1
|
Bashkatova V. Metabotropic glutamate receptors and nitric oxide in dopaminergic neurotoxicity. World J Psychiatry 2021; 11:830-840. [PMID: 34733645 PMCID: PMC8546773 DOI: 10.5498/wjp.v11.i10.830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/11/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons. Parkinson's disease (PD) is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substantia nigra. Therefore, the study of the mechanisms, as well as the search for new targets for the prevention and treatment of neurodegenerative diseases, is an important focus of modern neuroscience. PD is primarily caused by dysfunction of dopaminergic neurons; however, other neurotransmitter systems are also involved. Research reports have indicated that the glutamatergic system is involved in different pathological conditions, including dopaminergic neurotoxicity. Over the last two decades, the important functional interplay between dopaminergic and glutamatergic systems has stimulated interest in the possible role of metabotropic glutamate receptors (mGluRs) in the development of extrapyramidal disorders. However, the specific mechanisms driving these processes are presently unclear. The participation of the universal neuronal messenger nitric oxide (NO) in the mechanisms of dopaminergic neurotoxicity has attracted increased attention. The current paper aims to review the involvement of mGluRs and the contribution of NO to dopaminergic neurotoxicity. More precisely, we focused on studies conducted on the rotenone-induced PD model. This review is also an outline of our own results obtained using the method of electron paramagnetic resonance, which allows quantitation of NO radicals in brain structures.
Collapse
Affiliation(s)
- Valentina Bashkatova
- Laboratory of Physiology Reinforcements, Anokhin Institute of Normal Physiology, Moscow 125315, Russia
| |
Collapse
|
2
|
Jayanthi S, Daiwile AP, Cadet JL. Neurotoxicity of methamphetamine: Main effects and mechanisms. Exp Neurol 2021; 344:113795. [PMID: 34186102 PMCID: PMC8338805 DOI: 10.1016/j.expneurol.2021.113795] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Methamphetamine (METH) is an illicit psychostimulant that is abused throughout the world. METH addiction is also a major public health concern and the abuse of large doses of the drug is often associated with serious neuropsychiatric consequences that may include agitation, anxiety, hallucinations, paranoia, and psychosis. Some human methamphetamine users can also suffer from attention, memory, and executive deficits. METH-associated neurological and psychiatric complications might be related, in part, to METH-induced neurotoxic effects. Those include altered dopaminergic and serotonergic functions, neuronal apoptosis, astrocytosis, and microgliosis. Here we have endeavored to discuss some of the main effects of the drug and have presented the evidence supporting certain of the molecular and cellular bases of METH neurotoxicity. The accumulated evidence suggests the involvement of transcription factors, activation of dealth pathways that emanate from mitochondria and endoplasmic reticulum (ER), and a role for neuroinflammatory mechanisms. Understanding the molecular processes involved in METH induced neurotoxicity should help in developing better therapeutic approaches that might also serve to attenuate or block the biological consequences of use of large doses of the drug by some humans who meet criteria for METH use disorder.
Collapse
Affiliation(s)
- Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States of America
| | - Atul P Daiwile
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, United States of America.
| |
Collapse
|
3
|
Costa G, Caputi FF, Serra M, Simola N, Rullo L, Stamatakos S, Sanna F, Germain M, Martinoli MG, Candeletti S, Morelli M, Romualdi P. Activation of Antioxidant and Proteolytic Pathways in the Nigrostriatal Dopaminergic System After 3,4-Methylenedioxymethamphetamine Administration: Sex-Related Differences. Front Pharmacol 2021; 12:713486. [PMID: 34512343 PMCID: PMC8430399 DOI: 10.3389/fphar.2021.713486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is an amphetamine-related drug that may damage the dopaminergic nigrostriatal system. To investigate the mechanisms that sustain this toxic effect and ascertain their sex-dependence, we evaluated in the nigrostriatal system of MDMA-treated (4 × 20 mg/kg, 2 h apart) male and female mice the activity of superoxide dismutase (SOD), the gene expression of SOD type 1 and 2, together with SOD1/2 co-localization with tyrosine hydroxylase (TH)-positive neurons. In the same mice and brain areas, activity of glutathione peroxidase (GPx) and of β2/β5 subunits of the ubiquitin-proteasome system (UPS) were also evaluated. After MDMA, SOD1 increased in striatal TH-positive terminals, but not nigral neurons, of males and females, while SOD2 increased in striatal TH-positive terminals and nigral neurons of males only. Moreover, after MDMA, SOD1 gene expression increased in the midbrain of males and females, whereas SOD2 increased only in males. Finally, MDMA increased the SOD activity in the midbrain of females, without affecting GPx activity, decreased the β2/β5 activities in the striatum of males and the β2 activity in the midbrain of females. These results suggest that the mechanisms of MDMA-induced neurotoxic effects are sex-dependent and dopaminergic neurons of males could be more sensitive to SOD2- and UPS-mediated toxic effects.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Serena Stamatakos
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Marc Germain
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CERMO-FC UQAM, Québec, QC, Canada
| | - Maria-Grazia Martinoli
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval and CHU Research Center, Québec, QC, Canada
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.,National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Sanjari Moghaddam H, Mobarak Abadi M, Dolatshahi M, Bayani Ershadi S, Abbasi-Feijani F, Rezaei S, Cattarinussi G, Aarabi MH. Effects of Prenatal Methamphetamine Exposure on the Developing Human Brain: A Systematic Review of Neuroimaging Studies. ACS Chem Neurosci 2021; 12:2729-2748. [PMID: 34297546 PMCID: PMC8763371 DOI: 10.1021/acschemneuro.1c00213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
![]()
Methamphetamine
(MA) can cross the placenta in pregnant women and
cause placental abruption and developmental alterations in offspring.
Previous studies have found prenatal MA exposure effects on the social
and cognitive performance of children. Recent studies reported some
alterations in structural and functional magnetic resonance imaging
(MRI) of prenatal MA-exposed offspring. In this study, we aimed to
investigate the effect of prenatal MA exposure on brain development
using recently published structural, metabolic, and functional MRI
studies. According to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines, we searched PubMed
and SCOPUS databases for articles that used each brain imaging modality
in prenatal MA-exposed children. Seventeen studies were included in
this study. We investigated brain imaging alterations using 17 articles
with four different modalities, including structural MRI, diffusion
tensor imaging (DTI), magnetic resonance spectroscopy (MRS), and functional
MRI (fMRI). The participants’ age range was from infancy to
15 years. Our findings demonstrated that prenatal MA exposure is associated
with macrostructural, microstructural, metabolic, and functional deficits
in both cortical and subcortical areas. However, the most affected
regions were the striatum, frontal lobe, thalamus and the limbic system,
and white matter (WM) fibers connecting these regions. The findings
from our study might have valuable implications for targeted treatment
of neurocognitive and behavioral deficits in children with prenatal
MA exposure. Even so, our results should be interpreted cautiously
due to the heterogeneity of the included studies in terms of study
populations and methods of analysis.
Collapse
Affiliation(s)
| | | | - Mahsa Dolatshahi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Sahar Rezaei
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Giulia Cattarinussi
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy
| | - Mohammad Hadi Aarabi
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy
| |
Collapse
|
5
|
Shin EJ, Jeong JH, Hwang Y, Sharma N, Dang DK, Nguyen BT, Nah SY, Jang CG, Bing G, Nabeshima T, Kim HC. Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson's disease. Arch Pharm Res 2021; 44:668-688. [PMID: 34286473 DOI: 10.1007/s12272-021-01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with a high prevalence, approximately 1 % in the elderly population. Numerous studies have demonstrated that methamphetamine (MA) intoxication caused the neurological deficits and nigrostriatal damage seen in Parkinsonian conditions, and subsequent rodent studies have found that neurotoxic binge administration of MA reproduced PD-like features, in terms of its symptomatology and pathology. Several anti-Parkinsonian medications have been shown to attenuate the motor impairments and dopaminergic damage induced by MA. In addition, it has been recognized that mitochondrial dysfunction, oxidative stress, pro-apoptosis, proteasomal/autophagic impairment, and neuroinflammation play important roles in inducing MA neurotoxicity. Importantly, MA neurotoxicity has been shown to share a common mechanism of dopaminergic toxicity with that of PD pathogenesis. This review describes the major findings on the neuropathological features and underlying neurotoxic mechanisms induced by MA and compares them with Parkinsonian pathogenesis. Taken together, it is suggested that neurotoxic binge-type administration of MA in rodents is a valid animal model for PD that may provide knowledge on the neuropathogenesis of PD.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.,Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, 900000, Can Tho City, Vietnam
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, 05029, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Guoying Bing
- Department of Neuroscience, College of Medicine, University of Kentucky, KY, 40536, Lexington, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Science, Fujita Health University, 470-1192, Toyoake, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea. .,Neuropsychopharmacology & Toxicology Program, College of Pharmacy, Kangwon National University, 24341, Chunchon, Republic of Korea.
