1
|
Dinant S, Castille J, Deloizy C, Bruder E, Sedano L, Daniel-Carlier N, Da Costa B, Passet B, Béringue V, Duchesne A, Chevalier C, Larcher T, Moazami-Goudarzi K, Vilotte JL, Le Goffic R. The prion-family protein Doppel exerts a protective role during influenza virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf031. [PMID: 40204637 DOI: 10.1093/jimmun/vkaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/24/2025] [Indexed: 04/11/2025]
Abstract
The cellular form of the prion protein (PrPC), known for its involvement as a misfolded isoform in transmissible spongiform encephalopathies, has recently been identified to exert a protective effect against viral infections. In this study, we explored the role of 2 other prion family members, Shadoo and Doppel, in protection against influenza A virus infection in mice. Lung expression levels of these genes revealed marked differences, with high expression of PrPC, low expression of Doppel, while Shadoo remained undetectable. Mice genetically knocked out for the genes encoding PrPC, Prnp-/- or Doppel, Prnd-/-, showed increased susceptibility to the virus, resulting in elevated morbidity compared with wild-type mice and mice knocked out for Shadoo, Sprn-/-. Unlike previous results observed in Prnp-/- mice, the absence of Doppel does not show enhancing effect on virus replication levels. Histological analysis of lung tissue from Prnd-/- mice revealed no difference in lesion size and severity compared with wild-type mice. However, transcriptomic analysis on day 7 postinfection revealed distinct signatures in Prnd-/- mice, highlighting the role of specific genes associated with polymorphonuclear neutrophil cells. Bronchoalveolar lavages confirmed a substantial neutrophil influx and increased inflammatory markers in the lungs of Prnd-/- mice. Neutrophil depletion experiments demonstrated a direct link between excessive neutrophil influx and increased susceptibility, mitigating pathology and partially restoring a wild-type phenotype in Prnd-/- mice. These findings underscore the complex role of Doppel in modulating the host immune response to influenza virus infection, particularly in regulating neutrophil recruitment and its implications on disease outcomes.
Collapse
Affiliation(s)
- Soraya Dinant
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Johan Castille
- UMR1313 GABI, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78350, France
| | - Charlotte Deloizy
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Elise Bruder
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Laura Sedano
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | | | - Bruno Da Costa
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Bruno Passet
- UMR1313 GABI, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78350, France
| | - Vincent Béringue
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Amandine Duchesne
- UMR1313 GABI, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78350, France
| | | | | | | | - Jean-Luc Vilotte
- UMR1313 GABI, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78350, France
| | - Ronan Le Goffic
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| |
Collapse
|
2
|
Juliani do Amaral M, Soares de Oliveira L, Cordeiro Y. Zinc ions trigger the prion protein liquid-liquid phase separation. Biochem Biophys Res Commun 2025; 753:151489. [PMID: 39983547 DOI: 10.1016/j.bbrc.2025.151489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Prion diseases are characterized by the misfolding and conversion of the monomeric prion protein (PrP) to a multimeric aggregated pathogenic form, known as PrPSc. We and others have recently shown that biomolecular condensates formed via liquid-liquid phase separation of PrP can undergo maturation to solid-like species that resemble pathological aggregates, and this process is modulated by DNA, RNA, and oxidative conditions. Conversely, the most well-studied ligand of PrP, copper ions, induce liquid-like condensates of PrP that accumulate Cu2+in vitro, and live PrPC-expressing cells show condensation at the cell surface as triggered by physiologically relevant conditions of Cu2+ and protein concentrations. Since PrP can also bind to Zn2+ through its intrinsically disordered N-terminal domain, though with different affinities and binding modes than Cu2+, we hypothesized that Zn2+ could modulate PrP phase separation differently from copper ions. Using an appropriate buffer with negligible metal ion binding, as well as relevant pH, ionic strength, molecular crowding, and Zn2+ concentrations, we show that recombinant PrP undergoes phase separation with Zn2+. Furthermore, we show that metal ion-induced condensation of PrP is dependent on the N-terminal domain (residues 23-90). In vitro Fluorescence Recovery After Photobleaching (FRAP) experiments and thioflavin T aggregation kinetics support key differences in the molecular properties of PrP:Zn2+versus PrP:Cu2+ phase separated states. FRAP analysis indicated that both Cu2+ and Zn2+ promote liquid-like PrP condensates; however, PrP:Zn2+condensates exhibit a faster recovery. Cu2+ pronouncedly inhibits seed-induced PrP misfolding, whereas Zn2+ provides a milder delay in PrP aggregation. Our findings provide insights on Zn2+-induced phase separation of PrP, supporting a variety of previously proposed functions of PrP in metal sequestering and uptake, processes that could be effectively regulated through biomolecular condensation.
Collapse
Affiliation(s)
| | | | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Metal Ions Bound to Prion Protein Affect its Interaction with Plasminogen Activation System. Protein J 2022; 41:88-96. [PMID: 35038117 PMCID: PMC8863686 DOI: 10.1007/s10930-021-10035-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
Prion diseases are a group of neurodegenerative diseases, which can progress rapidly. Previous data have demonstrated that prion protein (PrP) stimulates activation of plasminogen (Plg) by tissue plasminogen activator (tPA). In this study, using spectroscopic method, we aimed to determine whether PrP’s role in activating Plg is influenced by metal binding. We also investigated the region in PrP involved in binding to tPA and Plg, and whether PrP in fibrillar form behaves the same way as PrP unbound to any metal ion i.e., apo-PrP. We investigated the effect of recombinant mouse PrP (residues 23-231) refolded with nickel, manganese, copper, and a variant devoid of any metal ions, on tPA-catalyzed Plg activation. Using mutant PrP (H95A, H110A), we also investigated whether histidine residues outside the octarepeat region in PrP, which is known to bind tPA and Plg, are also involved in their binding. We demonstrated that apo-PrP is most effective at stimulating Plg. PrP refolded with nickle or manganese behave similar to apo-PrP, and PrP refolded with copper is least effective. The mutant form of PrP did not stimulate Plg activation to the same degree as apo-PrP indicating that the histidine residues outside the octarepeat region are also involved in binding to tPA and Plg. Similarly, the fibrillar form of PrP was ineffective at stimulating Plg activation. Our data suggest that upon loss of copper specifically, a structural rearrangement of PrP occurs that exposes binding sites to Plg and tPA, enhancing the stimulation of Plg activation.
Collapse
|
5
|
Gielnik M, Taube M, Zhukova L, Zhukov I, Wärmländer SKTS, Svedružić Ž, Kwiatek WM, Gräslund A, Kozak M. Zn(II) binding causes interdomain changes in the structure and flexibility of the human prion protein. Sci Rep 2021; 11:21703. [PMID: 34737343 PMCID: PMC8568922 DOI: 10.1038/s41598-021-00495-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
The cellular prion protein (PrPC) is a mainly α-helical 208-residue protein located in the pre- and postsynaptic membranes. For unknown reasons, PrPC can undergo a structural transition into a toxic, β-sheet rich scrapie isoform (PrPSc) that is responsible for transmissible spongiform encephalopathies (TSEs). Metal ions seem to play an important role in the structural conversion. PrPC binds Zn(II) ions and may be involved in metal ion transport and zinc homeostasis. Here, we use multiple biophysical techniques including optical and NMR spectroscopy, molecular dynamics simulations, and small angle X-ray scattering to characterize interactions between human PrPC and Zn(II) ions. Binding of a single Zn(II) ion to the PrPC N-terminal domain via four His residues from the octarepeat region induces a structural transition in the C-terminal α-helices 2 and 3, promotes interaction between the N-terminal and C-terminal domains, reduces the folded protein size, and modifies the internal structural dynamics. As our results suggest that PrPC can bind Zn(II) under physiological conditions, these effects could be important for the physiological function of PrPC.
Collapse
Affiliation(s)
- Maciej Gielnik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
| | - Lilia Zhukova
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warszawa, Poland
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warszawa, Poland
| | | | - Željko Svedružić
- Department of Biotechnology, University of Rijeka, 51000, Rijeka, Croatia
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland.
