, inflammatory markers, expression of NF-κB-p65, miR-24 and miR-29a, fibrotic and apoptotic proteins from ovary tissue were examined. Moreover, lipid accumulation and fibrosis of ovary tissue was further confirmed using Sudan III and Masson's trichrome stain. STG treated rats exerted a significant decrease in levels of cholesterol, TG, LDL-C, VLDL-C, IL-6 and TNF-α and increased HDL-C level, miR-24 and miR-29a expression. STG treated groups expressed significantly decreased expression of NF-κB-p65, TGF-β1, p-Smad 2 and p-Smad 3 followed by no significant changes in the expression of BAX, caspase-9, caspase-3 and Bcl-2 in all the PCOS induced groups. Among all the CD/ HFFD fed groups, rats on HFFD showed more devastating effect which suggests that diet plays a major role in genesis of PCOS. In conclusion, current results reflect the potential impact of STG against dyslipidaemia, inflammation and fibrosis in PCOS rats via regulating dyslipidaemia and fibrosis via DPP 4 mediated miR-29a expression.
Collapse
Affiliation(s)
- Dipti Nanda
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India.
| | | | - Kalpana Kalaivanan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
| |
Collapse
|
5
|
Kim K, Kim YS, Jang JW, Lee GM. Enhancing the production of recombinant human TGF-β1 through an understanding of TGF-β1 synthesis, signaling, and endocytosis in CHO cells. Biotechnol J 2024; 19:e2300269. [PMID: 37985244 DOI: 10.1002/biot.202300269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
To enhance the production of recombinant human transforming growth factor-beta1 (rhTGF-β1) in Chinese hamster ovary (CHO) cells, rhTGF-β1 was first characterized for endocytosis, signaling pathway, and overall maturation process. The mature rhTGF-β1 used for clinical application was internalized into CHO cells and inhibited the growth of CHO cells in a dose-dependent manner. However, mature rhTGF-β1 was mostly produced in the form of latent rhTGF-β1 in cultures of recombinant CHO (rCHO) cells producing rhTGF-β1 (CHO-rhTGF-β1). The concentration of active mature rhTGF-β1 in the culture supernatant of CHO-rhTGF-β1 cells was not high enough to compromise yield. In addition, a significant amount of unprocessed precursors was produced by CHO-rhTGF-β1 cells. Overexpression of PACEsol, a soluble form of furin, in CHO-rhTGF-β1 cells was effective for the proteolytic cleavage of unprocessed precursors. The highest mature rhTGF-β1 concentration (6.4 μg mL-1 ) was obtained with the PACEsol-expressing clone, which was approximately 45% higher than that of the parental clone (P < 0.01). Thus, a comprehensive understanding of the intrinsic properties of rhTGF-β1 with respect to the overall maturation process, signaling pathway, and endocytosis is essential for effectively enhancing the production of mature rhTGF-β1 in CHO cells.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Young Sik Kim
- Institute of Biomaterial and Medical Engineering, Cellumed, Seoul, Republic of Korea
| | - Ju Woong Jang
- Institute of Biomaterial and Medical Engineering, Cellumed, Seoul, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Saloman JL, Li Y, Stello K, Li W, Li S, Phillips AE, Hall K, Fogel EL, Vege SS, Li L, Andersen DK, Fisher WE, Forsmark CE, Hart PA, Pandol SJ, Park WG, Topazian MD, Van Den Eeden SK, Serrano J, Conwell DL, Yadav D. Serum Biomarkers of Nociceptive and Neuropathic Pain in Chronic Pancreatitis. THE JOURNAL OF PAIN 2023; 24:2199-2210. [PMID: 37451493 PMCID: PMC10787046 DOI: 10.1016/j.jpain.2023.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Debilitating abdominal pain is a common symptom affecting most patients with chronic pancreatitis (CP). There are multiple underlying mechanisms that contribute to CP-related pain, which makes successful treatment difficult. The identification of biomarkers for subtypes of pain could provide viable targets for nonopioid interventions and the development of mechanistic approaches to pain management in CP. Nineteen inflammation- and nociception-associated proteins were measured in serum collected from 358 subjects with definite CP enrolled in PROspective Evaluation of Chronic Pancreatitis for EpidEmiologic and Translational StuDies, a prospective observational study of pancreatitis in US adult subjects. First, serum levels of putative biomarkers were compared between CP subjects with and without pain. Only platelet-derived growth factor B (PDGF-B) stood out, with levels significantly higher in the CP pain group as compared to subjects with no pain. Subjects with pain were then stratified into 4 pain subtypes (Neuropathic, Nociceptive, Mixed, and Unclassified). A comparison of putative biomarker concentration among 5 groups (no pain and 4 pain subtypes) identified unique proteins that were correlated with pain subtypes. Serum transforming growth factor beta 1 (TGFβ1) level was significantly higher in the Nociceptive pain group compared to the No pain group, suggesting that TGFβ1 may be a biomarker for nociceptive pain. The Neuropathic pain only group was too small to detect statistical differences. However, glycoprotein 130 (GP130), a coreceptor for interleukin 6, was significantly higher in the Mixed pain group compared to the groups lacking a neuropathic pain component. These data suggest that GP130 may be a biomarker for neuropathic pain in CP. PERSPECTIVE: Serum TGFβ1 and GP130 may be biomarkers for nociceptive and neuropathic CP pain, respectively. Preclinical data suggest inhibiting TGFβ1 or GP130 reduces CP pain in rodent models, indicating that additional translational and clinical studies may be warranted to develop a precision medicine approach to the management of pain in CP.
Collapse
Affiliation(s)
- Jami L. Saloman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
- Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, PA, USA
- Department of Neurobiology, School of Medicine, University of Pittsburgh, PA, USA
| | - Yan Li
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kimberly Stello
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
| | - Wenhao Li
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Shuang Li
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Anna Evans Phillips
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
| | - Kristen Hall
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
| | - Evan L. Fogel
- Digestive and Liver Disorders, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | | | - Liang Li
- Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - William E. Fisher
- Division of General Surgery, Baylor College of Medicine, Houston, TX
| | - Christopher E. Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition. University of Florida, Gainesville, FL
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Walter G. Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Mark D. Topazian
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | | | - Jose Serrano
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Darwin L. Conwell
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
| |
Collapse
|
7
|
Sano T, Ochiai T, Nagayama T, Nakamura A, Kubota N, Kadowaki T, Wakabayashi T, Iwatsubo T. Genetic Reduction of Insulin Signaling Mitigates Amyloid-β Deposition by Promoting Expression of Extracellular Matrix Proteins in the Brain. J Neurosci 2023; 43:7226-7241. [PMID: 37699718 PMCID: PMC10601373 DOI: 10.1523/jneurosci.0071-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/16/2023] [Accepted: 09/03/2023] [Indexed: 09/14/2023] Open
Abstract
The insulin/IGF-1 signaling (IIS) regulates a wide range of biological processes, including aging and lifespan, and has also been implicated in the pathogenesis of Alzheimer's disease (AD). We and others have reported that reduced signaling by genetic ablation of the molecules involved in IIS (e.g., insulin receptor substrate 2 [IRS-2]) markedly mitigates amyloid plaque formation in the brains of mouse models of AD, although the molecular underpinnings of the amelioration remain unsolved. Here, we revealed, by a transcriptomic analysis of the male murine cerebral cortices, that the expression of genes encoding extracellular matrix (ECM) was significantly upregulated by the loss of IRS-2. Insulin signaling activity negatively regulated the phosphorylation of Smad2 and Smad3 in the brain, and suppressed TGF-β/Smad-dependent expression of a subset of ECM genes in brain-derived cells. The ECM proteins inhibited Aβ fibril formation in vitro, and IRS-2 deficiency suppressed the aggregation process of Aβ in the brains of male APP transgenic mice as revealed by injection of aggregation seeds in vivo Our results propose a novel mechanism in AD pathophysiology whereby IIS modifies Aβ aggregation and amyloid pathology by altering the expression of ECM genes in the brain.SIGNIFICANCE STATEMENT The insulin/IGF-1 signaling (IIS) has been recognized as a regulator of aging, a leading risk factor for the onset of Alzheimer's disease (AD). In AD mouse models, genetic deletion of key IIS molecules markedly reduces the amyloid plaque formation in the brain, although the molecular underpinnings of this amelioration remain elusive. We found that the deficiency of insulin receptor substrate 2 leads to an increase in the expression of various extracellular matrices (ECMs) in the brain, potentially through TGF-β/Smad signaling. Furthermore, some of those ECMs exhibited the potential to inhibit amyloid plaque accumulation by disrupting the formation of Aβ fibrils. This study presents a novel mechanism by which IIS regulates Aβ accumulation, which may involve altered brain ECM expression.