| |
Collapse
|
6
|
Shafahi M, Vaezi G, Shajiee H, Sharafi S, Khaksari M. Crocin Inhibits Apoptosis and Astrogliosis of Hippocampus Neurons Against Methamphetamine Neurotoxicity via Antioxidant and Anti-inflammatory Mechanisms. Neurochem Res 2018; 43:2252-2259. [PMID: 30259275 DOI: 10.1007/s11064-018-2644-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 01/19/2023]
Abstract
Methamphetamine (METH) is a stimulant drug, which can cause neurotoxicity and increase the risk of neurodegenerative disorders. The mechanisms of acute METH intoxication comprise intra-neuronal events including oxidative stress, dopamine oxidation, and excitotoxicity. According to recent studies, crocin protects neurons by functioning as an anti-oxidant, anti-inflammatory, and anti-apoptotic compound. Accordingly, this study aimed to determine if crocin can protect against METH-induced neurotoxicity. Seventy-two male Wistar rats that weighed 260-300 g were randomly allocated to six groups of control (n = 12), crocin 90 mg/kg group (n = 12), METH (n = 12), METH + crocin 30 mg/kg (n = 12), METH + crocin 60 mg/kg (n = 12), and METH + crocin 90 mg/kg (n = 12). METH neurotoxicity was induced by 40 mg/kg of METH in four injections (e.g., 4 × 10 mg/kg q. 2 h, IP). Crocin was intraperitoneally (IP) injected at 30 min, 24 h, and 48 h after the final injection of METH. Seven days after METH injection, the rats' brains were removed for biochemical assessment using the ELISA technique, and immunohistochemistry staining was used for caspase-3 and glial fibrillary acidic protein (GFAP) detection. Crocin treatment could significantly increase superoxide dismutase (P < 0.05) and glutathione (P < 0.01) levels and reduce malondialdehyde and TNF-α in comparison with the METH group (P < 0.05). Moreover, crocin could significantly decline the level of caspase-3 and GFAP-positive cells in the CA1 region (P < 0.01). According to the results, crocin exerts neuroprotective effects on METH neurotoxicity via the inhibition of apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Monire Shafahi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Golamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Hooman Shajiee
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Shahram Sharafi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
7
|
Hedges DM, Obray JD, Yorgason JT, Jang EY, Weerasekara VK, Uys JD, Bellinger FP, Steffensen SC. Methamphetamine Induces Dopamine Release in the Nucleus Accumbens Through a Sigma Receptor-Mediated Pathway. Neuropsychopharmacology 2018; 43:1405-1414. [PMID: 29185481 PMCID: PMC5916361 DOI: 10.1038/npp.2017.291] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022]
Abstract
Methamphetamine (METH) is a drug with a high addictive potential that is widely abused across the world. Although it is known that METH dysregulates both dopamine transmission and dopamine reuptake, the specific mechanism of action remains obscure. One promising target of METH is the sigma receptor, a chaperone protein located on the membrane of the endoplasmic reticulum. Using fast-scan cyclic voltammetry, we show that METH-enhancement of evoked dopamine release and basal efflux is dependent on sigma receptor activation. METH-induced activation of sigma receptors results in oxidation of a cysteine residue on VMAT2, which decreases transporter function. Unilateral injections of the sigma receptor antagonist BD-1063 prior to METH administration increased dopamine-related ipsilateral circling behavior, indicating the involvement of sigma receptors. These findings suggest that interactions between METH and the sigma receptor lead to oxidative species (most likely superoxide) that in turn oxidize VMAT2. Altogether, these findings show that the sigma receptor has a key role in METH dysregulation of dopamine release and dopamine-related behaviors.
Collapse
Affiliation(s)
- David M Hedges
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - J Daniel Obray
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, USA
| | - Jordan T Yorgason
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, USA
| | - Eun Young Jang
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, USA
| | - Vajira K Weerasekara
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Joachim D Uys
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, USA
| | - Frederick P Bellinger
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Scott C Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, USA,Department of Psychology and Neuroscience, Brigham Young University, 1050 SWKT, Provo UT 84602, USA, Tel: +1-801-422-9499, Fax: +1-801-422-0602, E-mail:
| |
Collapse
|
8
|
Effects of sequential ethanol exposure and repeated high-dose methamphetamine on striatal and hippocampal dopamine, serotonin and glutamate tissue content in Wistar rats. Neurosci Lett 2017; 665:61-66. [PMID: 29174641 DOI: 10.1016/j.neulet.2017.11.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/04/2017] [Accepted: 11/20/2017] [Indexed: 11/20/2022]
Abstract
Alcohol (ethanol) and methamphetamine (METH) co-abuse is a major public health issue. Ethanol or METH exposure has been associated with changes in neurotransmitter levels in several central brain regions. However, little is known about the effect of sequential exposure to ethanol and METH on glutamate, dopamine and serotonin tissue content in striatum and hippocampus. In this study, we investigated the effects of sequential exposure to ethanol and METH on tissue content of these neurotransmitters. Male Wistar rats were orally gavaged with either ethanol (6g/kg) or water for seven days. Rats were administered with high dose of METH (10mg/kg, i.p. every 2h×4) or saline on Day 8 and euthanized 48h of last METH or saline i.p. injection. In the striatum, sequential exposure to ethanol and METH increased glutamate tissue content while reducing dopamine and serotonin tissue content as compared to the group exposed to ethanol alone. In the hippocampus, sequential exposure to ethanol and METH decreased serotonin tissue content as compared to the group that was exposed to ethanol alone. However, this study showed that ethanol has no additive effect to METH on tissue content of dopamine and serotonin as compared to METH in the striatum and hippocampus. This study demonstrated that sequential exposure of ethanol and METH has an additive effect on tissue content of certain neurotransmitters in the brain.
Collapse
|
9
|
Shin EJ, Tran HQ, Nguyen PT, Jeong JH, Nah SY, Jang CG, Nabeshima T, Kim HC. Role of Mitochondria in Methamphetamine-Induced Dopaminergic Neurotoxicity: Involvement in Oxidative Stress, Neuroinflammation, and Pro-apoptosis-A Review. Neurochem Res 2017; 43:66-78. [PMID: 28589520 DOI: 10.1007/s11064-017-2318-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
Abstract
Methamphetamine (MA), an amphetamine-type psychostimulant, is associated with dopaminergic toxicity and has a high abuse potential. Numerous in vivo and in vitro studies have suggested that impaired mitochondria are critical in dopaminergic toxicity induced by MA. Mitochondria are important energy-producing organelles with dynamic nature. Evidence indicated that exposure to MA can disturb mitochondrial energetic metabolism by inhibiting the Krebs cycle and electron transport chain. Alterations in mitochondrial dynamic processes, including mitochondrial biogenesis, mitophagy, and fusion/fission, have recently been shown to contribute to dopaminergic toxicity induced by MA. Furthermore, it was demonstrated that MA-induced mitochondrial impairment enhances susceptibility to oxidative stress, pro-apoptosis, and neuroinflammation in a positive feedback loop. Protein kinase Cδ has emerged as a potential mediator between mitochondrial impairment and oxidative stress, pro-apoptosis, or neuroinflammation in MA neurotoxicity. Understanding the role and underlying mechanism of mitochondrial impairment could provide a molecular target to prevent or alleviate dopaminergic toxicity induced by MA.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Phuong-Tram Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
10
|
Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch Pharm Res 2017; 40:403-428. [DOI: 10.1007/s12272-017-0897-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
|
11
|
Khadrawy YA, Salem AM, El-Shamy KA, Ahmed EK, Fadl NN, Hosny EN. Neuroprotective and Therapeutic Effect of Caffeine on the Rat Model of Parkinson's Disease Induced by Rotenone. J Diet Suppl 2017; 14:553-572. [PMID: 28301304 DOI: 10.1080/19390211.2016.1275916] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study aimed to investigate the protective and therapeutic effects of caffeine on rotenone-induced rat model of Parkinson's disease (PD). Rats were divided into control, PD model induced by rotenone (1.5 mg/kg intraperitoneally (i.p.) for 45 days), protected group injected with caffeine (30 mg/kg, i.p.) and rotenone for 45 days (during the development of PD model), and treated group injected with caffeine (30 mg/kg, i.p.) for 45 days after induction of PD model. The data revealed a state of oxidative and nitrosative stress in the midbrain and the striatum of animal model of PD as indicated from the increased lipid peroxidation and nitric oxide levels and the decreased reduced glutathione level and activities of glutathione-S-transferase and superoxide dismutase. Rotenone induced a decrease in acetylcholinesterase and Na+/K+-ATPase activities and an increase in tumor necrosis factor-α level in the midbrain and the striatum. Protection and treatment with caffeine ameliorated the oxidative stress and the changes in acetylcholinesterase and Na+/K+-ATPase activities induced by rotenone in the midbrain and the striatum. This was associated with improvement in the histopathological changes induced in the two areas of PD model. Caffeine protection and treatment restored the depletion of midbrain and striatal dopamine induced by rotenone and prevented decline in motor activities (assessed by open field test) and muscular strength (assessed by traction and hanging tests) and improved norepinephrine level in the two areas. The present study showed that caffeine offered a significant neuroprotection and treatment against neurochemical, histopathological, and behavioral changes in a rotenone-induced rat model of PD.
Collapse
Affiliation(s)
- Yasser A Khadrawy
- a Medical Physiology Department , Medical Division, National Research Centre , Giza , Egypt
| | - Ahmed M Salem
- b Biochemistry Department , Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Karima A El-Shamy
- a Medical Physiology Department , Medical Division, National Research Centre , Giza , Egypt
| | - Emad K Ahmed
- b Biochemistry Department , Faculty of Science, Ain Shams University , Cairo , Egypt
| | - Nevein N Fadl
- a Medical Physiology Department , Medical Division, National Research Centre , Giza , Egypt
| | - Eman N Hosny
- a Medical Physiology Department , Medical Division, National Research Centre , Giza , Egypt
| |
Collapse
|
12
|
Iron Oxide Nanoparticles Induce Dopaminergic Damage: In vitro Pathways and In Vivo Imaging Reveals Mechanism of Neuronal Damage. Mol Neurobiol 2016; 52:913-26. [PMID: 26099304 DOI: 10.1007/s12035-015-9259-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Various iron-oxide nanoparticles have been in use for a long time as therapeutic and imaging agents and for supplemental delivery in cases of iron-deficiency. While all of these products have a specified size range of ∼ 40 nm and above, efforts are underway to produce smaller particles, down to ∼ 1 nm. Here, we show that after a 24-h exposure of SHSY-5Y human neuroblastoma cells to 10 μg/ml of 10 and 30 nm ferric oxide nanoparticles (Fe-NPs), cellular dopamine content was depleted by 68 and 52 %, respectively. Increases in activated tyrosine kinase c-Abl, a molecular switch induced by oxidative stress, and neuronal α-synuclein expression, a protein marker associated with neuronal injury, were also observed (55 and 38 % percent increases, respectively). Inhibition of cell-proliferation, significant reductions in the number of active mitochondria, and a dose-dependent increase in reactive oxygen species (ROS) were observed in neuronal cells. Additionally, using a rat in vitro blood-brain barrier (BBB) model, a dose-dependent increase in ROS accompanied by increased fluorescein efflux demonstrated compromised BBB integrity. To assess translational implications, in vivo Fe-NP-induced neurotoxicity was determined using in vivo MRI and post-mortem neurochemical and neuropathological correlates in adult male rats after exposure to 50 mg/kg of 10 nm Fe-NPs. Significant decrease in T 2 values was observed. Dynamic observations suggested transfer and retention of Fe-NPs from brain vasculature into brain ventricles. A significant decrease in striatal dopamine and its metabolites was also observed, and neuropathological correlates provided additional evidence of significant nerve cell body and dopaminergic terminal damage as well as damage to neuronal vasculature after exposure to 10 nm Fe-NPs. These data demonstrate a neurotoxic potential of very small size iron nanoparticles and suggest that use of these ferric oxide nanoparticles may result in neurotoxicity, thereby limiting their clinical application.