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, 30-392, Kraków, Poland.
| |
Collapse
|
6
|
Falcone E, Okafor M, Vitale N, Raibaut L, Sour A, Faller P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Gromadzka G, Tarnacka B, Flaga A, Adamczyk A. Copper Dyshomeostasis in Neurodegenerative Diseases-Therapeutic Implications. Int J Mol Sci 2020; 21:E9259. [PMID: 33291628 PMCID: PMC7730516 DOI: 10.3390/ijms21239259] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Copper is one of the most abundant basic transition metals in the human body. It takes part in oxygen metabolism, collagen synthesis, and skin pigmentation, maintaining the integrity of blood vessels, as well as in iron homeostasis, antioxidant defense, and neurotransmitter synthesis. It may also be involved in cell signaling and may participate in modulation of membrane receptor-ligand interactions, control of kinase and related phosphatase functions, as well as many cellular pathways. Its role is also important in controlling gene expression in the nucleus. In the nervous system in particular, copper is involved in myelination, and by modulating synaptic activity as well as excitotoxic cell death and signaling cascades induced by neurotrophic factors, copper is important for various neuronal functions. Current data suggest that both excess copper levels and copper deficiency can be harmful, and careful homeostatic control is important. This knowledge opens up an important new area for potential therapeutic interventions based on copper supplementation or removal in neurodegenerative diseases including Wilson's disease (WD), Menkes disease (MD), Alzheimer's disease (AD), Parkinson's disease (PD), and others. However, much remains to be discovered, in particular, how to regulate copper homeostasis to prevent neurodegeneration, when to chelate copper, and when to supplement it.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland;
| | - Beata Tarnacka
- Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Rehabilitation Clinic, Medical University of Warsaw, Spartańska 1 Street, 02-637 Warsaw, Poland;
| | - Anna Flaga
- Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland;
| |
Collapse
|
8
|
Menon R, Christofides K, Jones CE. Endocytic recycling prevents copper accumulation in astrocytoma cells stimulated with copper-bound neurokinin B. Biochem Biophys Res Commun 2020; 523:739-744. [PMID: 31952788 DOI: 10.1016/j.bbrc.2019.12.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022]
Abstract
Neurokinin B (NKB) is a key neuropeptide in reproductive endocrinology where it contributes to the generation of pulses of gonadotropin-releasing hormone. NKB is a copper-binding peptide; in the absence of metal NKB rapidly adopts an amyloid structure, but copper binding inhibits amyloid formation and generates a structure that can activate the neurokinin 3 receptor. The fate of copper once it binds NKB and activates the neurokinin 3 receptor is not understood, but endocytosis of NKB occurs even when the peptide is coordinated to copper. Using astrocytoma cells that express endogenous neurokinin 3 receptor, this work shows that endocytosis of apo- and copper-bound NKB occurs in concert with the receptor via a trafficking pathway that includes the early endosome. When cells are stimulated with copper-bound NKB the cellular copper concentration does not significantly increase, however when the cells are pre-treated with the recycling inhibitor, brefeldin A, they are capable of accumulating copper. This data shows that copper-bound NKB can activate the neurokinin 3 receptor then endocytosis abstracts metal, peptide and receptor from the cell surface. The cell does not accumulate the copper but instead it enters recycling pathways that ultimately leads to metal release from the cell. The work reveals a novel receptor-mediated copper trafficking pathway that retains metal in membrane bound organelles until it is exported from the cell.
Collapse
Affiliation(s)
- Resmi Menon
- School of Science, Western Sydney University, Locked bag 1797, Penrith, 2759, New South Wales, Australia
| | - Katerina Christofides
- School of Science, Western Sydney University, Locked bag 1797, Penrith, 2759, New South Wales, Australia
| | - Christopher E Jones
- School of Science, Western Sydney University, Locked bag 1797, Penrith, 2759, New South Wales, Australia.
| |
Collapse
|
9
|
Structural Consequences of Copper Binding to the Prion Protein. Cells 2019; 8:cells8080770. [PMID: 31349611 PMCID: PMC6721516 DOI: 10.3390/cells8080770] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Prion, or PrPSc, is the pathological isoform of the cellular prion protein (PrPC) and it is the etiological agent of transmissible spongiform encephalopathies (TSE) affecting humans and animal species. The most relevant function of PrPC is its ability to bind copper ions through its flexible N-terminal moiety. This review includes an overview of the structure and function of PrPC with a focus on its ability to bind copper ions. The state-of-the-art of the role of copper in both PrPC physiology and in prion pathogenesis is also discussed. Finally, we describe the structural consequences of copper binding to the PrPC structure.
Collapse
|
10
|
Gielnik M, Pietralik Z, Zhukov I, Szymańska A, Kwiatek WM, Kozak M. PrP (58-93) peptide from unstructured N-terminal domain of human prion protein forms amyloid-like fibrillar structures in the presence of Zn 2+ ions. RSC Adv 2019; 9:22211-22219. [PMID: 35519468 PMCID: PMC9066832 DOI: 10.1039/c9ra01510h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022] Open
Abstract
Many transition metal ions modulate the aggregation of different amyloid peptides. Substoichiometric zinc concentrations can inhibit aggregation, while an excess of zinc can accelerate the formation of cytotoxic fibrils. In this study, we report the fibrillization of the octarepeat domain to amyloid-like structures. Interestingly, this self-assembling process occurred only in the presence of Zn(ii) ions. The formed peptide aggregates are able to bind amyloid specific dyes thioflavin T and Congo red. Atomic force microscopy and transmission electron microscopy revealed the formation of long, fibrillar structures. X-ray diffraction and Fourier transform infrared spectroscopy studies of the formed assemblies confirmed the presence of cross-β structure. Two-component analysis of synchrotron radiation SAXS data provided the evidence for a direct decrease in monomeric peptide species content and an increase in the fraction of aggregates as a function of Zn(ii) concentration. These results could shed light on Zn(ii) as a toxic agent and on the metal ion induced protein misfolding in prion diseases.
Collapse
Affiliation(s)
- Maciej Gielnik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University Uniwersytetu Poznańskiego 2 PL 61-614 Poznań Poland
| | - Zuzanna Pietralik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University Uniwersytetu Poznańskiego 2 PL 61-614 Poznań Poland
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences PL 02-106 Warszawa Poland
- NanoBioMedical Centre, Adam Mickiewicz University PL 61-614 Poznań Poland
| | - Aneta Szymańska
- Department of Biomedical Chemistry, Faculty of Chemistry, Gdańsk University PL 80-308 Gdańsk Poland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences PL 31-342 Krakow Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University Uniwersytetu Poznańskiego 2 PL 61-614 Poznań Poland
- Joint Laboratory for SAXS Studies, Faculty of Physics, Adam Mickiewicz University PL 61-614 Poznań Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University PL 30-392 Kraków Poland
| |
Collapse
|
11
|
Chen K, Li W, Wang J, Wang W. Binding of Copper Ions with Octapeptide Region in Prion Protein: Simulations with Charge Transfer Model. J Phys Chem B 2019; 123:5216-5228. [PMID: 31242743 DOI: 10.1021/acs.jpcb.9b02457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper ions are important cofactors of many metalloproteins. The binding dynamics of proteins to the copper ion is important for biological functions but is less understood at the microscopic level. What are the key factors determining the recognition and the stabilization of the copper ion during the binding? Our work investigates the binding dynamics of the copper ion with a simple system (the N-terminus of PrP) using simulation methods. To precisely characterize the protein?ion interaction, we build up an effective copper?peptide force field based on quantum chemistry calculations. In our model, the effects of charge transfer, protonation/deprotonation, and induced polarization are considered. With this force field, we successfully characterize the local structures and the complex interactions of the octapeptide around the copper ion. Furthermore, using an enhanced sampling method, the binding/unbinding processes of the copper ion with the octapeptide are simulated. Free-energy landscapes are generated in consequence, and multiple binding pathways are characterized. It is observed that various native ligands contribute differently to the binding processes. Some residues are related to the capture of the ion (behaving like ?arm?s), and some others contribute to the stabilization of the coordination structure (acting like ?core?s). These different interactions induce various pathways. Besides, a nonnative binding ligand is determined, and it has essential contributions and modulations to the binding pathways. With all these results, the picture of copper?octapeptide binding is outlined. These features are believed to happen in many ion?peptide interactions, such as the cooperative stabilization between the coordinations with neighboring backbone nitrogens and an auxiliary intermediate coordination with the neighboring oxygen from the N-terminal direction. We believe that our studies are valuable to understand the complicated ion?peptide binding processes.
Collapse
Affiliation(s)
- Ke Chen
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| | - Wenfei Li
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| | - Jun Wang
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| |
Collapse
|
12
|
Physiological role of Prion Protein in Copper homeostasis and angiogenic mechanisms of endothelial cells. THE EUROBIOTECH JOURNAL 2019. [DOI: 10.2478/ebtj-2019-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
The Prion Protein (PrP) is mostly known for its role in prion diseases, where its misfolding and aggregation can cause fatal neurodegenerative conditions such as the bovine spongiform encephalopathy and human Creutzfeldt–Jakob disease. Physiologically, PrP is involved in several processes including adhesion, proliferation, differentiation and angiogenesis, but the molecular mechanisms behind its role remain unclear. PrP, due to its well-described structure, is known to be able to regulate copper homeostasis; however, copper dyshomeostasis can lead to developmental defects. We investigated PrP-dependent regulation of copper homeostasis in human endothelial cells (HUVEC) using an RNA-interference protocol. PrP knockdown did not influence cell viability in silenced HUVEC (PrPKD) compared to control cells, but significantly increased PrPKD HUVEC cells sensitivity to cytotoxic copper concentrations. A reduction of PrPKD cells reductase activity and copper ions transport capacity was observed. Furthermore, PrPKD-derived spheroids exhibited altered morphogenesis and their derived cells showed a decreased vitality 24 and 48 hours after seeding. PrPKD spheroid-derived cells also showed disrupted tubulogenesis in terms of decreased coverage area, tubule length and total nodes number on matrigel, preserving unaltered VEGF receptors expression levels. Our results highlight PrP physiological role in cellular copper homeostasis and in the angiogenesis of endothelial cells.