Collapse
Affiliation(s)
- Toshiharu Sano
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Toshitaka Ochiai
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Company, LTD, Kyoto, 607-8042, Japan
| | - Takeru Nagayama
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ayaka Nakamura
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Clinical Nutrition Therapy, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Toranomon Hospital, Tokyo, 105-8470, Japan
| | - Tomoko Wakabayashi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
8
|
Li H, Dan QQ, Chen YJ, Chen L, Zhang HT, Mu DZ, Wang TH. Cellular Localization and Distribution of TGF-β1, GDNF and PDGF-BB in the Adult Primate Central Nervous System. Neurochem Res 2023; 48:2406-2423. [PMID: 36976393 DOI: 10.1007/s11064-023-03909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
The available data on the localization of transforming growth factor beta1 (TGF-β1), glial cell line-derived neurotrophic factor (GDNF), and platelet-derived growth factor-BB (PDGF-BB) in the adult primate and human central nervous system (CNS) are limited and lack comprehensive and systematic information. This study aimed to investigate the cellular localization and distribution of TGF-β1, GDNF, and PDGF-BB in the CNS of adult rhesus macaque (Macaca mulatta). Seven adult rhesus macaques were included in the study. The protein levels of TGF-β1, PDGF-BB, and GDNF in the cerebral cortex, cerebellum, hippocampus, and spinal cord were analyzed by western blotting. The expression and location of TGF-β1, PDGF-BB, and GDNF in the brain and spinal cord was examined by immunohistochemistry and immunofluorescence staining, respectively. The mRNA expression of TGF-β1, PDGF-BB, and GDNF was detected by in situ hybridization. The molecular weight of TGF-β1, PDGF-BB, and GDNF in the homogenate of spinal cord was 25 KDa, 30 KDa, and 34 KDa, respectively. Immunolabeling revealed GDNF was ubiquitously distributed in the cerebral cortex, hippocampal formation, basal nuclei, thalamus, hypothalamus, brainstem, cerebellum, and spinal cord. TGF-β1 was least distributed and found only in the medulla oblongata and spinal cord, and PDGF-BB expression was also limited and present only in the brainstem and spinal cord. Besides, TGF-β1, PDGF-BB, and GDNF were localized in the astrocytes and microglia of spinal cord and hippocampus, and their expression was mainly found in the cytoplasm and primary dendrites. The mRNA of TGF-β1, PDGF-BB, and GDNF was localized to neuronal subpopulations in the spinal cord and cerebellum. These findings suggest that TGF-β1, GDNF and PDGF-BB may be associated with neuronal survival, neural regeneration and functional recovery in the CNS of adult rhesus macaques, providing the potential insights into the development or refinement of therapies based on these factors.
Collapse
Affiliation(s)
- Hui Li
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi-Qin Dan
- Institute of Neurological Disease, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
| | - Yan-Jun Chen
- Institute of Neurological Disease, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
| | - Li Chen
- Institute of Neurological Disease, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
| | - Hong-Tian Zhang
- Institute of Neurological Disease, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
| | - De-Zhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ting-Hua Wang
- Institute of Neurological Disease, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
9
|
Li X, Xu M, Bi R, Tan LW, Yao YG, Zhang DF. Common and rare variants of EGF increase the genetic risk of Alzheimer's disease as revealed by targeted sequencing of growth factors in Han Chinese. Neurobiol Aging 2023; 123:170-181. [PMID: 36437134 DOI: 10.1016/j.neurobiolaging.2022.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease with high heritability. Growth factors (GFs) might contribute to the development of AD due to their broad effects on neuronal system. We herein aimed to investigate the role of rare and common variants of GFs in genetic susceptibility of AD. We screened 23 GFs in 6324 individuals using targeted sequencing. A rare-variant-based burden test and common-variant-based single-site association analyses were performed to identify AD-associated GF genes and variants. The burden test showed an enrichment of rare missense variants (p = 6.08 × 10-4) in GF gene-set in AD patients. Among the GFs, EGF showed the strongest signal of enrichment, especially for loss-of-function variants (p = 0.0019). A common variant rs4698800 of EGF showed significant associations with AD risk (p = 3.24 × 10-5, OR = 1.26). The risk allele of rs4698800 was associated with an increased EGF expression, whereas EGF was indeed upregulated in AD brain. These findings suggested EGF as a novel risk gene for AD.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Wen Tan
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
10
|
Hiraishi K, Kurahara LH, Ishikawa K, Go T, Yokota N, Hu Y, Fujita T, Inoue R, Hirano K. Potential of the TRPM7 channel as a novel therapeutic target for pulmonary arterial hypertension. J Smooth Muscle Res 2022; 58:50-62. [PMID: 35944979 PMCID: PMC9364263 DOI: 10.1540/jsmr.58.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an intractable vascular disease characterized by
a progressive increase in pulmonary vascular resistance caused by pulmonary vascular
remodeling, which ultimately leads to right-sided heart failure. PAH remains incurable,
despite the development of PAH-targeted therapeutics centered on pulmonary artery
relaxants. It is necessary to identify the target molecules that contribute to pulmonary
artery remodeling. Transient receptor potential (TRP) channels have been suggested to
modulate pulmonary artery remodeling. Our study focused on the transient receptor
potential ion channel subfamily M, member 7, or the TRPM7 channel, which modulates
endothelial-to-mesenchymal transition and smooth muscle proliferation in the pulmonary
artery. In this review, we summarize the role and expression profile of TRPM7 channels in
PAH progression and discuss TRPM7 channels as possible therapeutic targets. In addition,
we discuss the therapeutic effect of a Chinese herbal medicine, Ophiocordyceps
sinensis (OCS), on PAH progression, which partly involves TRPM7 inhibition.
Collapse
Affiliation(s)
- Keizo Hiraishi
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.,Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Kaori Ishikawa
- Department of General Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tetsuhiko Go
- Department of General Thoracic Surgery, Faculty of Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Naoya Yokota
- Department of General Thoracic Surgery, Faculty of Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yaopeng Hu
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Takayuki Fujita
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Ryuji Inoue
- Department of Physiology, School of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jounan-ku, Fukuoka-shi, Fukuoka 814-0180, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
11
|
Li Y, Chen W, Deng H, Li T, Liu Z, Liu X, Zhang Z, Chen X, Sheng J, Li K. TGF-β1 Protects Trauma-injured Murine Cortical Neurons by Upregulating L-type Calcium Channel Ca v1.2 via the p38 Pathway. Neuroscience 2022; 492:47-57. [PMID: 35460836 DOI: 10.1016/j.neuroscience.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability and death in adolescents, and there is a lack of effective methods of treatment. The neuroprotective effects exerted by TGF-β1 can ameliorate a range of neuronal lesions in multiple central nervous system diseases. In this study, we used an in-vitro TBI model of mechanical injury on murine primary cortical neurons and the neuro-2a cell line to investigate the neuroprotective role played by TGF-β1 in cortical neurons in TBI. Our results showed that TGF-β1 significantly increased neuronal viability and inhibited apoptosis for 24 h after trauma. The expression of Cav1.2, an L-type calcium channel (LTCC) isoform, decreased significantly after trauma injury, and this change was reversed by TGF-β1. Nimodipine, a classic LTCC blocker, abolished the protective effect of TGF-β1 on trauma-induced neuronal apoptosis. The knockdown of Cav1.2 in differentiated neuro-2a cells significantly inhibited the anti-apoptosis effect of TGF-β1 exerted on injured neuro-2a cells. Moreover, TGF-β1 rescued and enhanced the trauma-suppressed neuro-2a intracellular Ca2+ concentration, while the effect of TGF-β1 was partially inhibited by nimodipine. TGF-β1 significantly upregulated the expression of Cav1.2 by activating the p38 MAPK pathway and by inhibiting trauma-induced neuronal apoptosis. In conclusion, TGF-β1 increased trauma-injured murine cortical neuronal activity and inhibited apoptosis by upregulating Cav1.2 channels via activating the p38 MAPK pathway. Therefore, the TGF-β1/p38 MAPK/Cav 1.2 pathway has the potential to be used as a novel therapeutic target for TBI.
Collapse
Affiliation(s)
- Yanlei Li
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Huixiong Deng
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Tian Li
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Zhenning Liu
- Department of Laboratory, Guangzhou Chest Hospital, China
| | - Xueer Liu
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Zelin Zhang
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
12
|
Ye F, Lyu F, Wang H, Zheng Z. The involvement of immune system in intervertebral disc herniation and degeneration. JOR Spine 2022; 5:e1196. [PMID: 35386754 PMCID: PMC8966871 DOI: 10.1002/jsp2.1196] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) herniation and degeneration contributes significantly to low back pain (LBP), of which the molecular pathogenesis is not fully understood. Disc herniation may cause LBP and radicular pain, but not all LBP patients have disc herniation. Degenerated discs could be the source of pain, but not all degenerated discs are symptomatic. We previously found that disc degeneration and herniation accompanied by inflammation. We further found that anti-inflammatory molecules blocked immune responses, alleviated IVD degeneration and pain. Based on our recent findings and the work of others, we hypothesize that immune system may play a prominent role in the production of disc herniation or disc degeneration associated pain. While the nucleus pulposus (NP) is an immune-privileged organ, the damage of the physical barrier between NP and systemic circulation, or the innervation and vascularization of the degenerated NP, on one hand exposes NP as a foreign antigen to immune system, and on the other hand presents compression on the nerve root or dorsal root ganglion (DRG), which both elicit immune responses induced by immune cells and their mediators. The inflammation can remain for a long time at remote distance, with various types of cytokines and immune cells involved in this pain-inducing process. In this review, we aim to revisit the autoimmunity of the NP, immune cell infiltration after break of physical barrier, the inflammatory activities in the DRG and the generation of pain. We also summarize the involvement of immune system, including immune cells and cytokines, in degenerated or herniated IVDs and affected DRG.