Collapse
|
13
|
Kuhn DM, Angoa-Pérez M, Thomas DM. Nucleus accumbens invulnerability to methamphetamine neurotoxicity. ILAR J 2016; 52:352-65. [PMID: 23382149 DOI: 10.1093/ilar.52.3.352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.
Collapse
|
14
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF, Tizabi Y, Costa G, Morelli M. Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog Neurobiol 2015; 155:149-170. [PMID: 26455459 DOI: 10.1016/j.pneurobio.2015.09.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
Amphetamine-related drugs, such as 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (METH), are popular recreational psychostimulants. Several preclinical studies have demonstrated that, besides having the potential for abuse, amphetamine-related drugs may also elicit neurotoxic and neuroinflammatory effects. The neurotoxic potentials of MDMA and METH to dopaminergic and serotonergic neurons have been clearly demonstrated in both rodents and non-human primates. This review summarizes the species-specific cellular and molecular mechanisms involved in MDMA and METH-mediated neurotoxic and neuroinflammatory effects, along with the most important behavioral changes elicited by these substances in experimental animals and humans. Emphasis is placed on the neuropsychological and neurological consequences associated with the neuronal damage. Moreover, we point out the gap in our knowledge and the need for developing appropriate therapeutic strategies to manage the neurological problems associated with amphetamine-related drug abuse.
Collapse
Affiliation(s)
- Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain.
| | - Amit Khairnar
- Applied Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain
| | - Jose Ruben García-Montes
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain
| | - Pier Francesca Porceddu
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; National Research Council (CNR), Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
16
|
López-Arnau R, Martínez-Clemente J, Rodrigo T, Pubill D, Camarasa J, Escubedo E. Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone. Toxicol Appl Pharmacol 2015; 286:27-35. [PMID: 25817894 DOI: 10.1016/j.taap.2015.03.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/03/2015] [Accepted: 03/13/2015] [Indexed: 12/30/2022]
Abstract
Mephedrone is a new designer drug of abuse. We have investigated the neurochemical/enzymatic changes after mephedrone administration to adolescent rats (3×25 mg/kg, s.c. in a day, with a 2 h interval between doses, for two days) at high ambient temperature (26±2 °C), a schedule that intends to model human recreational abuse. In addition, we have studied the effect of mephedrone in spatial learning and memory. The drug caused a transient decrease in weight gain. After the first dose, animals showed hypothermia but, after the subsequent doses, temperature raised over the values of saline-treated group. We observed the development of tolerance to these thermoregulatory effects of mephedrone. Mephedrone induced a reduction of the densities of dopamine (30% in the frontal cortex) and serotonin (40% in the frontal cortex and the hippocampus and 48% in the striatum) transporters without microgliosis. These deficits were also accompanied by a parallel decrease in the expression of tyrosine hydroxylase and tryptophan hydroxylase 2. These changes matched with a down-regulation of D2 dopamine receptors in the striatum. Mephedrone also induced an oxidative stress evidenced by an increase of lipid peroxidation in the frontal cortex, and accompanied by a rise in glutathione peroxidase levels in all studied brain areas. Drug-treated animals displayed an impairment of the reference memory in the Morris water maze one week beyond the cessation of drug exposure, while the spatial learning process seems to be preserved. These findings raise concerns about the neuronal long-term effects of mephedrone.
Collapse
Affiliation(s)
- Raúl López-Arnau
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Faculty of Pharmacy, University of Barcelona, Spain; Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Spain
| | - José Martínez-Clemente
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Faculty of Pharmacy, University of Barcelona, Spain; Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Spain
| | - Teresa Rodrigo
- Animal Experimentation Unit of Psychology and Pharmacy, University of Barcelona, Spain
| | - David Pubill
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Faculty of Pharmacy, University of Barcelona, Spain; Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Spain
| | - Jorge Camarasa
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Faculty of Pharmacy, University of Barcelona, Spain; Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Spain.
| | - Elena Escubedo
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section), Faculty of Pharmacy, University of Barcelona, Spain; Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Spain
| |
Collapse
|
17
|
Northrop NA, Yamamoto BK. Methamphetamine effects on blood-brain barrier structure and function. Front Neurosci 2015; 9:69. [PMID: 25788874 PMCID: PMC4349189 DOI: 10.3389/fnins.2015.00069] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/17/2015] [Indexed: 01/28/2023] Open
Abstract
Methamphetamine (Meth) is a widely abuse psychostimulant. Traditionally, studies have focused on the neurotoxic effects of Meth on monoaminergic neurotransmitter terminals. Recently, both in vitro and in vivo studies have investigated the effects of Meth on the BBB and found that Meth produces a decrease in BBB structural proteins and an increase in BBB permeability to various molecules. Moreover, preclinical studies are validated by clinical studies in which human Meth users have increased concentrations of toxins in the brain. Therefore, this review will focus on the structural and functional disruption of the BBB caused by Meth and the mechanisms that contribute to Meth-induced BBB disruption. The review will reveal that the mechanisms by which Meth damages dopamine and serotonin terminals are similar to the mechanisms by which the blood-brain barrier (BBB) is damaged. Furthermore, this review will cover the factors that are known to potentiate the effects of Meth (McCann et al., 1998) on the BBB, such as stress and HIV, both of which are co-morbid conditions associated with Meth abuse. Overall, the goal of this review is to demonstrate that the scope of damage produced by Meth goes beyond damage to monoaminergic neurotransmitter systems to include BBB disruption as well as provide a rationale for investigating therapeutics to treat Meth-induced BBB disruption. Since a breach of the BBB can have a multitude of consequences, therapies directed toward the treatment of BBB disruption may help to ameliorate the long-term neurodegeneration and cognitive deficits produced by Meth and possibly even Meth addiction.
Collapse
Affiliation(s)
- Nicole A Northrop
- Department of Neurosciences, University of Toledo College of Medicine Toledo, OH, USA
| | - Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine Toledo, OH, USA
| |
Collapse
|
18
|
Castelli MP, Madeddu C, Casti A, Casu A, Casti P, Scherma M, Fattore L, Fadda P, Ennas MG. Δ9-tetrahydrocannabinol prevents methamphetamine-induced neurotoxicity. PLoS One 2014; 9:e98079. [PMID: 24844285 PMCID: PMC4028295 DOI: 10.1371/journal.pone.0098079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 04/25/2014] [Indexed: 12/05/2022] Open
Abstract
Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4×10 mg/kg, 2 hours apart) were pre- or post-treated with Δ9-THC (1 or 3 mg/kg) and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP). Results showed that, as compared to corresponding controls (i) METH-induced nNOS overexpression in the caudate-putamen (CPu) was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (−19% and −28% for 1 mg/kg pre- and post-treated animals; −25% and −21% for 3 mg/kg pre- and post-treated animals); (ii) METH-induced GFAP-immunoreactivity (IR) was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (−50%) and by pre-treatment with 3 mg/kg Δ9-THC (−53%); (iii) METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC) by pre- and post-treatment with both doses of Δ9-THC (−34% and −47% for 1 mg/kg pre- and post-treated animals; −37% and −29% for 3 mg/kg pre- and post-treated animals). The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the PFC and CPu. Our results indicate that Δ9-THC reduces METH-induced brain damage via inhibition of nNOS expression and astrocyte activation through CB1-dependent and independent mechanisms, respectively.
Collapse
Affiliation(s)
- M. Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Center of Excellence “Neurobiology of Addiction”, University of Cagliari, Cagliari, Italy
- * E-mail:
| | - Camilla Madeddu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alberto Casti
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Angelo Casu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paola Casti
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council-Italy, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Center of Excellence “Neurobiology of Addiction”, University of Cagliari, Cagliari, Italy
- National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - M. Grazia Ennas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
19
|
Gonçalves J, Baptista S, Silva AP. Psychostimulants and brain dysfunction: a review of the relevant neurotoxic effects. Neuropharmacology 2014; 87:135-49. [PMID: 24440369 DOI: 10.1016/j.neuropharm.2014.01.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/18/2013] [Accepted: 01/06/2014] [Indexed: 12/21/2022]
Abstract
Psychostimulants abuse is a major public concern because is associated with serious health complications, including devastating consequences on the central nervous system (CNS). The neurotoxic effects of these drugs have been extensively studied. Nevertheless, numerous questions and uncertainties remain in our understanding of these toxic events. Thus, the purpose of the present manuscript is to review cellular and molecular mechanisms that might be responsible for brain dysfunction induced by psychostimulants. Topics reviewed include some classical aspects of neurotoxicity, such as monoaminergic system and mitochondrial dysfunction, oxidative stress, excitotoxicity and hyperthermia. Moreover, recent literature has suggested new phenomena regarding the toxic effects of psychostimulants. Thus, we also reviewed the impact of these drugs on neuroinflammatory response, blood-brain barrier (BBB) function and neurogenesis. Assessing the relative importance of these mechanisms on psychostimulants-induced brain dysfunction presents an exciting challenge for future research efforts. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- Joana Gonçalves
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal
| | - Sofia Baptista
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal
| | - Ana Paula Silva
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra Portugal.
| |
Collapse
|
20
|
Ares-Santos S, Granado N, Moratalla R. The role of dopamine receptors in the neurotoxicity of methamphetamine. J Intern Med 2013; 273:437-53. [PMID: 23600399 DOI: 10.1111/joim.12049] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice.