Collapse
|
13
|
Markham KA, Roseman GP, Linsley RB, Lee HW, Millhauser GL. Molecular Features of the Zn 2+ Binding Site in the Prion Protein Probed by 113Cd NMR. Biophys J 2019; 116:610-620. [PMID: 30678993 DOI: 10.1016/j.bpj.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 10/27/2022] Open
Abstract
The cellular prion protein (PrPC) is a zinc-binding protein that contributes to the regulation of Zn2+ and other divalent species of the central nervous system. Zn2+ coordinates to the flexible, N-terminal repeat region of PrPC and drives a tertiary contact between this repeat region and a well-defined cleft of the C-terminal domain. The tertiary structure promoted by Zn2+ is thought to regulate inherent PrPC toxicity. Despite the emerging consensus regarding the interaction between Zn2+ and PrPC, there is little direct spectroscopic confirmation of the metal ion's coordination details. Here, we address this conceptual gap by using Cd2+ as a surrogate for Zn2+. NMR finds that Cd2+ binds exclusively to the His imidazole side chains of the repeat segment, with a dissociation constant of ∼1.2 mM, and promotes an N-terminal-C-terminal cis interaction very similar to that observed with Zn2+. Analysis of 113Cd NMR spectra of PrPC, along with relevant control proteins and peptides, suggests that coordination of Cd2+ in the full-length protein is consistent with a three- or four-His geometry. Examination of the mutation E199K in mouse PrPC (E200K in humans), responsible for inherited Creutzfeldt-Jakob disease, finds that the mutation lowers metal ion affinity and weakens the cis interaction. These findings not only provide deeper insight into PrPC metal ion coordination but they also suggest new perspectives on the role of familial mutations in prion disease.
Collapse
Affiliation(s)
- Kate A Markham
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Graham P Roseman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Richard B Linsley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California.
| |
Collapse
|
14
|
Lu B, Zhao L, Qin K. Copper induces structural changes in N-terminus of human prion protein. Biochem Biophys Res Commun 2018; 499:470-474. [DOI: 10.1016/j.bbrc.2018.03.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 11/27/2022]
|
15
|
Copper- and Zinc-Promoted Interdomain Structure in the Prion Protein: A Mechanism for Autoinhibition of the Neurotoxic N-Terminus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:35-56. [PMID: 28838668 DOI: 10.1016/bs.pmbts.2017.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The function of the cellular prion protein (PrPC), while still poorly understood, is increasingly linked to its ability to bind physiological metal ions at the cell surface. PrPC binds divalent forms of both copper and zinc through its unstructured N-terminal domain, modulating interactions between PrPC and various receptors at the cell surface and ultimately tuning downstream cellular processes. In this chapter, we briefly discuss the molecular features of copper and zinc uptake by PrPC and summarize evidence implicating these metal ions in PrP-mediated physiology. We then focus our review on recent biophysical evidence revealing a physical interaction between the flexible N-terminal and globular C-terminal domains of PrPC. This interdomain cis interaction is electrostatic in nature and is promoted by the binding of Cu2+ and Zn2+ to the N-terminal octarepeat domain. These findings, along with recent cellular studies, suggest a mechanism whereby NC interactions serve to regulate the activity and/or toxicity of the PrPC N-terminus. We discuss this potential mechanism in relation to familial prion disease mutations, lethal deletions of the PrPC central region, and neurotoxicity induced by certain globular domain ligands, including bona fide prions and toxic amyloid-β oligomers.
Collapse
|
16
|
Wu B, McDonald AJ, Markham K, Rich CB, McHugh KP, Tatzelt J, Colby DW, Millhauser GL, Harris DA. The N-terminus of the prion protein is a toxic effector regulated by the C-terminus. eLife 2017; 6:e23473. [PMID: 28527237 PMCID: PMC5469617 DOI: 10.7554/elife.23473] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/17/2017] [Indexed: 12/23/2022] Open
Abstract
PrPC, the cellular isoform of the prion protein, serves to transduce the neurotoxic effects of PrPSc, the infectious isoform, but how this occurs is mysterious. Here, using a combination of electrophysiological, cellular, and biophysical techniques, we show that the flexible, N-terminal domain of PrPC functions as a powerful toxicity-transducing effector whose activity is tightly regulated in cis by the globular C-terminal domain. Ligands binding to the N-terminal domain abolish the spontaneous ionic currents associated with neurotoxic mutants of PrP, and the isolated N-terminal domain induces currents when expressed in the absence of the C-terminal domain. Anti-PrP antibodies targeting epitopes in the C-terminal domain induce currents, and cause degeneration of dendrites on murine hippocampal neurons, effects that entirely dependent on the effector function of the N-terminus. NMR experiments demonstrate intramolecular docking between N- and C-terminal domains of PrPC, revealing a novel auto-inhibitory mechanism that regulates the functional activity of PrPC.
Collapse
Affiliation(s)
- Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Alex J McDonald
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Kathleen Markham
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States
| | - Celeste B Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Kyle P McHugh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, United States
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - David W Colby
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, United States
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| |
Collapse
|
17
|
Toni M, Massimino ML, De Mario A, Angiulli E, Spisni E. Metal Dyshomeostasis and Their Pathological Role in Prion and Prion-Like Diseases: The Basis for a Nutritional Approach. Front Neurosci 2017; 11:3. [PMID: 28154522 PMCID: PMC5243831 DOI: 10.3389/fnins.2017.00003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Metal ions are key elements in organisms' life acting like cofactors of many enzymes but they can also be potentially dangerous for the cell participating in redox reactions that lead to the formation of reactive oxygen species (ROS). Any factor inducing or limiting a metal dyshomeostasis, ROS production and cell injury may contribute to the onset of neurodegenerative diseases or play a neuroprotective action. Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative disorders affecting the central nervous system (CNS) of human and other mammalian species. The causative agent of TSEs is believed to be the scrapie prion protein PrPSc, the β sheet-rich pathogenic isoform produced by the conformational conversion of the α-helix-rich physiological isoform PrPC. The peculiarity of PrPSc is its ability to self-propagate in exponential fashion in cells and its tendency to precipitate in insoluble and protease-resistance amyloid aggregates leading to neuronal cell death. The expression “prion-like diseases” refers to a group of neurodegenerative diseases that share some neuropathological features with prion diseases such as the involvement of proteins (α-synuclein, amyloid β, and tau) able to precipitate producing amyloid deposits following conformational change. High social impact diseases such as Alzheimer's and Parkinson's belong to prion-like diseases. Accumulating evidence suggests that the exposure to environmental metals is a risk factor for the development of prion and prion-like diseases and that metal ions can directly bind to prion and prion-like proteins affecting the amount of amyloid aggregates. The diet, source of metal ions but also of natural antioxidant and chelating agents such as polyphenols, is an aspect to take into account in addressing the issue of neurodegeneration. Epidemiological data suggest that the Mediterranean diet, based on the abundant consumption of fresh vegetables and on low intake of meat, could play a preventive or delaying role in prion and prion-like neurodegenerative diseases. In this review, metal role in the onset of prion and prion-like diseases is dealt with from a nutritional, cellular, and molecular point of view.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University Rome, Italy
| | - Maria L Massimino
- National Research Council (CNR), Neuroscience Institute c/o Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Elisa Angiulli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University Rome, Italy
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna Bologna, Italy
| |
Collapse
|
18
|
Evans EGB, Pushie MJ, Markham KA, Lee HW, Millhauser GL. Interaction between Prion Protein's Copper-Bound Octarepeat Domain and a Charged C-Terminal Pocket Suggests a Mechanism for N-Terminal Regulation. Structure 2016; 24:1057-67. [PMID: 27265848 DOI: 10.1016/j.str.2016.04.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/29/2022]
Abstract
Copper plays a critical role in prion protein (PrP) physiology. Cu(2+) binds with high affinity to the PrP N-terminal octarepeat (OR) domain, and intracellular copper promotes PrP expression. The molecular details of copper coordination within the OR are now well characterized. Here we examine how Cu(2+) influences the interaction between the PrP N-terminal domain and the C-terminal globular domain. Using nuclear magnetic resonance and copper-nitroxide pulsed double electron-electron resonance, with molecular dynamics refinement, we localize the position of Cu(2+) in its high-affinity OR-bound state. Our results reveal an interdomain cis interaction that is stabilized by a conserved, negatively charged pocket of the globular domain. Interestingly, this interaction surface overlaps an epitope recognized by the POM1 antibody, the binding of which drives rapid cerebellar degeneration mediated by the PrP N terminus. The resulting structure suggests that the globular domain regulates the N-terminal domain by binding the Cu(2+)-occupied OR within a complementary pocket.