Collapse
Affiliation(s)
- Fubiao Ye
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Orthopaedics, Fujian Provincial HospitalProvincial Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| | - Feng‐Juan Lyu
- Joint Center for Regenerative Medicine Research of South China University of Technology and The University of Western Australia, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Hua Wang
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Pain Research CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
13
|
Sudhakaran G, Guru A, Hari Deva Muthu B, Murugan R, Arshad A, Arockiaraj J. Evidence-based hormonal, mutational, and endocrine-disrupting chemical-induced zebrafish as an alternative model to study PCOS condition similar to mammalian PCOS model. Life Sci 2022; 291:120276. [PMID: 34990650 DOI: 10.1016/j.lfs.2021.120276] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022]
Abstract
Polycystic ovarian syndrome (PCOS) causes swollen ovaries in women at reproductive age due to hormonal disorder with small cysts on the outer edges. The cause of the disorder is still yet to be found. Multiple factors have increased PCOS prevalence, hyperandrogenism, oxidative stress, inflammation, and insulin resistance. Various animal PCOS models have been developed to imitate the pathophysiology of PCOS in humans. Zebrafish is one of the most versatile animal experimental models because of the transparency of the embryos, small size, and rapid growth. The zebrafish similarity to higher vertebrates made it a useful non-mammalian model for PCOS drug testing and screening. This review provides an insight into the usage of zebrafish, a non-mammalian model for PCOS, as an opportunity for evaluating future initiatives in such a research domain.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - B Hari Deva Muthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India; Foundation for Aquaculture Innovations and Technology Transfer (FAITT), Thoraipakkam, Chennai 600 097, Tamil Nadu, India.
| |
Collapse
|
14
|
The Effect of TGF-β1 Reduced Functionality on the Expression of Selected Synaptic Proteins and Electrophysiological Parameters: Implications of Changes Observed in Acute Hepatic Encephalopathy. Int J Mol Sci 2022; 23:ijms23031081. [PMID: 35163004 PMCID: PMC8835518 DOI: 10.3390/ijms23031081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
Decreased platelet count represents a feature of acute liver failure (ALF) pathogenesis. Platelets are the reservoir of transforming growth factor 1 (TGF-β1), a multipotent cytokine involved in the maintenance of, i.a., central nervous system homeostasis. Here, we analyzed the effect of a decrease in TGF-β1 active form on synaptic proteins levels, and brain electrophysiology, in mice after intraperitoneal (ip) administration of TGF-β1 antibody (anti-TGF-β1; 1 mg/mL). Next, we correlated it with a thrombocytopenia-induced TGF-β1 decrease, documented in an azoxymethane-induced (AOM; 100 mM ip) model of ALF, and clarified the impact of TGF-β1 decrease on blood–brain barrier functionality. The increase of both synaptophysin and synaptotagmin in the cytosolic fraction, and its reduction in a membrane fraction, were confirmed in the AOM mice brains. Both proteins’ decrease in analyzed fractions occurred in anti-TGF-β1 mice. In turn, an increase in postsynaptic (NR1 subunit of N-methyl-D-aspartate receptor, postsynaptic density protein 95, gephyrin) proteins in the AOM brain cortex, but a selective compensatory increase of NR1 subunit in anti-TGF-β mice, was observed. The alterations of synaptic proteins levels were not translated on electrophysiological parameters in the anti-TGF-β1 model. The results suggest the impairment of synaptic vesicles docking to the postsynaptic membrane in the AOM model. Nevertheless, changes in synaptic protein level in the anti-TGF-β1 mice do not affect neurotransmission and may not contribute to neurologic deficits in AOM mice.
Collapse
|
15
|
Monterey MD, Wei H, Wu X, Wu JQ. The Many Faces of Astrocytes in Alzheimer's Disease. Front Neurol 2021; 12:619626. [PMID: 34531807 PMCID: PMC8438135 DOI: 10.3389/fneur.2021.619626] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/20/2021] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and is the most common cause of dementia in an aging population. The majority of research effort has focused on the role of neurons in neurodegeneration and current therapies have limited ability to slow disease progression. Recently more attention has been given to the role of astrocytes in the process of neurodegeneration. Specifically, reactive astrocytes have both advantageous and adverse effects during neurodegeneration. The ability to isolate and depict astrocyte phenotype has been challenging. However, with the recent development of single-cell sequencing technologies researchers are provided with the resource to delineate specific biomarkers associated with reactive astrocytes in AD. In this review, we will focus on the role of astrocytes in normal conditions and the pathological development of AD. We will further review recent developments in the understanding of astrocyte heterogeneity and associated biomarkers. A better understanding of astrocyte contributions and phenotypic changes in AD can ultimately lead to more effective therapeutic targets.
Collapse
Affiliation(s)
- Michael D Monterey
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States
| | - Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
16
|
Usui-Kawanishi F, Takahashi M, Sakai H, Suto W, Kai Y, Chiba Y, Hiraishi K, Kurahara LH, Hori M, Inoue R. Implications of immune-inflammatory responses in smooth muscle dysfunction and disease. J Smooth Muscle Res 2020; 55:81-107. [PMID: 32023567 PMCID: PMC6997890 DOI: 10.1540/jsmr.55.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the past few decades, solid evidence has been accumulated for the pivotal significance
of immunoinflammatory processes in the initiation, progression, and exacerbation of many
diseases and disorders. This groundbreaking view came from original works by Ross who
first described that excessive inflammatory-fibroproliferative response to various forms
of insult to the endothelium and smooth muscle of the artery wall is essential for the
pathogenesis of atherosclerosis (Ross, Nature 1993; 362(6423): 801–9). It is now widely
recognized that both innate and adaptive immune reactions are avidly involved in the
inflammation-related remodeling of many tissues and organs. When this state persists,
irreversible fibrogenic changes would occur often culminating in fatal insufficiencies of
many vital parenchymal organs such as liver, lung, heart, kidney and intestines. Thus,
inflammatory diseases are becoming the common life-threatening risk for and urgent concern
about the public health in developed countries (Wynn et al., Nature Medicine 2012; 18(7):
1028–40). Considering this timeliness, we organized a special symposium entitled
“Implications of immune/inflammatory responses in smooth muscle dysfunction and disease”
in the 58th annual meeting of the Japan Society of Smooth Muscle Research. This symposium
report will provide detailed synopses of topics presented in this symposium; (1) the role
of inflammasome in atherosclerosis and abdominal aortic aneurysms by Fumitake
Usui-Kawanishi and Masafumi Takahashi; (2) Mechanisms underlying the pathogenesis of
hyper-contractility of bronchial smooth muscle in allergic asthma by Hiroyasu Sakai,
Wataru Suto, Yuki Kai and Yoshihiko Chiba; (3) Vascular remodeling in pulmonary arterial
hypertension by Keizo Hiraishi, Lin Hai Kurahara and Ryuji Inoue.
Collapse
Affiliation(s)
- Fumitake Usui-Kawanishi
- Division of Biopharmaceutical Engineering, Department of Pharmaceutical Engineering, Toyoma Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan.,Division of Inflammation Research, Center of Molecular Medicine, Jichi Medical University, 3311-159 Yakushiji, Shimono-shi, Tochigi 329-0498, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center of Molecular Medicine, Jichi Medical University, 3311-159 Yakushiji, Shimono-shi, Tochigi 329-0498, Japan
| | - Hiroyasu Sakai
- Department of Analytical Pathophysiology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Wataru Suto
- Department of Physiology and Molecular Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuki Kai
- Department of Analytical Pathophysiology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Keizo Hiraishi
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Lin Hai Kurahara
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.,Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ido, Miki-machi, Kida-gun, Kagawa 761-0793, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
17
|
Galbiati M, Crippa V, Rusmini P, Cristofani R, Messi E, Piccolella M, Tedesco B, Ferrari V, Casarotto E, Chierichetti M, Poletti A. Multiple Roles of Transforming Growth Factor Beta in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21124291. [PMID: 32560258 PMCID: PMC7352289 DOI: 10.3390/ijms21124291] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor beta (TGFB) is a pleiotropic cytokine known to be dysregulated in many neurodegenerative disorders and particularly in amyotrophic lateral sclerosis (ALS). This motor neuronal disease is non-cell autonomous, as it affects not only motor neurons but also the surrounding glial cells, and the target skeletal muscle fibers. Here, we analyze the multiple roles of TGFB in these cell types, and how TGFB signaling is altered in ALS tissues. Data reported support a crucial involvement of TGFB in the etiology and progression of ALS, leading us to hypothesize that an imbalance of TGFB signaling, diminished at the pre-symptomatic stage and then increased with time, could be linked to ALS progression. A reduced stimulation of the TGFB pathway at the beginning of disease blocks its neuroprotective effects and promotes glutamate excitotoxicity. At later disease stages, the persistent activation of the TGFB pathway promotes an excessive microglial activation and strengthens muscular dysfunction. The therapeutic potential of TGFB is discussed, in order to foster new approaches to treat ALS.
Collapse
|
18
|
Chen Y, Yan H, Li G, Zhang Y. Higher TGF-β1, TGF-β2, MMP-2, and TIMP-1 Levels in the Aqueous Humor of Patients with Acute Primary Angle Closure. Ophthalmic Res 2020; 64:62-67. [PMID: 32259818 DOI: 10.1159/000507762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/03/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE To assess the quantitative differences in the levels of members of the transforming growth factor (TGF-β), matrix metalloproteinase (MMP), and tissue inhibitor of MMP (TIMP) families in the aqueous humor (AH) between patients with acute primary angle closure (APAC) and those with cataract only. METHODS AH samples were collected from 26 patients with APAC and cataract as well as 26 patients with age-related cataract only. Multiplex assays were used to measure the concentrations of TGF-β1, TGF-β2, and TGF-β3; MMP-1, MMP-2, MMP-7, MMP-9, and MMP-10; and TIMP-1 and TIMP-2. RESULTS The concentrations of TGF-β1, TGF-β2, MMP-2, (p < 0.001), and TIMP-1 were significantly higher (all p < 0.001) in AH samples from patients with APAC versus cataract only. Conversely, the AH concentrations of MMP-7 (p = 0.524), MMP-9 (p = 0.103), MMP-10 (p = 0.111), and TIMP-2 (p = 0.059) did not significantly differ between the groups. The concentrations of TGF-β3 and MMP-1 were below the respective detection limits in most AH samples. CONCLUSION The AH levels of TGF-β1, TGF-β2, MMP-2, and TIMP-1 were elevated in APAC eyes. Such altered protein levels could induce abnormal deposition of extracellular matrix in the trabecular meshwork, resulting in an increase in aqueous outflow resistance and, thereby, providing a possible explanation of the mechanism of residual glaucoma after cataract surgery.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Hong Yan
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China, .,Xi'an Fourth Hospital, Shaanxi Eye Hospital, Affiliated Xi'an Fourth Hospital, Northwestern Polytechnical University, Xi'an, China,
| | - Guo Li
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Yu Zhang
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| |
Collapse
|
19
|
Sex-specific effects of developmental exposure to polychlorinated biphenyls on neuroimmune and dopaminergic endpoints in adolescent rats. Neurotoxicol Teratol 2020; 79:106880. [PMID: 32259577 DOI: 10.1016/j.ntt.2020.106880] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022]
Abstract
Exposure to environmental contaminants early in life can have long lasting consequences for physiological function. Polychlorinated biphenyls (PCBs) are a group of ubiquitous contaminants that perturb endocrine signaling and have been associated with altered immune function in children. In this study, we examined the effects of developmental exposure to PCBs on neuroimmune responses to an inflammatory challenge during adolescence. Sprague Dawley rat dams were exposed to a PCB mixture (Aroclor 1242, 1248, 1254, 1:1:1, 20 μg/kg/day) or oil control throughout pregnancy, and adolescent male and female offspring were injected with lipopolysaccharide (LPS, 50 μg/kg, ip) or saline control prior to euthanasia. Gene expression profiling was conducted in the hypothalamus, prefrontal cortex, striatum, and midbrain. In the hypothalamus, PCBs increased expression of genes involved in neuroimmune function, including those within the nuclear factor kappa b (NF-κB) complex, independent of LPS challenge. PCB exposure also increased expression of receptors for dopamine, serotonin, and estrogen in this region. In contrast, in the prefrontal cortex, PCB exposure blunted or induced irregular neuroimmune gene expression responses to LPS challenge. Moreover, neither PCB nor LPS exposure altered expression of neurotransmitter receptors throughout the mesocorticolimbic circuit. Almost all effects were present in males but not females, in agreement with the idea that male neuroimmune cells are more sensitive to perturbation and emphasizing the importance of studying both male and female subjects. Given that altered neuroimmune signaling has been implicated in mental health and substance abuse disorders that often begin during adolescence, these results highlight neuroimmune processes as another mechanism by which early life PCBs can alter brain function later in life.