Collapse
Affiliation(s)
- S Ares-Santos
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain
| | | | | |
Collapse
|
21
|
Evaluating the role of neuronal nitric oxide synthase-containing striatal interneurons in methamphetamine-induced dopamine neurotoxicity. Neurotox Res 2013; 24:288-97. [PMID: 23575992 DOI: 10.1007/s12640-013-9391-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 12/21/2022]
Abstract
Production of nitric oxide (NO) has been implicated in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. The source of this NO has not been clearly delineated, but recent evidence suggests that it arises from activation of neuronal nitric oxide synthase (nNOS), which is selectively expressed in a subpopulation of striatal interneurons. Our objective was to determine whether inhibiting activation of nNOS-containing interneurons in the striatum blocks METH-induced neurotoxicity. These interneurons selectively express the neurokinin-1 (NK-1) receptor, which is activated by substance P. One particular toxin, a conjugate of substance P to the ribosome-inactivating protein saporin (SSP-SAP), selectively destroys neurons expressing the NK-1 receptor. Thus, we examined the extent to which depletion of the nNOS-containing interneurons alters production of NO and attenuates METH-induced neurotoxicity. The SSP-SAP lesions resulted in significant loss of nNOS-containing interneurons throughout striatum. Surprisingly, this marked deletion did not confer resistance to METH-induced DA neurotoxicity, even in areas devoid of nNOS-positive cells. Furthermore, these lesions did not attenuate NO production, even in areas lacking nNOS. These data suggest that nNOS-containing interneurons either are not necessary for METH-induced DA neurotoxicity or produce NO that can diffuse extensively through striatal tissue and thereby still mediate neurotoxicity.
Collapse
|
22
|
Methamphetamine and Parkinson's disease. PARKINSONS DISEASE 2013; 2013:308052. [PMID: 23476887 PMCID: PMC3582059 DOI: 10.1155/2013/308052] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/22/2012] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder predominantly affecting the elderly. The aetiology of the disease is not known, but age and environmental factors play an important role. Although more than a dozen gene mutations associated with familial forms of Parkinson's disease have been described, fewer than 10% of all cases can be explained by genetic abnormalities. The molecular basis of Parkinson's disease is the loss of dopamine in the basal ganglia (caudate/putamen) due to the degeneration of dopaminergic neurons in the substantia nigra, which leads to the motor impairment characteristic of the disease. Methamphetamine is the second most widely used illicit drug in the world. In rodents, methamphetamine exposure damages dopaminergic neurons in the substantia nigra, resulting in a significant loss of dopamine in the striatum. Biochemical and neuroimaging studies in human methamphetamine users have shown decreased levels of dopamine and dopamine transporter as well as prominent microglial activation in the striatum and other areas of the brain, changes similar to those observed in PD patients. Consistent with these similarities, recent epidemiological studies have shown that methamphetamine users are almost twice as likely as non-users to develop PD, despite the fact that methamphetamine abuse and PD have distinct symptomatic profiles.
Collapse
|
23
|
Permpoonputtana K, Govitrapong P. The anti-inflammatory effect of melatonin on methamphetamine-induced proinflammatory mediators in human neuroblastoma dopamine SH-SY5Y cell lines. Neurotox Res 2013; 23:189-99. [PMID: 22903344 DOI: 10.1007/s12640-012-9350-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/01/2012] [Accepted: 08/08/2012] [Indexed: 01/11/2023]
Abstract
Methamphetamine (METH) is a highly addictive drug that is commonly abused worldwide. This psychostimulant drug causes the disturbances in the dopaminergic and serotonergic neurons of several brain areas. Exposure to METH has been shown to induce oxidative stress, reactive oxygen species, reactive nitrogen species, and neuroinflammation. However, the mechanism underlying METH-induced inflammation in neurons is still unclear. In this study, we investigated whether METH caused inflammatory effects in human dopaminergic neuroblastoma SH-SY5Y cells and whether this effect involved the nuclear factor-κB (NF-κB) transcription factor pathway. The present results showed that METH significantly increased inducible nitric oxide synthase (iNOS) expression in a concentration-dependent manner and significantly increased the levels of tumor necrosis factor (TNF)-α mRNA and phosphorylated NF-κB, which is translocated into the nucleus. Moreover, our results also show that METH downregulated another transcription factor, the nuclear factor erythroid 2-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Furthermore, we also examined the anti-inflammatory effect of melatonin against these METH-induced neuroinflammatory functions. The results show that melatonin significantly decreases the iNOS protein expression and TNF-α mRNA levels caused by METH. The activation and the level of pNF-κB were decreased while Nrf2 expression was increased when cells were pre-incubated with 100 nM of melatonin. In order to show the relationship between cell death and the increase of iNOS, 100 μM of L-NAME, an iNOS inhibitor pretreatment significantly prevented cell death caused by METH. These results demonstrate, for the first time, that METH directly induces inflammation in neurons via an NF-κB-dependent pathway and that the anti-neuroinflammatory effects of melatonin result from the inhibition of activated NF-κB in parallel with potentiated antioxidant/detoxificant defense by activated Nrf2 pathway.
Collapse
Affiliation(s)
- Kannika Permpoonputtana
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | | |
Collapse
|
24
|
Urrutia A, Rubio-Araiz A, Gutierrez-Lopez MD, ElAli A, Hermann DM, O'Shea E, Colado MI. A study on the effect of JNK inhibitor, SP600125, on the disruption of blood-brain barrier induced by methamphetamine. Neurobiol Dis 2012; 50:49-58. [PMID: 23069681 DOI: 10.1016/j.nbd.2012.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/14/2012] [Accepted: 10/03/2012] [Indexed: 11/29/2022] Open
Abstract
Methamphetamine (METH) is a widely consumed drug with high abuse potential. Studies in animals have shown that the drug produces dopaminergic neurotoxicity following both single high-dose and repeated low-dose administration. In addition, METH produces an increase in matrix metalloproteinase expression and loss of BBB integrity. We have examined the effect of repeated low-dose METH on MMP-9/2 expression and activity and laminin expression and the role of MMPs and JNK 1/2 phosphorylation on the changes induced by the drug in BBB integrity. Mice were given METH (4 mg/kg, i.p., three times separated by 3 h) and killed at different times after the last dose. Striatal MMP-9/2 activity was determined by zymography and expression of MMPs, laminin and phosphorylated JNK 1/2 was determined by western blot. BBB integrity was determined by IgG immunoreactivity. SP600125 and BB-94 were used to inhibit JNK and MMPs respectively. METH increased striatal MMP-9 expression and activity, IgG immunoreactivity and p-JNK 1/2 expression and decreased laminin expression. Increased IgG immunoreactivity colocalized with areas of greater MMP-9 activity. JNK inhibition prevented METH-induced changes in MMP-9 activity, laminin degradation and BBB leakage. BB-94 also prevented laminin degradation and BBB leakage. The decrease in BBB integrity induced by METH is mediated by the JNK pathway which activates MMP-9 causing degradation of laminin and BBB leakage.
Collapse
Affiliation(s)
- Andres Urrutia
- Departamento de Farmacologia, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Jan RK, Kydd RR, Russell BR. Functional and structural brain changes associated with methamphetamine abuse. Brain Sci 2012; 2:434-82. [PMID: 24961256 PMCID: PMC4061807 DOI: 10.3390/brainsci2040434] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 12/20/2022] Open
Abstract
Methamphetamine (MA) is a potent psychostimulant drug whose abuse has become a global epidemic in recent years. Firstly, this review article briefly discusses the epidemiology and clinical pharmacology of methamphetamine dependence. Secondly, the article reviews relevant animal literature modeling methamphetamine dependence and discusses possible mechanisms of methamphetamine-induced neurotoxicity. Thirdly, it provides a critical review of functional and structural neuroimaging studies in human MA abusers; including positron emission tomography (PET) and functional and structural magnetic resonance imaging (MRI). The effect of abstinence from methamphetamine, both short- and long-term within the context of these studies is also reviewed.
Collapse
Affiliation(s)
- Reem K Jan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Rob R Kydd
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Bruce R Russell
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
26
|
Yarosh HL, Angulo JA. Modulation of methamphetamine-induced nitric oxide production by neuropeptide Y in the murine striatum. Brain Res 2012; 1483:31-8. [PMID: 22982589 DOI: 10.1016/j.brainres.2012.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/02/2012] [Accepted: 09/07/2012] [Indexed: 01/22/2023]
Abstract
Methamphetamine (METH) is a potent stimulant that induces both acute and long-lasting neurochemical changes in the brain including neuronal cell loss. Our laboratory demonstrated that the neuropeptide substance P enhances the striatal METH-induced production of nitric oxide (NO). In order to better understand the role of the striatal neuropeptides on the METH-induced production of NO, we used agonists and antagonists of the NPY (Y1R and Y2R) receptors infused via intrastriatal microinjection followed by a bolus of METH (30 mg/kg, ip) and measured 3-NT immunofluorescence, an indirect index of NO production. One striatum received pharmacological agent while the contralateral striatum received aCSF and served as control. NPY receptor agonists dose dependently attenuated the METH-induced production of striatal 3-NT. Conversely, NPY receptor antagonists had the opposite effect. Moreover, METH induced the accumulation of cyclic GMP and activated caspase-3 in approximately 18% of striatal neurons, a phenomenon that was attenuated by pre-treatment with NPY2 receptor agonist. Lastly, METH increased the levels of striatal preproneuropeptide Y mRNA nearly five-fold 16 h after injection as determined by RT-PCR, suggesting increased utilization of the neuropeptide. In conclusion, NPY inhibits the METH-induced production of NO in striatal tissue. Consequently, production of this second messenger induces the accumulation of cyclic GMP and activated caspase-3 in some striatal neurons, an event that may precede the apoptosis of some striatal neurons.