Collapse
Affiliation(s)
- Eric G B Evans
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - M Jake Pushie
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Kate A Markham
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
19
|
Copper and Zinc Interactions with Cellular Prion Proteins Change Solubility of Full-Length Glycosylated Isoforms and Induce the Occurrence of Heterogeneous Phenotypes. PLoS One 2016; 11:e0153931. [PMID: 27093554 PMCID: PMC4836684 DOI: 10.1371/journal.pone.0153931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/06/2016] [Indexed: 01/09/2023] Open
Abstract
Prion diseases are characterized biochemically by protein aggregation of infectious prion isoforms (PrPSc), which result from the conformational conversion of physiological prion proteins (PrPC). PrPC are variable post-translationally modified glycoproteins, which exist as full length and as aminoterminally truncated glycosylated proteins and which exhibit differential detergent solubility. This implicates the presence of heterogeneous phenotypes, which overlap as protein complexes at the same molecular masses. Although the biological function of PrPC is still enigmatic, evidence reveals that PrPC exhibits metal-binding properties, which result in structural changes and decreased solubility. In this study, we analyzed the yield of PrPC metal binding affiliated with low solubility and changes in protein banding patterns. By implementing a high-speed centrifugation step, the interaction of zinc ions with PrPC was shown to generate large quantities of proteins with low solubility, consisting mainly of full-length glycosylated PrPC; whereas unglycosylated PrPC remained in the supernatants as well as truncated glycosylated proteins which lack of octarepeat sequence necessary for metal binding. This effect was considerably lower when PrPC interacted with copper ions; the presence of other metals tested exhibited no effect under these conditions. The binding of zinc and copper to PrPC demonstrated differentially soluble protein yields within distinct PrPC subtypes. PrPC–Zn2+-interaction may provide a means to differentiate glycosylated and unglycosylated subtypes and offers detailed analysis of metal-bound and metal-free protein conversion assays.
Collapse
|
20
|
Arcos-López T, Qayyum M, Rivillas-Acevedo L, Miotto MC, Grande-Aztatzi R, Fernández CO, Hedman B, Hodgson KO, Vela A, Solomon EI, Quintanar L. Spectroscopic and Theoretical Study of Cu(I) Binding to His111 in the Human Prion Protein Fragment 106-115. Inorg Chem 2016; 55:2909-22. [PMID: 26930130 PMCID: PMC4804749 DOI: 10.1021/acs.inorgchem.5b02794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 12/19/2022]
Abstract
The ability of the cellular prion protein (PrP(C)) to bind copper in vivo points to a physiological role for PrP(C) in copper transport. Six copper binding sites have been identified in the nonstructured N-terminal region of human PrP(C). Among these sites, the His111 site is unique in that it contains a MKHM motif that would confer interesting Cu(I) and Cu(II) binding properties. We have evaluated Cu(I) coordination to the PrP(106-115) fragment of the human PrP protein, using NMR and X-ray absorption spectroscopies and electronic structure calculations. We find that Met109 and Met112 play an important role in anchoring this metal ion. Cu(I) coordination to His111 is pH-dependent: at pH >8, 2N1O1S species are formed with one Met ligand; in the range of pH 5-8, both methionine (Met) residues bind to Cu(I), forming a 1N1O2S species, where N is from His111 and O is from a backbone carbonyl or a water molecule; at pH <5, only the two Met residues remain coordinated. Thus, even upon drastic changes in the chemical environment, such as those occurring during endocytosis of PrP(C) (decreased pH and a reducing potential), the two Met residues in the MKHM motif enable PrP(C) to maintain the bound Cu(I) ions, consistent with a copper transport function for this protein. We also find that the physiologically relevant Cu(I)-1N1O2S species activates dioxygen via an inner-sphere mechanism, likely involving the formation of a copper(II) superoxide complex. In this process, the Met residues are partially oxidized to sulfoxide; this ability to scavenge superoxide may play a role in the proposed antioxidant properties of PrP(C). This study provides further insight into the Cu(I) coordination properties of His111 in human PrP(C) and the molecular mechanism of oxygen activation by this site.
Collapse
Affiliation(s)
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, California 94395, United States
| | | | - Marco C. Miotto
- Max Planck
Laboratory for Structural Biology, Chemistry and Molecular Biophysics
of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones
para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | | | - Claudio O. Fernández
- Max Planck
Laboratory for Structural Biology, Chemistry and Molecular Biophysics
of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones
para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC, Stanford University, Menlo Park, California 94025, United States
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94395, United States
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC, Stanford University, Menlo Park, California 94025, United States
| | - Alberto Vela
- Departamento
de Química, Cinvestav, Gustavo A. Madero, 07360 México
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94395, United States
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC, Stanford University, Menlo Park, California 94025, United States
| | | |
Collapse
|
21
|
Cingaram PKR, Nyeste A, Dondapati DT, Fodor E, Welker E. Prion Protein Does Not Confer Resistance to Hippocampus-Derived Zpl Cells against the Toxic Effects of Cu2+, Mn2+, Zn2+ and Co2+ Not Supporting a General Protective Role for PrP in Transition Metal Induced Toxicity. PLoS One 2015; 10:e0139219. [PMID: 26426582 PMCID: PMC4591282 DOI: 10.1371/journal.pone.0139219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/10/2015] [Indexed: 01/04/2023] Open
Abstract
The interactions of transition metals with the prion protein (PrP) are well-documented and characterized, however, there is no consensus on their role in either the physiology of PrP or PrP-related neurodegenerative disorders. PrP has been reported to protect cells from the toxic stimuli of metals. By employing a cell viability assay, we examined the effects of various concentrations of Cu2+, Zn2+, Mn2+, and Co2+ on Zpl (Prnp-/-) and ZW (Prnp+/+) hippocampus-derived mouse neuronal cells. Prnp-/- Zpl cells were more sensitive to all four metals than PrP-expressing Zw cells. However, when we introduced PrP or only the empty vector into Zpl cells, we could not discern any protective effect associated with the presence of PrP. This observation was further corroborated when assessing the toxic effect of metals by propidium-iodide staining and fluorescence activated cell sorting analysis. Thus, our results on this mouse cell culture model do not seem to support a strong protective role for PrP against transition metal toxicity and also emphasize the necessity of extreme care when comparing cells derived from PrP knock-out and wild type mice.
Collapse
Affiliation(s)
| | - Antal Nyeste
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Divya Teja Dondapati
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elfrieda Fodor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ervin Welker
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
22
|
Pass R, Frudd K, Barnett JP, Blindauer CA, Brown DR. Prion infection in cells is abolished by a mutated manganese transporter but shows no relation to zinc. Mol Cell Neurosci 2015; 68:186-93. [PMID: 26253862 DOI: 10.1016/j.mcn.2015.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/27/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022] Open
Abstract
The cellular prion protein has been identified as a metalloprotein that binds copper. There have been some suggestions that prion protein also influences zinc and manganese homeostasis. In this study we used a series of cell lines to study the levels of zinc and manganese under different conditions. We overexpressed either the prion protein or known transporters for zinc and manganese to determine relations between the prion protein and both manganese and zinc homeostasis. Our observations supported neither a link between the prion protein and zinc metabolism nor any effect of altered zinc levels on prion protein expression or cellular infection with prions. In contrast we found that a gain of function mutant of a manganese transporter caused reduction of manganese levels in prion infected cells, loss of observable PrP(Sc) in cells and resistance to prion infection. These studies strengthen the link between manganese and prion disease.
Collapse
Affiliation(s)
- Rachel Pass
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Karen Frudd
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - James P Barnett
- Department of Chemistry, University of Warwick, Coventry, UK
| | | | - David R Brown
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
23
|
The effects of the cellular and infectious prion protein on the neuronal adaptor protein X11α. Biochim Biophys Acta Gen Subj 2015; 1850:2213-21. [PMID: 26297964 DOI: 10.1016/j.bbagen.2015.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/27/2015] [Accepted: 08/18/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND The neuronal adaptor protein X11α is a multidomain protein with a phosphotyrosine binding (PTB) domain, two PDZ (PSD_95, Drosophila disks-large, ZO-1) domains, a Munc Interacting (MI) domain and a CASK interacting region. Amongst its functions is a role in the regulation of the abnormal processing of the amyloid precursor protein (APP). It also regulates the activity of Cu/Zn Superoxide dismutase (SOD1) through binding with its chaperone the copper chaperone for SOD1. How X11α production is controlled has remained unclear. METHODS Using the neuroblastoma cell line, N2a, and knockdown studies, the effect of the cellular and infectious prion protein, PrP(C) and PrP(Sc), on X11α is examined. RESULTS We show that X11α expression is directly proportional to the expression of PrP(C), whereas its levels are reduced by PrP(Sc). We also show PrP(Sc) to affect X11α at a functional level. One of the effects of prion infection is lowered cellular SOD1 levels, here by knockdown of X11α we identify that the effect of PrP(Sc) on SOD1 can be reversed indicating that X11α is involved in prion disease pathogenesis. CONCLUSIONS A role for the cellular and infectious prion protein, PrP(C) and PrP(Sc), respectively, in regulating X11α is identified in this work. GENERAL SIGNIFICANCE Due to the multiple interacting partners of X11α, dysfunction or alteration in X11α will have a significant cellular effect. This work highlights the role of PrP(C) and PrP(Sc) in the regulation of X11α, and provides a new target pathway to control X11α and its related functions.