Collapse
|
20
|
Chen Y, Zhang Y, Sun K, Yan H. Higher TGF-β2 Level in the Aqueous Humor of the Second Eye Versus the First Eye in the Course of Sequential Cataract Surgery. Ocul Immunol Inflamm 2020; 28:439-445. [PMID: 30973281 DOI: 10.1080/09273948.2019.1578888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose: To assess the differences in cytokine levels in the aqueous humor (AH) of bilateral eyes receiving sequential phacoemulsification and intraocular lens implantation.Methods: The levels of 33 cytokines in AH samples collected from separate single-eye operations of 26 age-related cataract patients who experiencing sequential cataract surgery were compared between the first-eye and second-eye groups.Results: The AH level of transforming growth factor beta 2 (TGF-β2), an immunosuppression regulator, in the second-eye group was significantly higher than that in the first-eye group (p = 0.002). No differences in the concentrations or detection rates of other cytokines were observed between the first- and second-eye groups.Conclusion: During bilateral sequential cataract surgery, the AH of the second eye had a higher level of TGF-β2 but not of proinflammatory cytokines or chemokines compared with those in the first eye, implying a protective mechanism preventing the sympathetic immune reaction induced by the first-eye cataract surgery.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Yu Zhang
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Kexin Sun
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Hong Yan
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China.,Department of Ophthalmology, Xi'an No. 4 Hospital, Shaanxi Eye Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
21
|
AGAP2: Modulating TGFβ1-Signaling in the Regulation of Liver Fibrosis. Int J Mol Sci 2020; 21:ijms21041400. [PMID: 32092977 PMCID: PMC7073092 DOI: 10.3390/ijms21041400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
AGAP2 (Arf GAP with GTP-binding protein-like domain, Ankyrin repeat and PH domain 2) isoform 2 is a protein that belongs to the Arf GAP (GTPase activating protein) protein family. These proteins act as GTPase switches for Arfs, which are Ras superfamily members, being therefore involved in signaling regulation. Arf GAP proteins have been shown to participate in several cellular functions including membrane trafficking and actin cytoskeleton remodeling. AGAP2 is a multi-tasking Arf GAP that also presents GTPase activity and is involved in several signaling pathways related with apoptosis, cell survival, migration, and receptor trafficking. The increase of AGAP2 levels is associated with pathologies as cancer and fibrosis. Transforming growth factor beta-1 (TGF-β1) is the most potent pro-fibrotic cytokine identified to date, currently accepted as the principal mediator of the fibrotic response in liver, lung, and kidney. Recent literature has described that the expression of AGAP2 modulates some of the pro-fibrotic effects described for TGF-β1 in the liver. The present review is focused on the interrelated molecular effects between AGAP2 and TGFβ1 expression, presenting AGAP2 as a new player in the signaling of this pro-fibrotic cytokine, thereby contributing to the progression of hepatic fibrosis.
Collapse
|
22
|
Singhal G, Morgan J, Jawahar MC, Corrigan F, Jaehne EJ, Toben C, Breen J, Pederson SM, Manavis J, Hannan AJ, Baune BT. Effects of aging on the motor, cognitive and affective behaviors, neuroimmune responses and hippocampal gene expression. Behav Brain Res 2020; 383:112501. [PMID: 31987935 DOI: 10.1016/j.bbr.2020.112501] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
The known effects of aging on the brain and behavior include impaired cognition, increases in anxiety and depressive-like behaviors, and reduced locomotor activity. Environmental exposures and interventions also influence brain functions during aging. We investigated the effects of normal aging under controlled environmental conditions and in the absence of external interventions on locomotor activity, cognition, anxiety and depressive-like behaviors, immune function and hippocampal gene expression in C57BL/6 mice. Healthy mice at 4, 9, and 14 months of age underwent behavioral testing using an established behavioral battery, followed by cellular and molecular analysis using flow cytometry, immunohistochemistry, and quantitative PCR. We found that 14-month-old mice showed significantly reduced baseline locomotion, increased anxiety, and impaired spatial memory compared to younger counterparts. However, no significant differences were observed for depressive-like behavior in the forced-swim test. Microglia numbers in the dentate gyrus, as well as CD8+ memory T cells increased towards late middle age. Aging processes exerted a significant effect on the expression of 43 genes of interest in the hippocampus. We conclude that aging is associated with specific changes in locomotor activity, cognition, anxiety-like behaviors, neuroimmune responses and hippocampal gene expression.
Collapse
Affiliation(s)
- Gaurav Singhal
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - Julie Morgan
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - Magdalene C Jawahar
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - Frances Corrigan
- Division of Health Sciences, The University of South Australia, Adelaide, SA, Australia.
| | - Emily J Jaehne
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia; School of Psychology and Public Health, LIMS2, Room 204, La Trobe University, Bundoora, Melbourne, Vic, Australia.
| | - Catherine Toben
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - James Breen
- Robinson Research Institute, The University of Adelaide, SA, Australia; Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| | - Jim Manavis
- Centre for Neurological Diseases, School of Medicine, Faculty of Health, The University of Adelaide, Adelaide, SA, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Bernhard T Baune
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia; Department of Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
23
|
Kaminska B, Cyranowski S. Recent Advances in Understanding Mechanisms of TGF Beta Signaling and Its Role in Glioma Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:179-201. [PMID: 32034714 DOI: 10.1007/978-3-030-30651-9_9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transforming growth factor beta (TGF-β) signaling is involved in the regulation of proliferation, differentiation and survival/or apoptosis of many cells, including glioma cells. TGF-β acts via specific receptors activating multiple intracellular pathways resulting in phosphorylation of receptor-regulated Smad2/3 proteins that associate with the common mediator, Smad4. Such complex translocates to the nucleus, binds to DNA and regulates transcription of many genes. Furthermore, TGF-β-activated kinase-1 (TAK1) is a component of TGF-β signaling and activates mitogen-activated protein kinase (MAPK) cascades. Negative regulation of TGF-β/Smad signaling may occur through the inhibitory Smad6/7. While genetic alterations in genes related to TGF-β signaling are relatively rare in gliomas, the altered expression of those genes is a frequent event. The increased expression of TGF-β1-3 correlates with a degree of malignancy of human gliomas. TGF-β may contribute to tumor pathogenesis in many ways: by direct support of tumor growth, by maintaining self-renewal of glioma initiating stem cells and inhibiting anti-tumor immunity. Glioma initiating cells are dedifferentiated cells that retain many stem cell-like properties, play a role in tumor initiation and contribute to its recurrence. TGF-β1,2 stimulate expression of the vascular endothelial growth factor as well as the plasminogen activator inhibitor and some metalloproteinases that are involved in vascular remodeling, angiogenesis and degradation of the extracellular matrix. Inhibitors of TGF-β signaling reduce viability and invasion of gliomas in animal models and show a great promise as novel, potential anti-tumor therapeutics.
Collapse
Affiliation(s)
- Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland. .,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland.
| | - Salwador Cyranowski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
24
|
Abstract
Injury typically results in the development of neuropathic pain, but the pain normally decreases and disappears in paralleled with wound healing. The pain results from cells resident at, and recruited to, the injury site releasing pro-inflammatory cytokines and other mediators leading to the development of pro-inflammatory environment and causing nociceptive neurons to develop chronic ectopic electrical activity, which underlies neuropathic pain. The pain decreases as some of the cells that induce pro-inflammation, changing their phenotype leading to the blocking the release of pro-inflammatory mediators while releasing anti-inflammatory mediators, and blocking nociceptive neuron chronic spontaneous electrical activity. Often, despite apparent wound healing, the neuropathic pain becomes chronic. This raises the question of how chronic pain can be eliminated. While many of the cells and mediators contributing to the development and maintenance of neuropathic pain are known, a better understanding is required of how the injury site environment can be controlled to permanently eliminate the pro-inflammatory environment and silence the chronically electrically active nociceptive neurons. This paper examines how methods that can promote the transition of the pro-inflammatory injury site to an anti-inflammatory state, by changing the composition of local cell types, modifying the activity of pro- and anti-inflammatory receptors, inducing the release of anti-inflammatory mediators, and silencing the chronically electrically active nociceptive neurons. It also examines the hypothesis that factors released from platelet-rich plasma applied to chronic pain sites can permanently eliminate chronic inflammation and its associated chronic pain.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, 201 Blvd. del Valle, San Juan, PR, 00901, USA.
| |
Collapse
|
25
|
Short-term environmental enrichment, and not physical exercise, alleviate cognitive decline and anxiety from middle age onwards without affecting hippocampal gene expression. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:1143-1169. [DOI: 10.3758/s13415-019-00743-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Perturbations in neuroinflammatory pathways are associated with paclitaxel-induced peripheral neuropathy in breast cancer survivors. J Neuroimmunol 2019; 335:577019. [PMID: 31401418 PMCID: PMC6788784 DOI: 10.1016/j.jneuroim.2019.577019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 01/11/2023]
Abstract
Paclitaxel is a common chemotherapy drug associated with the development of chronic paclitaxel-induced peripheral neuropathy (PIPN). PIPN is associated with neuroinflammatory mechanisms in pre-clinical studies. Here, we evaluated for differential gene expression (DGE) in peripheral blood between breast cancer survivors with and without PIPN and for neuroinflammatory (NI) related signaling pathways and whole-transcriptome profiles from other experiments. Pathway impact analysis identified 8 perturbed NI related pathways. Expression profile analysis found 15 experiments having similar whole-transcriptome profiles of DGE related to neuroinflammation and PIPN. These findings suggest that perturbations in pathways associated with neuroinflammation are found in cancer survivors with PIPN. Paclitaxel-induced peripheral neuropathy (PIPN) is associated with Paclitaxel treatment Differential gene expression was associated with PIPN in breast cancer survivors. Perturbations of neuroinflammatory-related pathways were identified between survivors. Transcriptome profile was similar to other pre-clinical and clinical studies.