Collapse
Affiliation(s)
- Haley L Yarosh
- Hunter College of the City University of New York, Department of Biological Sciences, 695 Park Avenue, 10021 New York, NY, USA
| | | |
Collapse
|
27
|
Carvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remião F, Carvalho F, Bastos MDL. Toxicity of amphetamines: an update. Arch Toxicol 2012; 86:1167-1231. [PMID: 22392347 DOI: 10.1007/s00204-012-0815-5] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/02/2012] [Indexed: 01/06/2023]
Abstract
Amphetamines represent a class of psychotropic compounds, widely abused for their stimulant, euphoric, anorectic, and, in some cases, emphathogenic, entactogenic, and hallucinogenic properties. These compounds derive from the β-phenylethylamine core structure and are kinetically and dynamically characterized by easily crossing the blood-brain barrier, to resist brain biotransformation and to release monoamine neurotransmitters from nerve endings. Although amphetamines are widely acknowledged as synthetic drugs, of which amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are well-known examples, humans have used natural amphetamines for several millenniums, through the consumption of amphetamines produced in plants, namely cathinone (khat), obtained from the plant Catha edulis and ephedrine, obtained from various plants in the genus Ephedra. More recently, a wave of new amphetamines has emerged in the market, mainly constituted of cathinone derivatives, including mephedrone, methylone, methedrone, and buthylone, among others. Although intoxications by amphetamines continue to be common causes of emergency department and hospital admissions, it is frequent to find the sophism that amphetamine derivatives, namely those appearing more recently, are relatively safe. However, human intoxications by these drugs are increasingly being reported, with similar patterns compared to those previously seen with classical amphetamines. That is not surprising, considering the similar structures and mechanisms of action among the different amphetamines, conferring similar toxicokinetic and toxicological profiles to these compounds. The aim of the present review is to give an insight into the pharmacokinetics, general mechanisms of biological and toxicological actions, and the main target organs for the toxicity of amphetamines. Although there is still scarce knowledge from novel amphetamines to draw mechanistic insights, the long-studied classical amphetamines-amphetamine itself, as well as methamphetamine and MDMA, provide plenty of data that may be useful to predict toxicological outcome to improvident abusers and are for that reason the main focus of this review.
Collapse
Affiliation(s)
- Márcia Carvalho
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Afanador L, Yarosh H, Wang J, Ali SF, Angulo JA. Contrasting Effects of the Neuropeptides Substance P, Somatostatin, and Neuropeptide Y on the Methamphetamine-Induced Production of Striatal Nitric Oxide in Mice. ACTA ACUST UNITED AC 2012; 1. [PMID: 25383232 DOI: 10.4303/jdar/235604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Several laboratories have shown that methamphetamine (METH) neurotoxicity is associated with increases of nitric oxide (NO) production in striatal tissue and blockade of NO production protects from METH. Because substance P modulates NO production, we tested the hypothesis that intrinsic striatal neuropeptides such as somatostatin and neuropeptide Y (NPY) modulate striatal NO production in the presence of METH. To that end, METH (30 mg/kg, IP) was injected into adult male mice alone or in combination with pharmacological agonists or antagonists of the neurokinin-1 (substance P), somatostatin or NPY receptors and 3-nitrotyrosine (an indirect index of NO production) was assessed utilizing HPLC or a histological method. Pre-treatment with the systemic neurokinin-1 receptor antagonist WIN-51,708 significantly attenuated the METH-induced production of striatal 3-NT measured at two hours post-METH. Conversely, intrastriatal injection of NPY1 or 2 receptor agonists inhibited the METH-induced production of striatal 3-NT. Similarly, intrastriatal infusion of the somatostatin receptor agonist octreotide attenuated the METH-induced striatal production of 3-NT. Taken together, our results suggest the hypothesis that the neuropeptide substance P is pro-damage while the neuropeptides somatostatin and NPY are anti-damage in the presence of METH by targeting the production of NO.
Collapse
Affiliation(s)
- Lauriaselle Afanador
- Department of Biological Sciences, Hunter College, 695 Park Avenue, NY 10021, USA ; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Haley Yarosh
- Department of Biological Sciences, Hunter College, 695 Park Avenue, NY 10021, USA ; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Jing Wang
- Department of Biological Sciences, Hunter College, 695 Park Avenue, NY 10021, USA ; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Syed F Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, AR 72079, USA
| | - Jesus A Angulo
- Department of Biological Sciences, Hunter College, 695 Park Avenue, NY 10021, USA ; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
29
|
Ajayi SA, Ofusori DA, Ojo GB, Ayoka OA, Abayomi TA, Tijani AA. The microstructural effects of aqueous extract of Garcinia kola (Linn) on the hippocampus and cerebellum of malnourished mice. Asian Pac J Trop Biomed 2011; 1:261-5. [PMID: 23569771 PMCID: PMC3614237 DOI: 10.1016/s2221-1691(11)60039-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 03/27/2011] [Accepted: 04/08/2011] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To assess the neuroprotective effects of aqueous extract of Garcinia kola on neurotoxin administered malnourished mice adopting histological procedure. METHODS The study was carried out using thirty-two adult malnourished mice which were randomly assigned into four groups (n=8): A, B, C and D. Group A served as control, while the other groups served as the experimental groups. Animals in group A were fed malnourished diet ad libitum and given water liberally. Animals in group B were administered with 3-Nitropropionic acid (3-NP) (neurotoxin) only at 20 mg/kg body weight, group C were given only Garcinia kola extracts, and group D were pre-treated with Garcinia kola extracts at 200 mg/kg for seven days prior to administration of neurotoxin at 20 mg/kg body weight. After three days of neurotoxins administration in the relevant groups, the brains were excised and fixed in formal calcium for histological processing. RESULTS The study showed that hippocampal and cerebellar neurons of animals in group B exhibited some cellular degeneration and blood vessel blockage, which were not seen in groups A, C and D. Cresyl violet staining was least intense in group B than in groups A, C and D. Despite the fact that animals in group D has equal administration of 3-Nitropropionic acid concentration, there were no traces of neural degeneration as it was evidenced in group B. CONCLUSIONS It is concluded that Garcinia kola has protective effects on the neurons of the hippocampus and cerebellum of malnourished mice.
Collapse
Affiliation(s)
- Sunday A Ajayi
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo Osun State
| | - David A Ofusori
- Department of Anatomy & Cell Biology, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State
| | - Gideon B Ojo
- Department of Anatomy, College of Health Sciences, Bowen University, Iwo, Osun State
| | - Oladele A Ayoka
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State
| | - Taiwo A Abayomi
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo Osun State
| | - Adekilekun A Tijani
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo Osun State
| |
Collapse
|
30
|
Venkatesan A, Uzasci L, Chen Z, Rajbhandari L, Anderson C, Lee MH, Bianchet MA, Cotter R, Song H, Nath A. Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination. Mol Brain 2011; 4:28. [PMID: 21708025 PMCID: PMC3142219 DOI: 10.1186/1756-6606-4-28] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/27/2011] [Indexed: 11/24/2022] Open
Abstract
Methamphetamine (METH) abuse has reached epidemic proportions, and it has become increasingly recognized that abusers suffer from a wide range of neurocognitive deficits. Much previous work has focused on the deleterious effects of METH on mature neurons, but little is known about the effects of METH on neural progenitor cells (NPCs). It is now well established that new neurons are continuously generated from NPCs in the adult hippocampus, and accumulating evidence suggests important roles for these neurons in hippocampal-dependent cognitive functions. In a rat hippocampal NPC culture system, we find that METH results in a dose-dependent reduction of NPC proliferation, and higher concentrations of METH impair NPC survival. NPC differentiation, however, is not affected by METH, suggesting cell-stage specificity of the effects of METH. We demonstrate that the effects of METH on NPCs are, in part, mediated through oxidative and nitrosative stress. Further, we identify seventeen NPC proteins that are post-translationally modified via 3-nitrotyrosination in response to METH, using mass spectrometric approaches. One such protein was pyruvate kinase isoform M2 (PKM2), an important mediator of cellular energetics and proliferation. We identify sites of PKM2 that undergo nitrotyrosination, and demonstrate that nitration of the protein impairs its activity. Thus, METH abuse may result in impaired adult hippocampal neurogenesis, and effects on NPCs may be mediated by protein nitration. Our study has implications for the development of novel therapeutic approaches for METH-abusing individuals with neurologic dysfunction and may be applicable to other neurodegenerative diseases in which hippocampal neurogenesis is impaired.
Collapse
Affiliation(s)
- Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Lerna Uzasci
- Middle Atlantic Mass Spectrometry Laboratory, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Zhaohui Chen
- Middle Atlantic Mass Spectrometry Laboratory, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Labchan Rajbhandari
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Carol Anderson
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- National Institutes of Health, Section of Infections of the Nervous Systems, Bldg 10-CRC, Room 7C103; Bethesda, MD 20892
| | - Myoung-Hwa Lee
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- National Institutes of Health, Section of Infections of the Nervous Systems, Bldg 10-CRC, Room 7C103; Bethesda, MD 20892
| | - Mario A Bianchet
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Robert Cotter
- Middle Atlantic Mass Spectrometry Laboratory, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Hongjun Song
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - Avindra Nath
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287, USA
- National Institutes of Health, Section of Infections of the Nervous Systems, Bldg 10-CRC, Room 7C103; Bethesda, MD 20892
| |
Collapse
|
31
|
Wang J, Angulo JA. Methamphetamine induces striatal neurokinin-1 receptor endocytosis primarily in somatostatin/NPY/NOS interneurons and the role of dopamine receptors in mice. Synapse 2011; 65:300-8. [PMID: 20730802 PMCID: PMC2998568 DOI: 10.1002/syn.20848] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 07/23/2010] [Indexed: 12/22/2022]
Abstract
Methamphetamine (METH) is a psychostimulant that induces long-term deficits of dopamine terminal markers and apoptotic cell death in the striatum. Our laboratory demonstrated that pharmacological blockade of the neurokinin-1 receptor attenuated the METH-induced damage to the striatal dopamine terminals and the apoptotic cell death of some striatal neurons. Here, we used histological methods to assess the effect of METH on neurokinin-1 receptor trafficking in the striatum as an indirect index of signaling by the neuropeptide substance P (natural ligand for this receptor). Male mice received a single injection of METH (30 mg/kg, i.p.) and were sacrificed 30 min later. Immunohistofluorescence confocal microscopy confirmed that the neurokinin-1 receptor is located on cholinergic and somatostatin interneurons of the striatum. METH induced the trafficking of the neurokinin-1 receptor from the membrane into cytoplasmic endosomes primarily in the somatostatin/NPY/NOS interneurons, and this phenomenon was attenuated by antagonists of the dopamine D1 (SCH-23390), D2 (raclopride), or neurokinin-1 (WIN-51,708) receptors. These data demonstrate that METH induces the trafficking of the striatal neurokinin-1 receptors principally in the somatostatin/NPY/NOS interneurons and that this phenomenon is dependent on the activity of dopamine D1 and D2 receptors.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York 10021, USA
| | | |
Collapse
|
32
|
Wang J, Angulo JA. Synergism between methamphetamine and the neuropeptide substance P on the production of nitric oxide in the striatum of mice. Brain Res 2010; 1369:131-9. [PMID: 21075091 DOI: 10.1016/j.brainres.2010.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 11/27/2022]
Abstract
Our laboratory has been investigating the participation of striatal neurokinin-1 receptors in the methamphetamine (METH)-induced loss of striatal neurons. Signaling through these receptors exacerbates the METH-induced striatal apoptosis. METH induces the synthesis of nitric oxide (NO) and the latter has been linked to the activation of neurodegenerative cascades. In the present study, we assessed the role of the neurokinin-1 receptor in the production of striatal 3-nitrotyrosine (3-NT) and l-citrulline (indirect indices of NO production). To that end, we injected male mice with a bolus of METH (30 mg/kg, ip) and visualized striatal neuronal nitric oxide synthase (NOS)-positive cells by immunohistochemistry and protein levels by Western blot. The expression of neuronal NOS or protein levels at 2, 4 and 8 hours post-METH was unchanged. Next, we assessed 3-NT and l-citrulline by immunohistochemistry. At 4 hours post-METH, striatal 3-NT and l-citrulline levels were increased 30- and 5-fold, respectively, relative to controls and the selective neurokinin-1 receptor antagonist WIN-51,708 attenuated these increases. Intrastriatal infusion of the neurokinin-1 receptor agonist GR-73632 induced striatal 3-NT production that was attenuated with systemic injection of WIN-51,708 or 7-nitroindazole (7-NI, an inhibitor of neuronal NOS). Moreover, infusion of calmidazolium (calmodulin inhibitor) with GR-73632 prevented the production of 3-NT. These data are consistent with the hypothesis that METH-induced production of NO is modulated by the striatal neurokinin-1 receptors and that this receptor may participate in the biochemical activation of neuronal NOS.