Collapse
|
24
|
Bulcke F, Dringen R. Handling of Copper and Copper Oxide Nanoparticles by Astrocytes. Neurochem Res 2015; 41:33-43. [DOI: 10.1007/s11064-015-1688-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/16/2022]
|
25
|
Pan K, Yi CW, Chen J, Liang Y. Zinc significantly changes the aggregation pathway and the conformation of aggregates of human prion protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:907-18. [DOI: 10.1016/j.bbapap.2015.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/09/2015] [Accepted: 04/21/2015] [Indexed: 12/27/2022]
|
26
|
D'Ambrosi N, Rossi L. Copper at synapse: Release, binding and modulation of neurotransmission. Neurochem Int 2015; 90:36-45. [PMID: 26187063 DOI: 10.1016/j.neuint.2015.07.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Over the last decade, a piece of the research studying copper role in biological systems was devoted to unravelling a still elusive, but extremely intriguing, aspect that is the involvement of copper in synaptic function. These studies were prompted to provide a rationale to the finding that copper is released in the synaptic cleft upon depolarization. The copper pump ATP7A, which mutations are responsible for diseases with a prominent neurodegenerative component, seems to play a pivotal role in the release of copper at synapses. Furthermore, it was found that, when in the synaptic cleft, copper can control, directly or indirectly, the activity of the neurotransmitter receptors (NMDA, AMPA, GABA, P2X receptors), thus affecting excitability. In turn, neurotransmission can affect copper trafficking and delivery in neuronal cells. Furthermore, it was reported that copper can also modulate synaptic vesicles trafficking and the interaction between proteins of the secretory pathways. Interestingly, proteins with a still unclear role in neuronal system though associated with the pathogenesis of neurodegenerative diseases (the amyloid precursor protein, APP, the prion protein, PrP, α-synuclein, α-syn) show copper-binding domains. They may act as copper buffer at synapses and participate in the interplay between copper and the neurotransmitters receptors. Given that copper dysmetabolism occurs in several diseases affecting central and peripheral nervous system, the findings on the contribution of copper in synaptic transmission, beside its more consolidate role as a neuronal enzymes cofactor, may open new insights for therapy interventions.
Collapse
Affiliation(s)
- Nadia D'Ambrosi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
27
|
Bellingham SA, Guo B, Hill AF. The secret life of extracellular vesicles in metal homeostasis and neurodegeneration. Biol Cell 2015; 107:389-418. [PMID: 26032945 DOI: 10.1111/boc.201500030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022]
Abstract
Biologically active metals such as copper, zinc and iron are fundamental for sustaining life in different organisms with the regulation of cellular metal homeostasis tightly controlled through proteins that coordinate metal uptake, efflux and detoxification. Many of the proteins involved in either uptake or efflux of metals are localised and function on the plasma membrane, traffic between intracellular compartments depending upon the cellular metal environment and can undergo recycling via the endosomal pathway. The biogenesis of exosomes also occurs within the endosomal system, with several major neurodegenerative disease proteins shown to be released in association with these vesicles, including the amyloid-β (Aβ) peptide in Alzheimer's disease and the infectious prion protein involved in Prion diseases. Aβ peptide and the prion protein also bind biologically active metals and are postulated to play important roles in metal homeostasis. In this review, we will discuss the role of extracellular vesicles in Alzheimer's and Prion diseases and explore their potential contribution to metal homeostasis.
Collapse
Affiliation(s)
- Shayne A Bellingham
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Belinda Guo
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Halliez S, Passet B, Martin-Lannerée S, Hernandez-Rapp J, Laude H, Mouillet-Richard S, Vilotte JL, Béringue V. To develop with or without the prion protein. Front Cell Dev Biol 2014; 2:58. [PMID: 25364763 PMCID: PMC4207017 DOI: 10.3389/fcell.2014.00058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/22/2014] [Indexed: 12/23/2022] Open
Abstract
The deletion of the cellular form of the prion protein (PrPC) in mouse, goat, and cattle has no drastic phenotypic consequence. This stands in apparent contradiction with PrPC quasi-ubiquitous expression and conserved primary and tertiary structures in mammals, and its pivotal role in neurodegenerative diseases such as prion and Alzheimer's diseases. In zebrafish embryos, depletion of PrP ortholog leads to a severe loss-of-function phenotype. This raises the question of a potential role of PrPC in the development of all vertebrates. This view is further supported by the early expression of the PrPC encoding gene (Prnp) in many tissues of the mouse embryo, the transient disruption of a broad number of cellular pathways in early Prnp−/− mouse embryos, and a growing body of evidence for PrPC involvement in the regulation of cell proliferation and differentiation in various types of mammalian stem cells and progenitors. Finally, several studies in both zebrafish embryos and in mammalian cells and tissues in formation support a role for PrPC in cell adhesion, extra-cellular matrix interactions and cytoskeleton. In this review, we summarize and compare the different models used to decipher PrPC functions at early developmental stages during embryo- and organo-genesis and discuss their relevance.
Collapse
Affiliation(s)
- Sophie Halliez
- Institut National de la Recherche Agronomique, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Bruno Passet
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Séverine Martin-Lannerée
- Institut National de la Santé et de la Recherche Médicale, UMR-S1124 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Julia Hernandez-Rapp
- Institut National de la Santé et de la Recherche Médicale, UMR-S1124 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Hubert Laude
- Institut National de la Recherche Agronomique, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| | - Sophie Mouillet-Richard
- Institut National de la Santé et de la Recherche Médicale, UMR-S1124 Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Jean-Luc Vilotte
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative Jouy-en-Josas, France
| | - Vincent Béringue
- Institut National de la Recherche Agronomique, U892 Virologie et Immunologie Moléculaires Jouy-en-Josas, France
| |
Collapse
|
29
|
Jackson WS. Selective vulnerability to neurodegenerative disease: the curious case of Prion Protein. Dis Model Mech 2014; 7:21-9. [PMID: 24396151 PMCID: PMC3882045 DOI: 10.1242/dmm.012146] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mechanisms underlying the selective targeting of specific brain regions by different neurodegenerative diseases is one of the most intriguing mysteries in medicine. For example, it is known that Alzheimer’s disease primarily affects parts of the brain that play a role in memory, whereas Parkinson’s disease predominantly affects parts of the brain that are involved in body movement. However, the reasons that other brain regions remain unaffected in these diseases are unknown. A better understanding of the phenomenon of selective vulnerability is required for the development of targeted therapeutic approaches that specifically protect affected neurons, thereby altering the disease course and preventing its progression. Prion diseases are a fascinating group of neurodegenerative diseases because they exhibit a wide phenotypic spectrum caused by different sequence perturbations in a single protein. The possible ways that mutations affecting this protein can cause several distinct neurodegenerative diseases are explored in this Review to highlight the complexity underlying selective vulnerability. The premise of this article is that selective vulnerability is determined by the interaction of specific protein conformers and region-specific microenvironments harboring unique combinations of subcellular components such as metals, chaperones and protein translation machinery. Given the abundance of potential contributory factors in the neurodegenerative process, a better understanding of how these factors interact will provide invaluable insight into disease mechanisms to guide therapeutic discovery.
Collapse
Affiliation(s)
- Walker S Jackson
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 25, 53127-Bonn, Germany
| |
Collapse
|
30
|
Abstract
The cellular prion protein (PrPC) has been widely investigated ever since its conformational isoform, the prion (or PrPSc), was identified as the etiological agent of prion disorders. The high homology shared by the PrPC-encoding gene among mammals, its high turnover rate and expression in every tissue strongly suggest that PrPC may possess key physiological functions. Therefore, defining PrPC roles, properties and fate in the physiology of mammalian cells would be fundamental to understand its pathological involvement in prion diseases. Since the incidence of these neurodegenerative disorders is enhanced in aging, understanding PrPC functions in this life phase may be of crucial importance. Indeed, a large body of evidence suggests that PrPC plays a neuroprotective and antioxidant role. Moreover, it has been suggested that PrPC is involved in Alzheimer disease, another neurodegenerative pathology that develops predominantly in the aging population. In prion diseases, PrPC function is likely lost upon protein aggregation occurring in the course of the disease. Additionally, the aging process may alter PrPC biochemical properties, thus influencing its propensity to convert into PrPSc. Both phenomena may contribute to the disease development and progression. In Alzheimer disease, PrPC has a controversial role because its presence seems to mediate β-amyloid toxicity, while its down-regulation correlates with neuronal death. The role of PrPC in aging has been investigated from different perspectives, often leading to contrasting results. The putative protein functions in aging have been studied in relation to memory, behavior and myelin maintenance. In aging mice, PrPC changes in subcellular localization and post-translational modifications have been explored in an attempt to relate them to different protein roles and propensity to convert into PrPSc. Here we provide an overview of the most relevant studies attempting to delineate PrPC functions and fate in aging.