Collapse
|
27
|
Transforming growth factor beta 1 signaling is altered in the spinal cord and muscle of amyotrophic lateral sclerosis mice and patients. Neurobiol Aging 2019; 82:48-59. [PMID: 31394426 DOI: 10.1016/j.neurobiolaging.2019.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022]
Abstract
Gender differences characterize amyotrophic lateral sclerosis (ALS). Because ALS patients have increased circulating levels of transforming growth factor beta 1 (TGFB1), here we analyzed gender and disease progression-related modification of TGFB1 and its related signaling molecules in the spinal cord and skeletal muscle of ALS mice and in muscle biopsies from sporadic ALS patients. At presymptomatic stage, Tgfb1 mRNA expression is reduced in the mouse spinal cord but is increased selectively in the male skeletal muscle. At symptomatic stage, it is induced both in the mouse spinal cord and muscle, as well as in the muscle of ALS patients. Tgfbr2 levels are induced only in the mouse spinal cord. Smad2 and Smad4 mRNAs are decreased in the mouse spinal cord and muscle, but SMAD2 protein levels are augmented selectively in the male mouse muscle. Smad3 mRNA and SMAD3 protein are increased in the mouse muscle. The expression of genes controlled by TGFB1 in the muscle (Pax7, Collagen1a1, and Fibronectin) are reduced both in male and female ALS mice at symptomatic stage. Thus, TGFB1 modulation may serve as a novel therapeutic target for ALS.
Collapse
|
28
|
Qiu CY, Liu TT, Wei S, Zhou YM, Wu L, Jin Y, Hu WP. TGF-β1 enhances the activity of acid-sensing ion channel in rat primary sensory neurons. J Neurosci Res 2019; 97:1298-1305. [PMID: 31240740 DOI: 10.1002/jnr.24481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is an important member of multifunctional growth factor superfamily. It has been implicated in pain signaling, but little is known about the underlying mechanisms. Herein, we report that TGF-β1 can exert a sustained enhancing effect on the functional activity of acid-sensing ion channels (ASICs) in rat dorsal root ganglia (DRG) neurons. Pre-application of TGF-β1 increased the amplitude of proton-gated currents in a dose-dependent manner. Enhancement of ASIC currents lasted for more than 30 min although TGF-β1 was treated once only. This sustained enhancement by TGF-β1 could be blocked by extracellular treatment of selective TGF-β receptor I antagonist SD-208, and abolished by blockade of intracellular several non-Smad-signaling pathways. TGF-β1 also sustainedly enhanced proton-evoked spikes in rat DRG neurons. Moreover, peripheral pre-treatment with TGF-β1 dose-dependently exacerbated nociceptive behaviors evoked by intraplantar injection of acetic acid through TGF-β receptor I in rats. These results suggested that TGF-β1 potentiated ASIC-mediated electrophysiological activity and nociceptive behaviors, which revealed a novel mechanism underlying TGF-β1 implicated in peripheral pain signaling by sensitizing ASICs.
Collapse
Affiliation(s)
- Chun-Yu Qiu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, P R China.,Department of Pharmacology, Hubei University of Science and Technology, Xianning, P R China
| | - Ting-Ting Liu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, P R China
| | - Shuang Wei
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, P R China
| | - Yi-Mei Zhou
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, P R China
| | - Lei Wu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, P R China
| | - Ying Jin
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, P R China
| | - Wang-Ping Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, P R China
| |
Collapse
|
29
|
Mikheeva IB, Malkov AE, Pavlik LL, Arkhipov VI, Levin SG. Effect of TGF-beta1 on long-term synaptic plasticity and distribution of AMPA receptors in the CA1 field of the hippocampus. Neurosci Lett 2019; 704:95-99. [PMID: 30953737 DOI: 10.1016/j.neulet.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 11/29/2022]
Abstract
Using the methods of electrophysiology and immunohistochemistry, the effect of the transforming factor beta-1(TGF-β1), an anti-inflammatory cytokine, on the long-term post-tetanic potentiation (LTP) in CA1 field hippocampal slices and the distribution of the GluR1 subunit of the AMPA receptor has been studied. It was shown that TGF-β1 at a concentration of 10 ng/ml did not significantly affect the initial stage of LTP and substantially changed the distribution of synaptic AMPA receptors in response to tetanic stimulation. Twenty five minutes after the tetanization, the main pool of AMPA receptors (90%) was due to the postsynaptic density (PSD). By contrast, LTP in the presence of TGF-β1 was accompanied by less pronounced changes in the distribution of AMPA receptors. Their localization in both pre- and postsynaptic regions remained nearly the same as that in the control. It may be suggested that the normal distribution of AMPA receptors in spinous synapses promotes the stabilization of potentiated synapses, thereby retaining LTP for longer terms.
Collapse
Affiliation(s)
- I B Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - A E Malkov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - L L Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - V I Arkhipov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, 142290, Russia
| | - S G Levin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
30
|
Wang SS, Bandopadhayay P, Jenkins MR. Towards Immunotherapy for Pediatric Brain Tumors. Trends Immunol 2019; 40:748-761. [PMID: 31229353 DOI: 10.1016/j.it.2019.05.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/12/2019] [Accepted: 05/28/2019] [Indexed: 12/25/2022]
Abstract
Pediatric brain tumors are the leading cause of childhood cancer-related death. Immunotherapy is a powerful new approach for treating some refractory cancers; applying this 'fourth pillar' of cancer treatment to pediatric brain tumors is an exciting but challenging prospect. This review offers new perspectives on moving towards successful immunotherapy for pediatric brain tumors, focusing on pediatric high-grade glioma (HGG), a subgroup with universally poor outcomes. We cover chimeric antigen receptor T cell (CAR-T) therapy, vaccine therapy, and checkpoint inhibition in this context, and focus on the need for intimately understanding the growing brain and its immune system. We highlight the challenges associated with the application of immunotherapy in pediatric neuro-oncology, as well as the tissue-specific challenges to be overcome, to achieve improved outcomes.
Collapse
Affiliation(s)
- Stacie Shiqi Wang
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Misty Rayna Jenkins
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia; La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
31
|
The role of anti-inflammatory cytokines in memory processing in a healthy brain. Behav Brain Res 2019; 367:111-116. [PMID: 30943419 DOI: 10.1016/j.bbr.2019.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 11/21/2022]
Abstract
The purpose of the work was to study the role of anti-inflammatory cytokines in memory processing in a healthy brain. Wistar rats were trained to perform a task with positive (food) reinforcement; and then the task performance was tested after intraventricular injection of IL-10 or TGF-β1. A microinjection into the brain of either of the two cytokines did not affect the performance of the task and did not have an anti-amnesic effect when the retrieval was deteriorated with scopolamine. In addition, endogenous levels of IL-10 and TGF-β1 were determine in the prefrontal cortex and in the hippocampus after one and two training sessions, consisting of 10 runs each. The level of IL-10 did not change after training both in the prefrontal cortex and in the hippocampus. Endogenous level of TGF-β1 increased in the neocortex after the first training session, the second session, and recovered to the normal level three days after training. In contrast, in the hippocampus, the level of TGF-β1 was decreased: maximally after the first training session in the right hippocampus and after the second training session in the left one. Given the role of the prefrontal cortex in memory processing, we assume that a specific increase of TGF-β1 in the prefrontal cortex may indicate involvement in memory trace consolidation.
Collapse
|
32
|
LncRNA-MEG3 protects against ganglion cell dysplasia in congenital intestinal atresia through directly regulating miR-211-5p/GDNF axis. Biomed Pharmacother 2019; 111:436-442. [DOI: 10.1016/j.biopha.2018.11.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/07/2018] [Accepted: 11/25/2018] [Indexed: 12/20/2022] Open
|
33
|
Astrocytes and the TGF-β1 Pathway in the Healthy and Diseased Brain: a Double-Edged Sword. Mol Neurobiol 2018; 56:4653-4679. [DOI: 10.1007/s12035-018-1396-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
|
34
|
Koszinowski S, La Padula V, Edlich F, Krieglstein K, Busch H, Boerries M. Bid Expression Network Controls Neuronal Cell Fate During Avian Ciliary Ganglion Development. Front Physiol 2018; 9:797. [PMID: 30008673 PMCID: PMC6034111 DOI: 10.3389/fphys.2018.00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/07/2018] [Indexed: 11/13/2022] Open
Abstract
Avian ciliary ganglion (CG) development involves a transient execution phase of apoptosis controlling the final number of neurons, but the time-dependent molecular mechanisms for neuronal cell fate are largely unknown. To elucidate the molecular networks regulating important aspects of parasympathetic neuronal development, a genome-wide expression analysis was performed during multiple stages of avian CG development between embryonic days E6 and E14. The transcriptome data showed a well-defined sequence of events, starting from neuronal migration via neuronal fate cell determination, synaptic transmission, and regulation of synaptic plasticity to growth factor associated signaling. In particular, we extracted a neuronal apoptosis network that characterized the cell death execution phase at E8/E9 and apoptotic cell clearance at E14 by combining the gene time series analysis with network synthesis from the chicken interactome. Network analysis identified TP53 as key regulator and predicted involvement of the BH3 interacting domain death agonist (BID). A virus-based RNAi knockdown approach in vivo showed a crucial impact of BID expression on the execution of ontogenetic programmed cell death (PCD). In contrast, Bcl-XL expression did not impact PCD. Therefore, BID-mediated apoptosis represents a novel cue essential for timing within CG maturation.