Collapse
Affiliation(s)
- Jing Wang
- Hunter College of the City University of New York, Department of Biological Sciences, 695 Park Avenue, New York, NY 10021, USA
| | | |
Collapse
|
33
|
Tocharus J, Khonthun C, Chongthammakun S, Govitrapong P. Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J Pineal Res 2010; 48:347-52. [PMID: 20374443 DOI: 10.1111/j.1600-079x.2010.00761.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Methamphetamine (METH), the most commonly abused drug, has long been known to induce neurotoxicity. METH causes oxidative stress and inflammation, as well as the overproduction of both reactive oxygen species (ROS) and reactive nitrogen species (RNS). The role of METH-induced brain inflammation remains unclear. Imbroglio activation contributes to the neuronal damage that accompanies injury, disease and inflammation. METH may activate microglia to produce neuroinflammatory molecules. In highly aggressively proliferating immortalized (HAPI) cells, a rat microglial cell line, METH reduced cell viability in a concentration- and time-dependent manner and initiated the expression of interleukin 1beta (IL-1beta), interleukin 6 (IL-6) and tumor necrosis factor alpha. METH also induced the production of both ROS and RNS in microglial cells. Pretreatment with melatonin, a major secretory product of the pineal gland, abolished METH-induced toxicity, suppressed ROS and RNS formation and also had an inhibitory effect on cytotoxic factor gene expression. The expression of cytotoxic factors produced by microglia may contribute to central nervous system degeneration in amphetamine abusers. Melatonin attenuates METH toxicity and inhibits the expression of cytotoxic factor genes associated with ROS and RNS neutralization in HAPI microglia. Thus, melatonin might be one of the neuroprotective agents induced by METH toxicity and/or other immunogens.
Collapse
Affiliation(s)
- Jiraporn Tocharus
- Department of Biochemistry, Naresuan University, Phitsanulok, Thailand
| | | | | | | |
Collapse
|
34
|
Lord KC, Shenouda SK, McIlwain E, Charalampidis D, Lucchesi PA, Varner KJ. Oxidative stress contributes to methamphetamine-induced left ventricular dysfunction. Cardiovasc Res 2010; 87:111-8. [PMID: 20139112 DOI: 10.1093/cvr/cvq043] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIMS Our aim was to test the hypothesis that the repeated, binge administration of methamphetamine would produce oxidative stress in the myocardium leading to structural remodeling and impaired left ventricular function. METHODS AND RESULTS Echocardiography and Millar pressure-volume catheters were used to monitor left ventricular structure and function in rats subjected to four methamphetamine binges (3 mg/kg, iv for 4 days, separated by a 10-day drug-free period). Hearts from treated and control rats were used for histological or proteomic analysis. When compared with saline treatment, four methamphetamine binges produced eccentric left ventricular hypertrophy. The drug also significantly impaired systolic function (decreased fractional shortening, ejection fraction, and adjusted maximal power) and produced significant diastolic dysfunction (increased -dP/dt and tau). Dihydroethedium staining showed that methamphetamine significantly increased (285%) the levels of reactive oxygen species in the left ventricle. Treatment with methamphetamine also resulted in the tyrosine nitration of myofilament (desmin, myosin light chain) and mitochondrial (ATP synthase, NADH dehydrogenase, cytochrome c oxidase, prohibitin) proteins. Treatment with the superoxide dismutase mimetic, tempol in the drinking water prevented methamphetamine-induced left ventricular dilation and systolic dysfunction; however, tempol (2.5 mM) did not prevent the diastolic dysfunction. Tempol significantly reduced, but did not eliminate dihydroethedium staining in the left ventricle, nor did it prevent the tyrosine nitration of mitochondrial and contractile proteins. CONCLUSION This study shows that oxidative stress plays a significant role in mediating methamphetamine-induced eccentric left ventricular dilation and systolic dysfunction.
Collapse
Affiliation(s)
- Kevin C Lord
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
35
|
Sakoori K, Murphy NP. Reduced degeneration of dopaminergic terminals and accentuated astrocyte activation by high dose methamphetamine administration in nociceptin receptor knock out mice. Neurosci Lett 2010; 469:309-13. [DOI: 10.1016/j.neulet.2009.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/17/2009] [Accepted: 12/10/2009] [Indexed: 11/16/2022]
|
36
|
Orio L, Llopis N, Torres E, Izco M, O’Shea E, Colado MI. A Study on the Mechanisms by Which Minocycline Protects Against MDMA (‘Ecstasy’)-Induced Neurotoxicity of 5-HT Cortical Neurons. Neurotox Res 2009; 18:187-99. [DOI: 10.1007/s12640-009-9120-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 01/24/2023]
|
37
|
Granado N, Ares-Santos S, O'Shea E, Vicario-Abejón C, Colado MI, Moratalla R. Selective vulnerability in striosomes and in the nigrostriatal dopaminergic pathway after methamphetamine administration : early loss of TH in striosomes after methamphetamine. Neurotox Res 2009; 18:48-58. [PMID: 19760475 PMCID: PMC2875475 DOI: 10.1007/s12640-009-9106-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 07/30/2009] [Accepted: 08/21/2009] [Indexed: 12/26/2022]
Abstract
Methamphetamine (METH), a commonly abused psychostimulant, causes dopamine neurotoxicity in humans, rodents, and nonhuman primates. This study examined the selective neuroanatomical pattern of dopaminergic neurotoxicity induced by METH in the mouse striatum. We examined the effect of METH on tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunoreactivity in the different compartments of the striatum and in the nucleus accumbens. The levels of dopamine and its metabolites, 3,4-dihidroxyphenylacetic acid and homovanillic acid, as well as serotonin (5-HT) and its metabolite, 5-hydroxyindolacetic acid, were also quantified in the striatum. Mice were given three injections of METH (4 mg/kg, i.p.) at 3 h intervals and sacrificed 7 days later. This repeated METH injection induced a hyperthermic response and a decrease in striatal concentrations of dopamine and its metabolites without affecting 5-HT concentrations. In addition, the drug caused a reduction in TH- and DAT-immunoreactivity when compared to saline-treated animals. Interestingly, there was a significantly greater loss of TH- and DAT-immunoreactivity in striosomes than in the matrix. The predominant loss of dopaminergic terminals in the striosomes occurred along the rostrocaudal axis of the striatum. In contrast, METH did not decrease TH- or DAT-immunoreactivity in the nucleus accumbens. These results provide the first evidence that compartments of the mouse striatum, striosomes and matrix, and mesolimbic and nigrostriatal pathways have different vulnerability to METH. This pattern is similar to that observed with other neurotoxins such as MPTP, the most widely used model of Parkinson’s disease, in early Huntington’s disease and hypoxic/ischemic injury, suggesting that these conditions might share mechanisms of neurotoxicity.
Collapse
Affiliation(s)
- Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Dr. Arce 37, 28002, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Zhu J, Xu W, Wang J, Ali SF, Angulo JA. The neurokinin-1 receptor modulates the methamphetamine-induced striatal apoptosis and nitric oxide formation in mice. J Neurochem 2009; 111:656-68. [PMID: 19682209 DOI: 10.1111/j.1471-4159.2009.06330.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a previous study we showed that pharmacological blockade of the neurokinin-1 receptors attenuated the methamphetamine (METH)-induced toxicity of the striatal dopamine terminals. In the present study we examined the role of the neurokinin-1 receptors on the METH-induced apoptosis of some striatal neurons. To that end, we administered a single injection of METH (30 mg/kg, i.p.) to male mice. METH induced the apoptosis (terminal deoxyncleotidyl transferase-mediated dUTP nick end labeling) of approximately 20% of striatal neurons. This percentage of METH-induced apoptosis was significantly attenuated by either a single injection of the neurokinin-1 receptor antagonist, 17-beta-hydroxy-17-a-ethynyl-5-a-androstano[3,2-beta]pyrimido[1,2-a]benzimidazole (WIN-51,708) (5 mg/kg, i.p.), or the ablation of the striatal interneurons expressing the neurokinin-1 receptors (cholinergic and somatostatin) with the selective neurotoxin [Sar(9),Met(O(2))(11)] substance P-saporin. Next we assessed the levels of striatal 3-nitrotyrosine (3-NT) by HPLC and immunohistochemistry. METH increased the levels of striatal 3-NT and this increase was attenuated by pre-treatment with WIN-51,708. Our data support the hypothesis that METH-induced striatal apoptosis occurs via a mechanism involving the neurokinin-1 receptors and the activation of nitric oxide synthesis. Our findings are relevant for the treatment of METH abuse and may be relevant to certain neurological disorders involving the dopaminergic circuitry of the basal ganglia.