Collapse
Affiliation(s)
- Lisa Gasperini
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| |
Collapse
|
31
|
Kuczius T, Kelsch R. Effects of metal binding on solubility and resistance of physiological prions depend on tissues and glycotypes. J Cell Biochem 2014; 114:2690-8. [PMID: 23794222 DOI: 10.1002/jcb.24616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 06/14/2013] [Indexed: 12/13/2022]
Abstract
Prion diseases entail the conversion of a normal host-encoded prion protein (PrP(C)) into an infectious isoform (PrP(Sc)). Various PrP(C) types differing in banding profiles and detergent solubility are present in different tissues, but only few PrP(Sc) types have been generated although PrP(C) acts as substrate. We hypothesize that distinct PrP(C) subtypes may be converted more efficiently to PrP(Sc) than others. One prerequisite for the analysis is the identification of the PrP(C) subtypes present in the protein complexes. Metal binding to PrP(C) is one of the most prominent features of the protein which induces increased proteolysis resistance and structural changes which might play an important role in the conversion process. Here we analyzed the metal-induced structural PrP(C) transformation of two different Triton X-100 soluble PrP(C) types derived from human platelets and brains by changes in protein solubility. We found that zinc and copper rendered approximately half of total PrP(C) and mainly un- and low-glycosylated PrP(C) to the Triton insoluble fraction. Our results indicate the presence of at least two distinct PrP(C) subtypes by metal interactions. The differentiation of high and low soluble metal bound PrP(C) offers precious information about PrP(C) protein composition and provides approaches for analyzing the transformation efficiency to PrP(Sc).
Collapse
Affiliation(s)
- Thorsten Kuczius
- Institute for Hygiene, Westfälische Wilhelms-Universität and University Hospital Münster, Robert Koch-Strasse 41, 48149, Münster, Germany
| | | |
Collapse
|
32
|
Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol 2014; 116:33-57. [DOI: 10.1016/j.pneurobio.2014.01.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
|
33
|
Brazier MW, Wedd AG, Collins SJ. Antioxidant and Metal Chelation-Based Therapies in the Treatment of Prion Disease. Antioxidants (Basel) 2014; 3:288-308. [PMID: 26784872 PMCID: PMC4665489 DOI: 10.3390/antiox3020288] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/13/2014] [Accepted: 02/28/2014] [Indexed: 12/31/2022] Open
Abstract
Many neurodegenerative disorders involve the accumulation of multimeric assemblies and amyloid derived from misfolded conformers of constitutively expressed proteins. In addition, the brains of patients and experimental animals afflicted with prion disease display evidence of heightened oxidative stress and damage, as well as disturbances to transition metal homeostasis. Utilising a variety of disease model paradigms, many laboratories have demonstrated that copper can act as a cofactor in the antioxidant activity displayed by the prion protein while manganese has been implicated in the generation and stabilisation of disease-associated conformers. This and other evidence has led several groups to test dietary and chelation therapy-based regimens to manipulate brain metal concentrations in attempts to influence the progression of prion disease in experimental mice. Results have been inconsistent. This review examines published data on transition metal dyshomeostasis, free radical generation and subsequent oxidative damage in the pathogenesis of prion disease. It also comments on the efficacy of trialed therapeutics chosen to combat such deleterious changes.
Collapse
Affiliation(s)
- Marcus W Brazier
- Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Anthony G Wedd
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.
| | - Steven J Collins
- Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
34
|
Mot AI, Wedd AG, Sinclair L, Brown DR, Collins SJ, Brazier MW. Metal attenuating therapies in neurodegenerative disease. Expert Rev Neurother 2014; 11:1717-45. [DOI: 10.1586/ern.11.170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Telianidis J, Hung YH, Materia S, Fontaine SL. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front Aging Neurosci 2013; 5:44. [PMID: 23986700 PMCID: PMC3750203 DOI: 10.3389/fnagi.2013.00044] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022] Open
Abstract
Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.
Collapse
Affiliation(s)
- Jonathon Telianidis
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| | - Ya Hui Hung
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience Research, The University of MelbourneParkville, VIC, Australia
| | - Stephanie Materia
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| | - Sharon La Fontaine
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| |
Collapse
|
36
|
Ren K, Gao C, Zhang J, Wang K, Xu Y, Wang SB, Wang H, Tian C, Shi Q, Dong XP. Flotillin-1 mediates PrPc endocytosis in the cultured cells during Cu²⁺ stimulation through molecular interaction. Mol Neurobiol 2013; 48:631-46. [PMID: 23625312 DOI: 10.1007/s12035-013-8452-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/26/2013] [Indexed: 11/29/2022]
Abstract
Flotillins are membrane association proteins consisting of two homologous members, flotillin-1 (Flot-1) and flotillin-2 (Flot-2). They define a clathrin-independent endocytic pathway in mammal cells, which are also distinct from some other endocytosis mechanisms. The implicated cargoes of the flotillin-dependent pathway are mainly some GPI-anchored proteins, such as CD59 and Thy-1, which positionally colocalize with flotillins at the plasma membrane microdomains. To see whether flotillins are involved in the endocytosis of PrP(C), the potential molecular interaction between PrP(C) and flotillins in a neuroblastoma cell line SK-N-SH was analyzed. Co-immunoprecipitation assays did not reveal a detectable complex in the cell lysates of a normal feeding situation. After stimulation of Cu(2+), PrP(C) formed a clear complex with Flot-1, but not with Flot-2. Immunofluorescent assays illustrated that PrP(C) colocalized well with Flot-1, and the complexes of PrP(C)-Flot-1 shifted from the cell membrane to the cytoplasm along with the treatment of Cu(2+). Down-regulating the expression of Flot-1 in SK-N-SH cells by Flot-1-specific RNAi obviously abolished the Cu(2+)-stimulated endocytosis process of PrP(C). Moreover, we also found that in the cell line human embryonic kidney 293 (HEK293) without detectable PrP(C) expression, the distribution of cellular Flot-1 maintained almost unchanged during Cu(2+) treatment. Cu(2+)-induced PrP(C)-Flot-1 molecular interaction and endocytosis in HEK293 cells were obtained when expressing wild-type human PrP (PrP(PG5)), but not in the preparation expressing octarepeat-deleted PrP (PrP(PG0)). Our data here provide direct evidences for the molecular interaction and endocytosis of PrP(C) with Flot-1 in the presence of copper ions, and the octarepeat region of PrP(C) is critical for this process, which strongly indicates that the Flot-1-dependent endocytic pathway seems to mediate the endocytosis process of PrP(C) in the special situation.
Collapse
Affiliation(s)
- Ke Ren
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Uppington KM, Brown DR. Modelling neurodegeneration in prion disease - applications for drug development. Expert Opin Drug Discov 2013; 2:777-88. [PMID: 23488996 DOI: 10.1517/17460441.2.6.777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prion diseases are a group of neurodegenerative diseases that affect mammals, including humans and ruminants such as sheep. They are believed to be caused by the conversion of the prion protein (PrP), a host expressed protein, into a toxic form (PrP(sc)). PrP(sc) accumulates in the brain, resulting in neuronal loss and the typical spongiform appearance of the brain. So far, there are no effective therapies available for prion diseases. This review discusses possible therapies for prion diseases and the models available for advancing research into the disease.
Collapse
Affiliation(s)
- Kay M Uppington
- University of Bath, Department of Biology and Biochemistry, Bath, Claverton Down, BA2 7AY, UK +44 1255 383133 ; +44 1225 386779 ;
| | | |
Collapse
|
38
|
Abstract
Copper is an essential trace metal that is required for the catalysis of several important cellular enzymes. However, since an excess of copper can also harm cells due to its potential to catalyze the generation of toxic reactive oxygen species, transport of copper and the cellular copper content are tightly regulated. This chapter summarizes the current knowledge on the importance of copper for cellular processes and on the mechanisms involved in cellular copper uptake, storage and export. In addition, we will give an overview on disturbances of copper homeostasis that are characterized by copper overload or copper deficiency or have been connected with neurodegenerative disorders.