Collapse
Affiliation(s)
- Sophie Koszinowski
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Veronica La Padula
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Frank Edlich
- Institute for Biochemistry and Molecular Biology, and Centre for Biological Signalling Studies BIOSS, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Kerstin Krieglstein
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Luebeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
35
|
Sulaiman W, Dreesen T, Nguyen D. Single Local Application of TGF-β Promotes a Proregenerative State Throughout a Chronically Injured Nerve. Neurosurgery 2018; 82:894-902. [PMID: 28973496 DOI: 10.1093/neuros/nyx362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 06/06/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The lack of nerve regeneration and functional recovery occurs frequently when injuries involve large nerve trunks because insufficient mature axons reach their targets in the distal stump and because of the loss of neurotrophic support, primarily from Schwann cells (SCs). OBJECTIVE To investigate whether a single application of transforming growth factor-beta (TGF-β) plus forskolin or forskolin alone can promote and support axonal regeneration through the distal nerve stump. METHODS Using a delayed repair rat model of nerve injury, we transected the tibial nerve. After 8 wk, end-to-end repair was done and the repair site was treated with saline, forskolin, or TGF- β plus forskolin. After 6 wk, nerve sections consisting of the proximal stump, distal to the site of repair, and the most distal part of the nerve stump were removed for nerve histology, axon counts, and immunohistochemistry for activated SCs (S100), macrophages (CD68), cell proliferation (Ki67), p75NGFR, and apoptosis (activated caspase-3). RESULTS TGF-β plus forskolin significantly increased the numbers of axons regenerated distal to the repair site and the most distal nerve sections. Both treatments significantly increased the numbers of axons regenerated in the most distal nerve sections compared to saline treated. Both treatments exhibited extended expression of regeneration-associated marker proteins. CONCLUSION TGF-β plus forskolin treatment of chronically injured nerve improved axonal regeneration and increased expression of regeneration-associated proteins beyond the repair site. This suggests that a single application at the site of repair has mitogenic effects that extended distally and may potentially overcome the decrease in regenerated axon over long distance.
Collapse
Affiliation(s)
- Wale Sulaiman
- Department of Neurosurgery, Back and Spine Center, Ochsner Neuroscience Institute, Ochsner Health System, and Tulane University Medical Center, New Orleans, Louisiana.,Laboratory of Neural Injury and Regeneration, Institute of Translational Research, Ochsner Medical Center, New Orleans, Louisiana
| | - Thomas Dreesen
- Laboratory of Neural Injury and Regeneration, Institute of Translational Research, Ochsner Medical Center, New Orleans, Louisiana
| | - Doan Nguyen
- Laboratory of Neural Injury and Regeneration, Institute of Translational Research, Ochsner Medical Center, New Orleans, Louisiana
| |
Collapse
|
36
|
Abstract
Stroke is a cerebrovascular disorder that affects many people worldwide. In addition to the well-established functions of astrocytes and microglia in stroke pathogenesis, pericytes also play an important role in stroke progression and recovery. As perivascular multi-potent cells and an important component of the blood–brain barrier (BBB), pericytes have been shown to exert a large variety of functions, including serving as stem/progenitor cells and maintaining BBB integrity. Here in this review, we summarize the roles of pericytes in stroke pathogenesis, with a focus on their effects in cerebral blood flow, BBB integrity, angiogenesis, immune responses, scar formation and fibrosis.
Collapse
Affiliation(s)
- Jyoti Gautam
- 1 Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Yao Yao
- 1 Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
37
|
Seleem AA, Sultan ARS, Said A, Shahat MM, Moustafa MA. Localization of connective tissue growth factor (CTGF) and transforming growth factor beta-2 (TGF-β2) during eye development of four species of birds. J Histotechnol 2018. [DOI: 10.1080/01478885.2018.1475861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Amin A. Seleem
- Biology Department, Faculty of Science and Arts, Taibah University, Allula, Kingdom of Saudi Arabia
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt
| | | | - Ahmed Said
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed M. Shahat
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohsen A. Moustafa
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
38
|
Vanderwall AG, Noor S, Sun MS, Sanchez JE, Yang XO, Jantzie LL, Mellios N, Milligan ED. Effects of spinal non-viral interleukin-10 gene therapy formulated with d-mannose in neuropathic interleukin-10 deficient mice: Behavioral characterization, mRNA and protein analysis in pain relevant tissues. Brain Behav Immun 2018; 69:91-112. [PMID: 29113923 PMCID: PMC5857419 DOI: 10.1016/j.bbi.2017.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/20/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022] Open
Abstract
Studies show that spinal (intrathecal; i.t.) interleukin-10 (IL-10) gene therapy reverses neuropathic pain in animal models, and co-administration with the mannose receptor (MR; CD206) ligand d-mannose (DM) greatly improves therapeutic efficacy. However, the actions of endogenous IL-10 may be required for enduring pain control observed following i.t. IL-10 gene therapy, potentially narrowing the application of this non-viral transgene delivery approach. Here, we show that i.t. application of naked plasmid DNA expressing the IL-10 transgene co-injected with DM (DM/pDNA-IL-10) for the treatment of peripheral neuropathic pain in IL-10 deficient (IL-10 KO) mice results in a profound and prolonged bilateral pain suppression. Neuropathic pain is induced by unilateral sciatic chronic constriction injury (CCI), and while enduring relief of light touch sensitivity (mechanical allodynia) in both wild type (WT) and IL-10 KO mice was observed following DM/pDNA-IL-10 co-therapy, transient reversal from allodynia was observed following i.t. DM alone. In stably pain-relieved IL-10 KO mice given DM/pDNA-IL-10, mRNA for the IL-10 transgene is detected in the cauda equina and ipsilateral dorsal root ganglia (DRG), but not the lumbar spinal cord. Further, DM/pDNA-IL-10 application increases anti-inflammatory TGF-β1 and decreases pro-inflammatory TNF mRNA in the ipsilateral DRG compared to allodynic controls. Additionally, DM/pDNA-IL-10 treated mice exhibit decreased spinal pro-inflammatory mRNA expression for TNF, CCL2 (MCP-1), and for the microglial-specific marker TMEM119. Similarly, DM/pDNA-IL-10 treatment decreases immunoreactivity for the astrocyte activation marker GFAP in lumbar spinal cord dorsal horn. Despite transient reversal and early return to allodynia in DM-treated mice, lumbar spinal cord revealed elevated TNF, CCL2 and TMEM119 mRNA levels. Both MR (CD206) and IL-10 receptor mRNAs are increased in the DRG following CCI manipulation independent of injection treatment, suggesting that pathological conditions stimulate upregulation and availability of relevant receptors in critical anatomical regions required for the therapeutic actions of the DM/pDNA-IL-10 co-therapy. Taken together, the current report demonstrates that non-viral DM/pDNA-IL-10 gene therapy does not require endogenous IL-10 for enduring relief of peripheral neuropathic pain and does not require direct contact with the spinal cord dorsal horn for robust and enduring relief of neuropathic pain. Spinal non-viral DM/pDNA-IL-10 co-therapy may offer a framework for the development of non-viral gene therapeutic approaches for other diseases of the central nervous system.
Collapse
Affiliation(s)
- Arden G Vanderwall
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA; Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Shahani Noor
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Melody S Sun
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Jacob E Sanchez
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Xuexian O Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Lauren L Jantzie
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA; Department of Pediatrics, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Erin D Milligan
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA; Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA.
| |
Collapse
|
39
|
Mehta S, Lo Cascio C. Developmentally regulated signaling pathways in glioma invasion. Cell Mol Life Sci 2018; 75:385-402. [PMID: 28821904 PMCID: PMC5765207 DOI: 10.1007/s00018-017-2608-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 08/03/2017] [Indexed: 01/06/2023]
Abstract
Malignant gliomas are the most common, infiltrative, and lethal primary brain tumors affecting the adult population. The grim prognosis for this disease is due to a combination of the presence of highly invasive tumor cells that escape surgical resection and the presence of a population of therapy-resistant cancer stem cells found within these tumors. Several studies suggest that glioma cells have cleverly hijacked the normal developmental program of neural progenitor cells, including their transcriptional programs, to enhance gliomagenesis. In this review, we summarize the role of developmentally regulated signaling pathways that have been found to facilitate glioma growth and invasion. Furthermore, we discuss how the microenvironment and treatment-induced perturbations of these highly interconnected signaling networks can trigger a shift in cellular phenotype and tumor subtype.