Collapse
Affiliation(s)
- Judy Zhu
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, USA
| | | | | | | | | |
Collapse
|
39
|
Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death. ACTA ACUST UNITED AC 2009; 60:379-407. [PMID: 19328213 DOI: 10.1016/j.brainresrev.2009.03.002] [Citation(s) in RCA: 431] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/16/2009] [Indexed: 12/11/2022]
Abstract
Methamphetamine (METH) is an illicit psychostimulant that is widely abused in the world. Several lines of evidence suggest that chronic METH abuse leads to neurodegenerative changes in the human brain. These include damage to dopamine and serotonin axons, loss of gray matter accompanied by hypertrophy of the white matter and microgliosis in different brain areas. In the present review, we summarize data on the animal models of METH neurotoxicity which include degeneration of monoaminergic terminals and neuronal apoptosis. In addition, we discuss molecular and cellular bases of METH-induced neuropathologies. The accumulated evidence indicates that multiple events, including oxidative stress, excitotoxicity, hyperthermia, neuroinflammatory responses, mitochondrial dysfunction, and endoplasmic reticulum stress converge to mediate METH-induced terminal degeneration and neuronal apoptosis. When taken together, these findings suggest that pharmacological strategies geared towards the prevention and treatment of the deleterious effects of this drug will need to attack the various pathways that form the substrates of METH toxicity.
Collapse
Affiliation(s)
- Irina N Krasnova
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, Baltimore, MD 21224, USA
| | | |
Collapse
|
40
|
The human immunodeficiency virus-1-associated protein, Tat1-86, impairs dopamine transporters and interacts with cocaine to reduce nerve terminal function: a no-net-flux microdialysis study. Neuroscience 2009; 159:1292-9. [PMID: 19344635 DOI: 10.1016/j.neuroscience.2009.01.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/16/2008] [Accepted: 01/14/2009] [Indexed: 02/07/2023]
Abstract
Injection drug use accounts for approximately one-third of human immunodeficiency virus (HIV) infections in the United States. HIV-associated proteins have been shown to interact with various drugs of abuse to incite concerted neurotoxicity. One common area for their interaction is the nerve terminal, including dopamine transporter (DAT) systems. However, results regarding DAT function and regulation in HIV-infection, regardless of drug use, are mixed. Thus, the present experiments were designed to explicitly control Tat and cocaine administration in an in vivo rat model in order to reconcile differences that exist in the literature to date. We examined Tat plus cocaine-induced alterations using no-net-flux microdialysis, which is sensitive to alterations in DAT function, in order to test the potential for DAT as an early mediator of HIV-induced oxidative stress and neurodegeneration in vivo. Within 5 h of intra-accumbal administration of the HIV-associated protein, Tat, we noted a significant reduction in local DAT efficiency with little change in DA overflow/release dynamics. Further, at 48 h post-Tat administration, we demonstrated a concerted effect of the HIV-protein Tat with cocaine on both uptake and release function. Finally, we discuss the extent to which DAT dysfunction may be considered a predecessor to generalized nerve terminal dysfunction. Characterization of DAT dysfunction in vivo may provide an early pharmacotherapeutic target, which in turn may prevent or attenuate downstream mediators of neurotoxicity (i.e., reactive species) to dopamine systems occurring in neuro-AIDS.
Collapse
|
41
|
Cadet JL, Krasnova IN. Molecular bases of methamphetamine-induced neurodegeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:101-19. [PMID: 19897076 DOI: 10.1016/s0074-7742(09)88005-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant drug, whose abuse has reached epidemic proportions worldwide. The addiction to METH is a major public concern because its chronic abuse is associated with serious health complications including deficits in attention, memory, and executive functions in humans. These neuropsychiatric complications might, in part, be related to drug-induced neurotoxic effects, which include damage to dopaminergic and serotonergic terminals, neuronal apoptosis, as well as activated astroglial and microglial cells in the brain. Thus, the purpose of the present paper is to review cellular and molecular mechanisms that might be responsible for METH neurotoxicity. These include oxidative stress, activation of transcription factors, DNA damage, excitotoxicity, blood-brain barrier breakdown, microglial activation, and various apoptotic pathways. Several approaches that allow protection against METH-induced neurotoxic effects are also discussed. Better understanding of the cellular and molecular mechanisms involved in METH toxicity should help to generate modern therapeutic approaches to prevent or attenuate the long-term consequences of psychostimulant use disorders in humans.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Branch, NIDA-Intramural Research Program, NIH/DHHS, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
42
|
Kuhn DM, Francescutti-Verbeem DM, Thomas DM. Dopamine disposition in the presynaptic process regulates the severity of methamphetamine-induced neurotoxicity. Ann N Y Acad Sci 2008; 1139:118-26. [PMID: 18991856 DOI: 10.1196/annals.1432.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Methamphetamine (METH) is well known for its ability to cause damage to dopamine (DA) nerve endings of the striatum. The mechanisms by which METH causes neurotoxicity are not fully understood, but likely candidates are increased oxidative and nitrosative stress and mitochondrial dysfunction. Microglial activation is also emerging as an important element of the METH neurotoxic cascade, and it appears that extensive cross-talk between these cells and DA nerve endings is an early event in this process. It may seem paradoxical, but DA itself is also thought to be an essential factor in the neuronal damaging effects of METH, but issues relating to its precise role in this regard remain unanswered. We present in this overview a summary of studies that tested how alterations in the disposition of presynaptic DA (injections of reserpine, L-DOPA, or clorgyline) modulate METH neurotoxicity. In all cases, these drugs significantly increased the magnitude of microglial activation as well as the severity of damage to striatal DA nerve endings caused by METH. The enhancement of METH effects in striatum by reserpine, L-DOPA, and clorgyline persisted for 14 days and showed no evidence of recovery. These data establish that subtle shifts in the newly synthesized pool of DA can cause substantial changes in the severity of METH-induced neurotoxicity. DA released into the synapse by METH is very likely the source of downstream reactants that provoke microglial activation and the ensuing damage to DA nerve endings.
Collapse
Affiliation(s)
- Donald M Kuhn
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | |
Collapse
|
43
|
Wang J, Xu W, Ali SF, Angulo JA. Connection between the striatal neurokinin-1 receptor and nitric oxide formation during methamphetamine exposure. Ann N Y Acad Sci 2008; 1139:164-71. [PMID: 18991860 DOI: 10.1196/annals.1432.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Methamphetamine (METH) is a widely used "club drug" that produces neural damage in the brain, including the loss of some neurons. METH-induced striatal neuronal loss has been attenuated by pretreatment with the neurokinin-1 receptor antagonist WIN-51,708 in mice. Using a histologic method, we have observed the internalization of the neurokinin-1 receptor into endosomes in the striatal somatostatin/NPY/nitric oxide synthase interneurons. To investigate the role of this interneuron in the striatal cell death induced by METH, we assessed by immunohistochemistry the number of striatal nitric oxide synthase-positive neurons in the presence of METH at 8 and 16 hours after systemic injection of a bolus of METH (30 mg/kg, i.p.). We found the number of striatal nitric oxide synthase-positive neurons unchanged at these time points after METH. In a separate experiment we measured the levels of striatal 3-nitrotyrosine (3-NT) by HPLC (high-pressure liquid chromatography) as an indirect index of nitric oxide synthesis. METH increased the levels of 3-nitrotyrosine in the striatum and this increase was significantly attenuated by pretreatment with a selective neurokinin-1 receptor antagonist. These observations suggest a causal relationship between the neurokinin-1 receptor and the activation of neuronal nitric oxide synthase that warrants further investigation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biological Sciences, Hunter College of the City University of New York, New York, New York, USA
| | | | | | | |
Collapse
|
44
|
Ferrucci M, Pasquali L, Paparelli A, Ruggieri S, Fornai F. Pathways of methamphetamine toxicity. Ann N Y Acad Sci 2008; 1139:177-85. [PMID: 18991862 DOI: 10.1196/annals.1432.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methamphetamine (METH) is a drug of abuse which is neurotoxic for the nigrostriatal system. METH-induced neurodegeneration involves production of reactive oxygen species, triggering autophagic vacuoles within nigral neurons of chronic abusers of METH. In fact, Cu,Zn-superoxide dismutase 1 (SOD1) is a critical protein for the neurotoxic effects of METH on DA neurons. Moreover, mutations in the SOD1 gene cause amyotrophic lateral sclerosis, a dramatic neurodegenerative disorder. In the present paper we demonstrate that in G93A transgenic mice, overexpressing the ALS-linked mutant form of SOD1, surviving motor neurons share common intracellular alterations with METH-exposed DA neurons. We hypothesize that in mutant SOD1 transgenic mice, a defective autophagy might be responsible for the neurotoxic effects seen with in nigral neurons during METH toxicity.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | | | | | | | | |
Collapse
|
45
|
Targeting oxidative/nitrergic stress ameliorates motor impairment, and attenuates synaptic mitochondrial dysfunction and lipid peroxidation in two models of Huntington's disease. Behav Brain Res 2008; 199:210-7. [PMID: 19100293 DOI: 10.1016/j.bbr.2008.11.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 11/19/2008] [Accepted: 11/25/2008] [Indexed: 01/27/2023]
Abstract
In this study, we reproduced two toxic models resembling some motor/kinetic deficits of Huntington's disease induced by bilateral intrastriatal injections of either quinolinic acid (QUIN, 120 nmol/microl per side) or 3-nitropropionic acid (3-NP, 250 nmol/microl per side) to rats. Motor skills (including total distance walked/traveled and total horizontal and vertical activities) were evaluated in a box-field system at 1 and 7 days post-lesion. In order to investigate whether these alterations were associated with the oxidative/nitrergic stress evoked by the nitrogen reactive species peroxynitrite (ONOO(-)) in the striatum, some rats were pretreated with the ONOO(-) decomposition catalyst iron porphyrinate (Fe(TPPS), 10 mg/kg, i.p.) 120 min prior to toxins infusion. With the aim to further characterize some possible mechanisms by which motor tasks were affected and/or preserved, biochemical analysis of peroxidative damage to lipids and mitochondrial dysfunction were both assessed in synaptic membranes isolated from the striata of QUIN-, 3-NP- and/or Fe(TPPS)-treated animals. Our results show that targeting oxidative/nitrergic stress by Fe(TPPS) in these toxic models results in amelioration of motor deficits linked to inhibition of peroxidative damage and recovery of mitochondrial function in synaptic membranes. Based on these findings, we hypothesize that the protection exerted by Fe(TPPS) on the biochemical markers analyzed reflects the possible preservation of the functional status of the nerve tissue by limiting the deleterious actions of ONOO(-), further accounting for partial recovery of integrative motor functions.