Collapse
Affiliation(s)
- Ivo Scheiber
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | |
Collapse
|
39
|
Arena G, La Mendola D, Pappalardo G, Sóvágó I, Rizzarelli E. Interactions of Cu2+ with prion family peptide fragments: Considerations on affinity, speciation and coordination. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Scheiber IF, Dringen R. Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 2012; 62:556-65. [PMID: 22982300 DOI: 10.1016/j.neuint.2012.08.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/16/2012] [Accepted: 08/30/2012] [Indexed: 12/18/2022]
Abstract
Copper is an essential element that is required for a variety of important cellular functions. Since not only copper deficiency but also excess of copper can seriously affect cellular functions, the cellular copper metabolism is tightly regulated. In brain, astrocytes appear to play a pivotal role in the copper metabolism. With their strategically important localization between capillary endothelial cells and neuronal structures they are ideally positioned to transport copper from the blood-brain barrier to parenchymal brain cells. Accordingly, astrocytes have the capacity to efficiently take up, store and to export copper. Cultured astrocytes appear to be remarkably resistant against copper-induced toxicity. However, copper exposure can lead to profound alterations in the metabolism of these cells. This article will summarize the current knowledge on the copper metabolism of astrocytes, will describe copper-induced alterations in the glucose and glutathione metabolism of astrocytes and will address the potential role of astrocytes in the copper metabolism of the brain in diseases that have been connected with disturbances in brain copper homeostasis.
Collapse
Affiliation(s)
- Ivo F Scheiber
- Center for Biomolecular Interactions Bremen, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany
| | | |
Collapse
|
41
|
Margalith I, Suter C, Ballmer B, Schwarz P, Tiberi C, Sonati T, Falsig J, Nyström S, Hammarström P, Aslund A, Nilsson KPR, Yam A, Whitters E, Hornemann S, Aguzzi A. Polythiophenes inhibit prion propagation by stabilizing prion protein (PrP) aggregates. J Biol Chem 2012; 287:18872-87. [PMID: 22493452 DOI: 10.1074/jbc.m112.355958] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Luminescent conjugated polymers (LCPs) interact with ordered protein aggregates and sensitively detect amyloids of many different proteins, suggesting that they may possess antiprion properties. Here, we show that a variety of anionic, cationic, and zwitterionic LCPs reduced the infectivity of prion-containing brain homogenates and of prion-infected cerebellar organotypic cultured slices and decreased the amount of scrapie isoform of PrP(C) (PrP(Sc)) oligomers that could be captured in an avidity assay. Paradoxically, treatment enhanced the resistance of PrP(Sc) to proteolysis, triggered the compaction, and enhanced the resistance to proteolysis of recombinant mouse PrP(23-231) fibers. These results suggest that LCPs act as antiprion agents by transitioning PrP aggregates into structures with reduced frangibility. Moreover, ELISA on cerebellar organotypic cultured slices and in vitro conversion assays with mouse PrP(23-231) indicated that poly(thiophene-3-acetic acid) may additionally interfere with the generation of PrP(Sc) by stabilizing the conformation of PrP(C) or of a transition intermediate. Therefore, LCPs represent a novel class of antiprion agents whose mode of action appears to rely on hyperstabilization, rather than destabilization, of PrP(Sc) deposits.
Collapse
Affiliation(s)
- Ilan Margalith
- Institute of Neuropathology, University Hospital of Zurich, CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li B, Qing L, Yan J, Kong Q. Instability of the octarepeat region of the human prion protein gene. PLoS One 2011; 6:e26635. [PMID: 22028931 PMCID: PMC3197570 DOI: 10.1371/journal.pone.0026635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/30/2011] [Indexed: 01/24/2023] Open
Abstract
Prion diseases are a family of unique fatal transmissible neurodegenerative diseases that affect humans and many animals. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common prion disease in humans, accounting for 85–90% of all human prion cases, and exhibits a high degree of diversity in phenotypes. The etiology of sCJD remains to be elucidated. The human prion protein gene has an octapeptide repeat region (octarepeats) that normally contains 5 repeats of 24–27 bp (1 nonapeptide and 4 octapeptide coding sequences). An increase of the octarepeat numbers to six or more or a decrease of the octarepeat number to three is linked to genetic prion diseases with heterogeneous phenotypes in humans. Here we report that the human octarepeat region is prone to either contraction or expansion when subjected to PCR amplification in vitro using Taq or Pwo polymerase and when replicated in wild type E. coli cells. Octarepeat insertion mutants were even less stable, and the mutation rate for the wild type octarepeats was much higher when replicated in DNA mismatch repair-deficient E.coli cells. All observed octarepeat mutants resulting from DNA replication in E.coli were contained in head-to-head plasmid dimers and DNA mfold analysis (http://mfold.rna.albany.edu/?q=mfold/DNA-Folding-Form) indicates that both DNA strands of the octarepeat region would likely form multiple stable hairpin structures, suggesting that the octarepeat sequence may form stable hairpin structures during DNA replication or repair to cause octarepeat instability. These results provide the first evidence supporting a somatic octarepeat mutation-based model for human sCJD etiology: 1) the instability of the octarepeat region leads to accumulation of somatic octarepeat mutations in brain cells during development and aging, 2) this instability is augmented by compromised DNA mismatch repair in aged cells, and 3) eventually some of the octarepeat mutation-containing brain cells start spontaneous de novo prion formation and replication to initiate sCJD.
Collapse
Affiliation(s)
- Baiya Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | | | | | | |
Collapse
|
43
|
Martin DP, Anantharam V, Jin H, Witte T, Houk R, Kanthasamy A, Kanthasamy AG. Infectious prion protein alters manganese transport and neurotoxicity in a cell culture model of prion disease. Neurotoxicology 2011; 32:554-62. [PMID: 21871919 DOI: 10.1016/j.neuro.2011.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/26/2023]
Abstract
Protein misfolding and aggregation are considered key features of many neurodegenerative diseases, but biochemical mechanisms underlying protein misfolding and the propagation of protein aggregates are not well understood. Prion disease is a classical neurodegenerative disorder resulting from the misfolding of endogenously expressed normal cellular prion protein (PrP(C)). Although the exact function of PrP(C) has not been fully elucidated, studies have suggested that it can function as a metal binding protein. Interestingly, increased brain manganese (Mn) levels have been reported in various prion diseases indicating divalent metals also may play a role in the disease process. Recently, we reported that PrP(C) protects against Mn-induced cytotoxicity in a neural cell culture model. To further understand the role of Mn in prion diseases, we examined Mn neurotoxicity in an infectious cell culture model of prion disease. Our results show CAD5 scrapie-infected cells were more resistant to Mn neurotoxicity as compared to uninfected cells (EC(50)=428.8 μM for CAD5 infected cells vs. 211.6 μM for uninfected cells). Additionally, treatment with 300 μM Mn in persistently infected CAD5 cells showed a reduction in mitochondrial impairment, caspase-3 activation, and DNA fragmentation when compared to uninfected cells. Scrapie-infected cells also showed significantly reduced Mn uptake as measured by inductively coupled plasma-mass spectrometry (ICP-MS), and altered expression of metal transporting proteins DMT1 and transferrin. Together, our data indicate that conversion of PrP to the pathogenic isoform enhances its ability to regulate Mn homeostasis, and suggest that understanding the interaction of metals with disease-specific proteins may provide further insight to protein aggregation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dustin P Martin
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicity, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Kawahara M, Koyama H, Nagata T, Sadakane Y. Zinc, copper, and carnosine attenuate neurotoxicity of prion fragment PrP106-126. Metallomics 2011; 3:726-34. [PMID: 21442127 DOI: 10.1039/c1mt00015b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prion diseases are progressive neurodegenerative diseases that are associated with the conversion of normal cellular prion protein (PrP(C)) to abnormal pathogenic prion protein (PrP(SC)) by conformational changes. Prion protein is a metal-binding protein that is suggested to be involved in metal homeostasis. We investigated here the effects of trace elements on the conformational changes and neurotoxicity of synthetic prion peptide (PrP106-126). PrP106-126 exhibited the formation of β-sheet structures and enhanced neurotoxicity during the aging process. The co-existence of Zn(2+) or Cu(2+) during aging inhibited β-sheet formation by PrP106-126 and attenuated its neurotoxicity on primary cultured rat hippocampal neurons. Although PrP106-126 formed amyloid-like fibrils as observed by atomic force microscopy, the height of the fibers was decreased in the presence of Zn(2+) or Cu(2+). Carnosine (β-alanyl histidine) significantly inhibited both the β-sheet formation and the neurotoxicity of PrP106-126. Our results suggested that Zn(2+) and Cu(2+) might be involved in the pathogenesis of prion diseases. It is also possible that carnosine might become a candidate for therapeutic treatments for prion diseases.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Analytical Chemistry, School of Pharmaceutical Sciences Kyushu University of Health and Welfare, 1714-1 Yoshino-cho, Nobeoka-shi, Miyazaki. Japan.