Collapse
Affiliation(s)
- Shwetal Mehta
- Division of Neurobiology, Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA.
| | - Costanza Lo Cascio
- Division of Neurobiology, Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| |
Collapse
|
40
|
Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, Cao X. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res 2018; 6:2. [PMID: 29423331 PMCID: PMC5802812 DOI: 10.1038/s41413-017-0005-4] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 02/05/2023] Open
Abstract
TGF-β 1-3 are unique multi-functional growth factors that are only expressed in mammals, and mainly secreted and stored as a latent complex in the extracellular matrix (ECM). The biological functions of TGF-β in adults can only be delivered after ligand activation, mostly in response to environmental perturbations. Although involved in multiple biological and pathological processes of the human body, the exact roles of TGF-β in maintaining stem cells and tissue homeostasis have not been well-documented until recent advances, which delineate their functions in a given context. Our recent findings, along with data reported by others, have clearly shown that temporal and spatial activation of TGF-β is involved in the recruitment of stem/progenitor cell participation in tissue regeneration/remodeling process, whereas sustained abnormalities in TGF-β ligand activation, regardless of genetic or environmental origin, will inevitably disrupt the normal physiology and lead to pathobiology of major diseases. Modulation of TGF-β signaling with different approaches has proven effective pre-clinically in the treatment of multiple pathologies such as sclerosis/fibrosis, tumor metastasis, osteoarthritis, and immune disorders. Thus, further elucidation of the mechanisms by which TGF-β is activated in different tissues/organs and how targeted cells respond in a context-dependent way can likely be translated with clinical benefits in the management of a broad range of diseases with the involvement of TGF-β.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gehua Zhen
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Janet L. Crane
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
41
|
Cattaneo A, Cattane N, Malpighi C, Czamara D, Suarez A, Mariani N, Kajantie E, Luoni A, Eriksson JG, Lahti J, Mondelli V, Dazzan P, Räikkönen K, Binder EB, Riva MA, Pariante CM. FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol Psychiatry 2018; 23:2192-2208. [PMID: 29302075 PMCID: PMC6283860 DOI: 10.1038/s41380-017-0002-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 09/09/2017] [Accepted: 10/16/2017] [Indexed: 01/02/2023]
Abstract
To date, gene-environment (GxE) interaction studies in depression have been limited to hypothesis-based candidate genes, since genome-wide (GWAS)-based GxE interaction studies would require enormous datasets with genetics, environmental, and clinical variables. We used a novel, cross-species and cross-tissues "omics" approach to identify genes predicting depression in response to stress in GxE interactions. We integrated the transcriptome and miRNome profiles from the hippocampus of adult rats exposed to prenatal stress (PNS) with transcriptome data obtained from blood mRNA of adult humans exposed to early life trauma, using a stringent statistical analyses pathway. Network analysis of the integrated gene lists identified the Forkhead box protein O1 (FoxO1), Alpha-2-Macroglobulin (A2M), and Transforming Growth Factor Beta 1 (TGF-β1) as candidates to be tested for GxE interactions, in two GWAS samples of adults either with a range of childhood traumatic experiences (Grady Study Project, Atlanta, USA) or with separation from parents in childhood only (Helsinki Birth Cohort Study, Finland). After correction for multiple testing, a meta-analysis across both samples confirmed six FoxO1 SNPs showing significant GxE interactions with early life emotional stress in predicting depressive symptoms. Moreover, in vitro experiments in a human hippocampal progenitor cell line confirmed a functional role of FoxO1 in stress responsivity. In secondary analyses, A2M and TGF-β1 showed significant GxE interactions with emotional, physical, and sexual abuse in the Grady Study. We therefore provide a successful 'hypothesis-free' approach for the identification and prioritization of candidate genes for GxE interaction studies that can be investigated in GWAS datasets.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK. .,Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy.
| | - Nadia Cattane
- grid.419422.8Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Chiara Malpighi
- grid.419422.8Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Darina Czamara
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Anna Suarez
- 0000 0004 0410 2071grid.7737.4Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Nicole Mariani
- 0000 0001 2322 6764grid.13097.3cStress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - Eero Kajantie
- 0000 0001 1013 0499grid.14758.3fNational Institute for Health and Welfare, Helsinki, Finland ,0000 0004 0409 6302grid.428673.cFolkhälsan Research Centre, Helsinki, Finland ,0000 0001 1013 0499grid.14758.3fNational Institute for Health and Welfare, Helsinki, Finland ,0000 0004 0410 2071grid.7737.4Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alessia Luoni
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Johan G. Eriksson
- 0000 0001 1013 0499grid.14758.3fNational Institute for Health and Welfare, Helsinki, Finland ,0000 0000 9950 5666grid.15485.3dHospital for Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland ,0000 0004 4685 4917grid.412326.0PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jari Lahti
- 0000 0004 0410 2071grid.7737.4Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland ,0000 0004 0409 6302grid.428673.cFolkhälsan Research Centre, Helsinki, Finland ,0000 0001 1013 0499grid.14758.3fNational Institute for Health and Welfare, Helsinki, Finland ,Helsinki Collegium for Advanced Studies, Helsinki, Finland
| | - Valeria Mondelli
- 0000 0001 2322 6764grid.13097.3cStress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - Paola Dazzan
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Katri Räikkönen
- 0000 0004 0410 2071grid.7737.4Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Elisabeth B. Binder
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany ,0000 0001 0941 6502grid.189967.8Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Marco A. Riva
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carmine M. Pariante
- 0000 0001 2322 6764grid.13097.3cStress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| |
Collapse
|
42
|
Yan YL, Desvignes T, Bremiller R, Wilson C, Dillon D, High S, Draper B, Buck CL, Postlethwait J. Gonadal soma controls ovarian follicle proliferation through Gsdf in zebrafish. Dev Dyn 2017; 246:925-945. [PMID: 28856758 PMCID: PMC5761338 DOI: 10.1002/dvdy.24579] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/20/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aberrant signaling between germ cells and somatic cells can lead to reproductive disease and depends on diffusible signals, including transforming growth factor-beta (TGFB) -family proteins. The TGFB-family protein Gsdf (gonadal soma derived factor) controls sex determination in some fish and is a candidate for mediating germ cell/soma signaling. RESULTS Zebrafish expressed gsdf in somatic cells of bipotential gonads and expression continued in ovarian granulosa cells and testicular Sertoli cells. Homozygous gsdf knockout mutants delayed leaving the bipotential gonad state, but then became a male or a female. Mutant females ovulated a few oocytes, then became sterile, accumulating immature follicles. Female mutants stored excess lipid and down-regulated aromatase, gata4, insulin receptor, estrogen receptor, and genes for lipid metabolism, vitellogenin, and steroid biosynthesis. Mutant females contained less estrogen and more androgen than wild-types. Mutant males were fertile. Genomic analysis suggests that Gsdf, Bmp15, and Gdf9, originated as paralogs in vertebrate genome duplication events. CONCLUSIONS In zebrafish, gsdf regulates ovarian follicle maturation and expression of genes for steroid biosynthesis, obesity, diabetes, and female fertility, leading to ovarian and extra-ovarian phenotypes that mimic human polycystic ovarian syndrome (PCOS), suggesting a role for a related TGFB signaling molecule in the etiology of PCOS. Developmental Dynamics 246:925-945, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | - Ruth Bremiller
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | - Danielle Dillon
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona
| | - Samantha High
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | - Bruce Draper
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California
| | - Charles Loren Buck
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | | |
Collapse
|
43
|
He Y, Luo Y, Liang B, Ye L, Lu G, He W. Potential applications of MEG3 in cancer diagnosis and prognosis. Oncotarget 2017; 8:73282-73295. [PMID: 29069869 PMCID: PMC5641212 DOI: 10.18632/oncotarget.19931] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
LncRNAs are emerging as integral functional and regulatory components of normal biological activities and are now considered as critically involved in the development of different diseases including cancer. In this review, we summarized recent findings on maternally expressed gene 3 (MEG3), a noncoding lncRNA, locates in the imprinted DLK1–MEG3 locus on human chromosome 14q32.3 region. MEG3 is expressed in normal tissues but is either lost or decreased in many human tumors and tumor derived cell lines. Studies have demonstrated that MEG3 is associated with cancer initiation, progression, metastasis and chemo-resistance. MEG3 may affect the activities of TP53, MDM2, GDF15, RB1 and some other key cell cycle regulators. In addition, the level of MEG3 showed good correlation with cancer clinicopathological grade. In summary, MEGs is an RNA-based tumor suppressor and is involved in the etiology, progression, and chemosensitivity of cancers. The alteration of MEG3 levels in various cancers suggested the possibility of using MEG3 level for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuqing He
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan 523808, China.,Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Yanhong Luo
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Biyu Liang
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Lei Ye
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Guangxing Lu
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| | - Weiming He
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
44
|
Tripathi P, Rodriguez-Muela N, Klim JR, de Boer AS, Agrawal S, Sandoe J, Lopes CS, Ogliari KS, Williams LA, Shear M, Rubin LL, Eggan K, Zhou Q. Reactive Astrocytes Promote ALS-like Degeneration and Intracellular Protein Aggregation in Human Motor Neurons by Disrupting Autophagy through TGF-β1. Stem Cell Reports 2017; 9:667-680. [PMID: 28712846 PMCID: PMC5549875 DOI: 10.1016/j.stemcr.2017.06.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing motor neuron disease. Astrocytic factors are known to contribute to motor neuron degeneration and death in ALS. However, the role of astrocyte in promoting motor neuron protein aggregation, a disease hallmark of ALS, remains largely unclear. Here, using culture models of human motor neurons and primary astrocytes of different genotypes (wild-type or SOD1 mutant) and reactive states (non-reactive or reactive), we show that reactive astrocytes, regardless of their genotypes, reduce motor neuron health and lead to moderate neuronal loss. After prolonged co-cultures of up to 2 months, motor neurons show increased axonal and cytoplasmic protein inclusions characteristic of ALS. Reactive astrocytes induce protein aggregation in part by releasing transforming growth factor β1 (TGF-β1), which disrupts motor neuron autophagy through the mTOR pathway. These results reveal the important contribution of reactive astrocytes in promoting aspects of ALS pathology independent of genetic influences. Reactive astrocytes induce ALS-like protein aggregation in human motor neurons Reactive astrocytes have increased secretion of TGF-β1 TGF-β1 induces axonal and cytoplasmic protein aggregation in hMNs TGF-β1 activates PI3K/AKT/mTOR pathway and impairs autophagy in hMNs