Collapse
|
46
|
Tsuji T, Asanuma M, Miyazaki I, Miyoshi K, Ogawa N. Reduction of nuclear peroxisome proliferator-activated receptor gamma expression in methamphetamine-induced neurotoxicity and neuroprotective effects of ibuprofen. Neurochem Res 2008; 34:764-74. [PMID: 18946735 DOI: 10.1007/s11064-008-9863-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 09/30/2008] [Indexed: 01/26/2023]
Abstract
We examined changes in nuclear peroxisome proliferator-activated receptor gamma (PPAR gamma) in the striatum in methamphetamine (METH)-induced dopaminergic neurotoxicity, and also examined effects of treatment with drugs possessing PPAR gamma agonistic properties. The marked reduction of nuclear PPAR gamma-expressed cells was seen in the striatum 3 days after METH injections (4 mg/kg x 4, i.p. with 2-h interval). The reduction of dopamine transporter (DAT)-positive signals and PPAR gamma expression, and accumulation of activated microglial cells were significantly and dose-dependently attenuated by four injections of a nonsteroidal anti-inflammatory drug and a PPAR gamma ligand, ibuprofen (10 or 20 mg/kg x 4, s.c.) given 30 min prior to each METH injection, but not by either a low or high dose of aspirin. Either treatment of ibuprofen or aspirin, that showed no effects on METH-induced hyperthermia, significantly blocked the METH-induced striatal cyclooxygenase (COX) expression. Furthermore, the treatment of an intrinsic PPAR gamma ligand 15d-PG J2 also attenuated METH injections-induced reduction of striatal DAT. Therefore, the present study suggests the involvement of reduction of PPAR gamma expression in METH-induced neurotoxicity. Taken together with the previous report showing protective effects of other PPAR gamma ligand, these results imply that the protective effects of ibuprofen against METH-induced neurotoxicity may be based, in part, on its anti-inflammatory PPAR gamma agonistic properties, but not on its COX-inhibiting property or hypothermic effect.
Collapse
Affiliation(s)
- Takeshi Tsuji
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Okayama, 700-8558, Japan
| | | | | | | | | |
Collapse
|
47
|
Ferris MJ, Mactutus CF, Booze RM. Neurotoxic profiles of HIV, psychostimulant drugs of abuse, and their concerted effect on the brain: current status of dopamine system vulnerability in NeuroAIDS. Neurosci Biobehav Rev 2008; 32:883-909. [PMID: 18430470 PMCID: PMC2527205 DOI: 10.1016/j.neubiorev.2008.01.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 01/09/2008] [Accepted: 01/13/2008] [Indexed: 12/21/2022]
Abstract
There are roughly 30-40 million HIV-infected individuals in the world as of December 2007, and drug abuse directly contributes to one-third of all HIV infections in the United States. Antiretroviral therapy has increased the lifespan of HIV-seropositives, but CNS function often remains diminished, effectively decreasing quality of life. A modest proportion may develop HIV-associated dementia, the severity and progression of which is increased with drug abuse. HIV and drugs of abuse in the CNS target subcortical brain structures and DA systems in particular. This toxicity is mediated by a number of neurotoxic mechanisms, including but not limited to, aberrant immune response and oxidative stress. Therefore, novel therapeutic strategies must be developed that can address a wide variety of disparate neurotoxic mechanisms and apoptotic cascades. This paper reviews the research pertaining to the where, what, and how of HIV and cocaine/methamphetamine toxicity in the CNS. Specifically, where these toxins most affect the brain, what aspects of the virus are neurotoxic, and how these toxins mediate neurotoxicity.
Collapse
Affiliation(s)
- Mark J Ferris
- University of South Carolina, Program in Behavioral Neuroscience, Columbia, SC 29208, United States.
| | | | | |
Collapse
|
48
|
González-Cortés C, Salinas-Lara C, Gómez-López MA, Tena-Suck ML, Pérez-De La Cruz V, Rembao-Bojórquez D, Pedraza-Chaverrí J, Gómez-Ruiz C, Galván-Arzate S, Ali SF, Santamaría A. Iron porphyrinate Fe(TPPS) reduces brain cell damage in rats intrastriatally lesioned by quinolinate. Neurotoxicol Teratol 2008; 30:510-9. [PMID: 18579343 DOI: 10.1016/j.ntt.2008.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 04/30/2008] [Accepted: 05/13/2008] [Indexed: 11/26/2022]
Abstract
It has been recently demonstrated that the reactive nitrogen species (RNS) peroxynitrite (ONOO(-)) is involved in the neurotoxic pattern produced by quinolinic acid in the rat brain [V. Pérez-De La Cruz, C. González-Cortés, S. Galván-Arzate, O.N. Medina-Campos, F. Pérez-Severiano, S.F. Ali, J. Pedraza-Chaverrí, A. Santamaría, Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III), Neuroscience 135 (2005) 463-474.]. The aim of this work was to investigate whether ONOO(-) can also be responsible for morphological alterations and inflammatory events in the same paradigm. For this purpose, we evaluated the effect of a pre-treatment with the iron porphyrinate Fe(TPPS), a well-known ONOO(-) decomposition catalyst (10 mg/kg, i.p., 120 min before lesion), on the quinolinate-induced striatal cell damage and immunoreactivities to glial-fibrilar acidic protein (GFAP), interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), one and seven days after the intrastriatal infusion of quinolinate (240 nmol/microl) to rats. The striatal tissue from animals lesioned by quinolinate showed a significant degree of damage and enhanced immunoreactivities to GFAP, IL-6 and iNOS, both at 1 and 7 days post-lesion. Pre-treatment of rats with Fe(TPPS) significantly attenuated or prevented all these markers at both post-lesion times tested, except for GFAP immunoreactivity at 7 days post-lesion and iNOS immunoreactivity at 1 day post-lesion. Altogether, our results suggest that ONOO(-) is actively participating in triggering inflammatory events and morphological alterations in the toxic model produced by quinolinate, since the use of agents affecting its formation, such as Fe(TPPS), are effective experimental tools to reduce the brain lesions associated to excitotoxic and oxidative damage.
Collapse
Affiliation(s)
- Carolina González-Cortés
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., México D.F. 14269, México
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Carbone DL, Moreno JA, Tjalkens RB. Nuclear factor kappa-B mediates selective induction of neuronal nitric oxide synthase in astrocytes during low-level inflammatory stimulation with MPTP. Brain Res 2008; 1217:1-9. [PMID: 18508038 DOI: 10.1016/j.brainres.2008.03.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/14/2008] [Accepted: 03/28/2008] [Indexed: 02/03/2023]
Abstract
Recent advances in understanding the progression of Parkinson's disease (PD) implicate perturbations in astrocyte function and induction of constitutively expressed neuronal nitric oxide synthase (NOS1) in both human PD and in the MPTP model of the disease. Transcriptional regulation of NOS1 is complex but recent data suggest that nuclear factor kappa-B (NF-kappaB) is an important transcription factor involved in inducible expression of the gene. The data presented here demonstrate that mild activation of primary astrocytes with low or 'sub-optimal' concentrations of MPTP (1 microM) and the inflammatory cytokine tumor necrosis factor alpha (10 pg/ml) and interferon gamma (1 ng/ml) results in selective induction of Nos1 mRNA and protein, increased production of nitric oxide (NO), and a significant elevation in global protein nitration. This mild inflammatory stimulus also resulted in activation and recruitment of p65 to a putative NF-kappaB response element located in the Nos1 promoter region flanking exon 1. A role for NF-kappaB in MPTP-dependent induction of NOS1 was confirmed through overexpression of a mutant IkappaBalpha super repressor of NF-kappaB that prevented induction of NOS1. The data presented here thus demonstrate a role for NF-kappaB in selective induction of NOS1 during early inflammatory activation of astrocytes stimulated by low-dose MPTP and inflammatory cytokines.
Collapse
Affiliation(s)
- David L Carbone
- Program in Molecular, Cellular, and Integrative Neuroscience, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
50
|
Cadet JL, Krasnova IN. Interactions of HIV and methamphetamine: cellular and molecular mechanisms of toxicity potentiation. Neurotox Res 2008; 12:181-204. [PMID: 17967742 DOI: 10.1007/bf03033915] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant drug, whose abuse has reached epidemic proportions worldwide. METH use is disproportionally represented among populations at high risks for developing HIV infection or who are already infected with the virus. Psychostimulant abuse has been reported to exacerbate the cognitive deficits and neurodegenerative abnormalities observed in HIV-positive patients. Thus, the purpose of the present paper is to review the clinical and basic observations that METH potentiates the adverse effects of HIV infection. An additional purpose is to provide a synthesis of the cellular and molecular mechanisms that might be responsible for the increased toxicity observed in co-morbid patients. The reviewed data indicate that METH and HIV proteins, including gp120, gp41, Tat, Vpr and Nef, converge on various caspase-dependent death pathways to cause neuronal apoptosis. The role of reactive microgliosis in METH- and in HIV-induced toxicity is also discussed.
Collapse
Affiliation(s)
- J L Cadet
- Molecular Neuropsychiatry Branch, NIH/NIDA Intramural Research Program, Baltimore, MD 21224, USA.
| | | |
Collapse
|