| | | | | | | |
Collapse
|
45
|
Caetano FA, Beraldo FH, Hajj GNM, Guimaraes AL, Jürgensen S, Wasilewska-Sampaio AP, Hirata PHF, Souza I, Machado CF, Wong DYL, De Felice FG, Ferreira ST, Prado VF, Rylett RJ, Martins VR, Prado MAM. Amyloid-beta oligomers increase the localization of prion protein at the cell surface. J Neurochem 2011; 117:538-53. [PMID: 21352228 DOI: 10.1111/j.1471-4159.2011.07225.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In Alzheimer's disease, the amyloid-β peptide (Aβ) interacts with distinct proteins at the cell surface to interfere with synaptic communication. Recent data have implicated the prion protein (PrP(C)) as a putative receptor for Aβ. We show here that Aβ oligomers signal in cells in a PrP(C)-dependent manner, as might be expected if Aβ oligomers use PrP(C) as a receptor. Immunofluorescence, flow cytometry and cell surface protein biotinylation experiments indicated that treatment with Aβ oligomers, but not monomers, increased the localization of PrP(C) at the cell surface in cell lines. These results were reproduced in hippocampal neuronal cultures by labeling cell surface PrP(C). In order to understand possible mechanisms involved with this effect of Aβ oligomers, we used live cell confocal and total internal reflection microscopy in cell lines. Aβ oligomers inhibited the constitutive endocytosis of PrP(C), but we also found that after Aβ oligomer-treatment PrP(C) formed more clusters at the cell surface, suggesting the possibility of multiple effects of Aβ oligomers. Our experiments show for the first time that Aβ oligomers signal in a PrP(C)-dependent way and that they can affect PrP(C) trafficking, increasing its localization at the cell surface.
Collapse
Affiliation(s)
- Fabiana A Caetano
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rivillas-Acevedo L, Grande-Aztatzi R, Lomelí I, García JE, Barrios E, Teloxa S, Vela A, Quintanar L. Spectroscopic and Electronic Structure Studies of Copper(II) Binding to His111 in the Human Prion Protein Fragment 106−115: Evaluating the Role of Protons and Methionine Residues. Inorg Chem 2011; 50:1956-72. [DOI: 10.1021/ic102381j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lina Rivillas-Acevedo
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| | - Rafael Grande-Aztatzi
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| | - Italia Lomelí
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| | - Javier E. García
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| | - Erika Barrios
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| | - Sarai Teloxa
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| | - Alberto Vela
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| | - Liliana Quintanar
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| |
Collapse
|
47
|
Boland MP, Hatty CR, Separovic F, Hill AF, Tew DJ, Barnham KJ, Haigh CL, James M, Masters CL, Collins SJ. Anionic phospholipid interactions of the prion protein N terminus are minimally perturbing and not driven solely by the octapeptide repeat domain. J Biol Chem 2010; 285:32282-92. [PMID: 20679345 DOI: 10.1074/jbc.m110.123398] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although the N terminus of the prion protein (PrP(C)) has been shown to directly associate with lipid membranes, the precise determinants, biophysical basis, and functional implications of such binding, particularly in relation to endogenously occurring fragments, are unresolved. To better understand these issues, we studied a range of synthetic peptides: specifically those equating to the N1 (residues 23-110) and N2 (23-89) fragments derived from constitutive processing of PrP(C) and including those representing arbitrarily defined component domains of the N terminus of mouse prion protein. Utilizing more physiologically relevant large unilamellar vesicles, fluorescence studies at synaptosomal pH (7.4) showed absent binding of all peptides to lipids containing the zwitterionic headgroup phosphatidylcholine and mixtures containing the anionic headgroups phosphatidylglycerol or phosphatidylserine. At pH 5, typical of early endosomes, quartz crystal microbalance with dissipation showed the highest affinity binding occurred with N1 and N2, selective for anionic lipid species. Of particular note, the absence of binding by individual peptides representing component domains underscored the importance of the combination of the octapeptide repeat and the N-terminal polybasic regions for effective membrane interaction. In addition, using quartz crystal microbalance with dissipation and solid-state NMR, we characterized for the first time that both N1 and N2 deeply insert into the lipid bilayer with minimal disruption. Potential functional implications related to cellular stress responses are discussed.
Collapse
Affiliation(s)
- Martin P Boland
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Das D, Luo X, Singh A, Gu Y, Ghosh S, Mukhopadhyay CK, Chen SG, Sy MS, Kong Q, Singh N. Paradoxical role of prion protein aggregates in redox-iron induced toxicity. PLoS One 2010; 5:e11420. [PMID: 20625431 PMCID: PMC2897850 DOI: 10.1371/journal.pone.0011420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 06/07/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Imbalance of iron homeostasis has been reported in sporadic Creutzfeldt-Jakob-disease (sCJD) affected human and scrapie infected animal brains, but the contribution of this phenotype to disease associated neurotoxicity is unclear. METHODOLOGY/PRINCIPAL FINDINGS Using cell models of familial prion disorders, we demonstrate that exposure of cells expressing normal prion protein (PrP(C)) or mutant PrP forms to a source of redox-iron induces aggregation of PrP(C) and specific mutant PrP forms. Initially this response is cytoprotective, but becomes increasingly toxic with time due to accumulation of PrP-ferritin aggregates. Mutant PrP forms that do not aggregate are not cytoprotective, and cells show signs of acute toxicity. Intracellular PrP-ferritin aggregates induce the expression of LC3-II, indicating stimulation of autophagy in these cells. Similar observations are noted in sCJD and scrapie infected hamster brains, lending credence to these results. Furthermore, phagocytosis of PrP-ferritin aggregates by astrocytes is cytoprotective, while culture in astrocyte conditioned medium (CM) shows no measurable effect. Exposure to H(2)O(2), on the other hand, does not cause aggregation of PrP, and cells show acute toxicity that is alleviated by CM. CONCLUSIONS/SIGNIFICANCE These observations suggest that aggregation of PrP in response to redox-iron is cytoprotective. However, subsequent co-aggregation of PrP with ferritin induces intracellular toxicity unless the aggregates are degraded by autophagosomes or phagocytosed by adjacent scavenger cells. H(2)O(2), on the other hand, does not cause aggregation of PrP, and induces toxicity through extra-cellular free radicals. Together with previous observations demonstrating imbalance of iron homeostasis in prion disease affected brains, these observations provide insight into the mechanism of neurotoxicity by redox-iron, and the role of PrP in this process.
Collapse
Affiliation(s)
- Dola Das
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiu Luo
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ajay Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yaping Gu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Soumya Ghosh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Shu G. Chen
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Neena Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
49
|
Singh N, Singh A, Das D, Mohan ML. Redox control of prion and disease pathogenesis. Antioxid Redox Signal 2010; 12:1271-94. [PMID: 19803746 PMCID: PMC2864664 DOI: 10.1089/ars.2009.2628] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 09/22/2009] [Accepted: 10/03/2009] [Indexed: 11/12/2022]
Abstract
Imbalance of brain metal homeostasis and associated oxidative stress by redox-active metals like iron and copper is an important trigger of neurotoxicity in several neurodegenerative conditions, including prion disorders. Whereas some reports attribute this to end-stage disease, others provide evidence for specific mechanisms leading to brain metal dyshomeostasis during disease progression. In prion disorders, imbalance of brain-iron homeostasis is observed before end-stage disease and worsens with disease progression, implicating iron-induced oxidative stress in disease pathogenesis. This is an unexpected observation, because the underlying cause of brain pathology in all prion disorders is PrP-scrapie (PrP(Sc)), a beta-sheet-rich conformation of a normal glycoprotein, the prion protein (PrP(C)). Whether brain-iron dyshomeostasis occurs because of gain of toxic function by PrP(Sc) or loss of normal function of PrP(C) remains unclear. In this review, we summarize available evidence suggesting the involvement of oxidative stress in prion-disease pathogenesis. Subsequently, we review the biology of PrP(C) to highlight its possible role in maintaining brain metal homeostasis during health and the contribution of PrP(Sc) in inducing brain metal imbalance with disease progression. Finally, we discuss possible therapeutic avenues directed at restoring brain metal homeostasis and alleviating metal-induced oxidative stress in prion disorders.
Collapse
Affiliation(s)
- Neena Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
50
|
Kozlowski H, Luczkowski M, Remelli M. Prion proteins and copper ions. Biological and chemical controversies. Dalton Trans 2010; 39:6371-85. [PMID: 20422067 DOI: 10.1039/c001267j] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Prion protein (PrP(c)) involvement in some neurodegenerative diseases is well assessed although its "normal" biological role is not completely understood. It is known that PrP(C) can bind Cu(II) ions with high specificity but the order of magnitude of the corresponding affinity constant(s) is still highly debated. This perspective is an attempt to collect the current knowledge on these topics and to build up a bridge between the biological and the chemical points of view.
Collapse
Affiliation(s)
- Henryk Kozlowski
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | | | | |
Collapse
|