Collapse
Affiliation(s)
- Pratibha Tripathi
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Natalia Rodriguez-Muela
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - A Sophie de Boer
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sahil Agrawal
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Jackson Sandoe
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Claudia S Lopes
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Karolyn Sassi Ogliari
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Luis A Williams
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Matthew Shear
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Qiao Zhou
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
45
|
Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 2017; 19:771-83. [PMID: 27227366 DOI: 10.1038/nn.4288] [Citation(s) in RCA: 768] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/29/2016] [Indexed: 12/12/2022]
Abstract
Pericytes are vascular mural cells embedded in the basement membrane of blood microvessels. They extend their processes along capillaries, pre-capillary arterioles and post-capillary venules. CNS pericytes are uniquely positioned in the neurovascular unit between endothelial cells, astrocytes and neurons. They integrate, coordinate and process signals from their neighboring cells to generate diverse functional responses that are critical for CNS functions in health and disease, including regulation of the blood-brain barrier permeability, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, neuroinflammation and stem cell activity. Here we examine the key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes and neurons that control neurovascular functions. We also review the role of pericytes in CNS disorders including rare monogenic diseases and complex neurological disorders such as Alzheimer's disease and brain tumors. Finally, we discuss directions for future studies.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.,Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Shiva Ayyadurai
- Systems Biology Group, CytoSolve Research Division, Cambridge, Massachusetts, USA
| | - Berislav V Zlokovic
- Department of Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.,Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
46
|
The anti-inflammatory and immunomodulatory potential of braylin: Pharmacological properties and mechanisms by in silico, in vitro and in vivo approaches. PLoS One 2017; 12:e0179174. [PMID: 28594906 PMCID: PMC5464642 DOI: 10.1371/journal.pone.0179174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/24/2017] [Indexed: 01/19/2023] Open
Abstract
Braylin belongs to the group of natural coumarins, a group of compounds with a wide range of pharmacological properties. Here we characterized the pharmacological properties of braylin in vitro, in silico and in vivo in models of inflammatory/immune responses. In in vitro assays, braylin exhibited concentration-dependent suppressive activity on activated macrophages. Braylin (10–40 μM) reduced the production of nitrite, IL-1β, TNF-α and IL-6 by J774 cells or peritoneal exudate macrophages stimulated with LPS and IFN-γ. Molecular docking calculations suggested that braylin present an interaction pose to act as a glucocorticoid receptor ligand. Corroborating this idea, the inhibitory effect of braylin on macrophages was prevented by RU486, a glucocorticoid receptor antagonist. Furthermore, treatment with braylin strongly reduced the NF-κB-dependent transcriptional activity on RAW 264.7 cells. Using the complete Freund’s adjuvant (CFA)-induced paw inflammation model in mice, the pharmacological properties of braylin were demonstrated in vivo. Braylin (12.5–100 mg/kg) produced dose-related antinociceptive and antiedematogenic effects on CFA model. Braylin did not produce antinociception on the tail flick and hot plate tests in mice, suggesting that braylin-induced antinociception is not a centrally-mediated action. Braylin exhibited immunomodulatory properties on the CFA model, inhibiting the production of pro-inflammatory cytokines IL-1β, TNF-α and IL-6, while increased the anti-inflammatory cytokine TGF-β. Our results show, for the first time, anti-inflammatory, antinociceptive and immunomodulatory effects of braylin, which possibly act through the glucocorticoid receptor activation and by inhibition of the transcriptional activity of NF-κB. Because braylin is a phosphodiesterase-4 inhibitor, this coumarin could represent an ideal prototype of glucocorticoid receptor ligand, able to induce synergic immunomodulatory effects.
Collapse
|
47
|
Burchell JT, Panegyres PK. New cerebrospinal fluid biomarkers in Alzheimer’s disease. FUTURE NEUROLOGY 2017. [DOI: 10.2217/fnl-2017-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Jennifer T Burchell
- Neurodegenerative Disorders Research Pty Ltd, 4 Lawrence Avenue, West Perth, Western Australia 6005, Australia
| | - Peter K Panegyres
- Neurodegenerative Disorders Research Pty Ltd, 4 Lawrence Avenue, West Perth, Western Australia 6005, Australia
| |
Collapse
|
48
|
Huang Q, Lu Q, Chen B, Shen H, Liu Q, Zhou Z, Lei Y. LncRNA-MALAT1 as a novel biomarker of cadmium toxicity regulates cell proliferation and apoptosis. Toxicol Res (Camb) 2017; 6:361-371. [PMID: 30090505 PMCID: PMC6062301 DOI: 10.1039/c6tx00433d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Cadmium (Cd) and its compounds are well-known human carcinogens, but the mechanisms underlying the carcinogenesis are not well understood. This study aimed to investigate whether lncRNA-MALAT1 could serve as a novel biomarker of Cd toxicity in cells, animals and Cd-exposed workers, and regulate cell proliferation, apoptosis, migration and invasion. MALAT1 expression increased gradually in CdCl2 transformed 16HBE cells. The cell apoptosis, migration and invasion were significantly inhibited, and the mRNA and protein expression of FOXC2, STAT, BAX, EGFR, and TGF-β1 reduced, but BCL-2 increased (P < 0.05) after silencing MALAT1 by siRNA in CdCl2 treated 16HBE cells of 15th and 35th passages. Cadmium increased MALAT1 expression in the lung of Cd-exposed rats in a dose-dependent manner. A significant positive correlation was observed between blood MALAT1 expression and urinary/blood Cd concentrations, and there were significant correlations of MALAT1 expression with the expressions of target genes in the lung of Cd-exposed rats and the blood of Cd exposed workers. This study suggests that the expression of MALAT1 is upregulated and regulates the cell cycle progression, proliferation, apoptosis, migration and invasion in Cd toxicity. MALAT1 may serve as a novel valuable biomarker of cadmium exposure and cadmium toxicity.
Collapse
Affiliation(s)
- Qinhai Huang
- School of Public Health , Guangzhou Medical University , Guangzhou 510182 , People's Republic of China .
| | - Qian Lu
- Shenzhen Longgang District Center for Disease Control and Prevention , Shenzhen 518172 , P.R. China
| | - Baoxin Chen
- School of Public Health , Guangzhou Medical University , Guangzhou 510182 , People's Republic of China .
| | - Huanyu Shen
- School of Public Health , Guangzhou Medical University , Guangzhou 510182 , People's Republic of China .
| | - Qun Liu
- School of Public Health , Guangzhou Medical University , Guangzhou 510182 , People's Republic of China .
| | - Zhiheng Zhou
- Massachusetts General Hospital , Harvard Medical School , Boston , Massachusetts 02114 , USA
| | - Yixiong Lei
- School of Public Health , Guangzhou Medical University , Guangzhou 510182 , People's Republic of China .
| |
Collapse
|
49
|
Dutoit V, Migliorini D, Dietrich PY, Walker PR. Immunotherapy of Malignant Tumors in the Brain: How Different from Other Sites? Front Oncol 2016; 6:256. [PMID: 28003994 PMCID: PMC5141244 DOI: 10.3389/fonc.2016.00256] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/24/2016] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy is now advancing at remarkable pace for tumors located in various tissues, including the brain. Strategies launched decades ago, such as tumor antigen-specific therapeutic vaccines and adoptive transfer of tumor-infiltrating lymphocytes are being complemented by molecular engineering approaches allowing the development of tumor-specific TCR transgenic and chimeric antigen receptor T cells. In addition, the spectacular results obtained in the last years with immune checkpoint inhibitors are transfiguring immunotherapy, these agents being used both as single molecules, but also in combination with other immunotherapeutic modalities. Implementation of these various strategies is ongoing for more and more malignancies, including tumors located in the brain, raising the question of the immunological particularities of this site. This may necessitate cautious selection of tumor antigens, minimizing the immunosuppressive environment and promoting efficient T cell trafficking to the tumor. Once these aspects are taken into account, we might efficiently design immunotherapy for patients suffering from tumors located in the brain, with beneficial clinical outcome.
Collapse
Affiliation(s)
- Valérie Dutoit
- Laboratory of Tumor Immunology, Center of Oncology, Geneva University Hospitals and University of Geneva , Geneva , Switzerland
| | - Denis Migliorini
- Oncology, Center of Oncology, Geneva University Hospitals and University of Geneva , Geneva , Switzerland
| | - Pierre-Yves Dietrich
- Oncology, Center of Oncology, Geneva University Hospitals and University of Geneva , Geneva , Switzerland
| | - Paul R Walker
- Laboratory of Tumor Immunology, Center of Oncology, Geneva University Hospitals and University of Geneva , Geneva , Switzerland
| |
Collapse
|
50
|
Masuda T, Itoh J, Koide T, Tomidokoro Y, Takei Y, Ishii K, Tamaoka A. Transforming growth factor-β1 in the cerebrospinal fluid of patients with distinct neurodegenerative diseases. J Clin Neurosci 2016; 35:47-49. [PMID: 27756506 DOI: 10.1016/j.jocn.2016.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/26/2016] [Indexed: 11/26/2022]
Abstract
A chronic inflammatory condition may underlie neurodegenerative disorders, including Parkinson's disease (PD) and Alzheimer's disease (AD). For example, both PD and AD patients show an increase in transforming growth factor-β1 (TGF-β1) levels in their cerebrospinal fluid (CSF). TGF-β1 is a cytokine that inhibits inflammation. In the present study, using an enzyme-linked immunosorbent assay, we tested the hypothesis that the level of TGF-β1 in the CSF of patients with amyotrophic lateral sclerosis (ALS), spinocerebellar degeneration (SCD), or multiple system atrophy-cerebellar subtype (MSA-C) would be elevated compared with that of normal controls. We found that TGF-β1 levels in the CSF were not significantly different between these patients and normal controls. Our data suggest that the level of TGF-β1 in the CSF is an unreliable biomarker of ALS, SCD, and MSA-C.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- Department of Neurobiology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8577, Japan; Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Junko Itoh
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Takuya Koide
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yasushi Tomidokoro
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yosuke Takei
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuhiro Ishii
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|