1
|
Awawdeh L, Forrest R, Turni C, Cobbold R, Henning J, Gibson J. Virulence-associated genes in faecal and clinical Escherichia coli isolates cultured from broiler chickens in Australia. Aust Vet J 2024; 102:398-406. [PMID: 38721873 DOI: 10.1111/avj.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 08/03/2024]
Abstract
A healthy chicken's intestinal flora harbours a rich reservoir of Escherichia coli as part of the commensal microbiota. However, some strains, known as avian pathogenic E. coli (APEC), carry specific virulence genes (VGs) that enable them to invade and cause extraintestinal infections such as avian colibacillosis. Although several VG combinations have been identified, the pathogenic mechanisms associated with APEC are ill-defined. The current study screened a subset of 88 E. coli isolates selected from 237 pre-existing isolates obtained from commercial poultry flocks in Australia. The 88 isolates were selected based on their enterobacterial repetitive intergenic consensus (ERIC) and antimicrobial resistance (AMR) profiles and included 29 E. coli isolates cultured from chickens with colibacillosis (referred to as clinical E. coli or CEC) and 59 faecal E. coli (FEC) isolates cultured from clinically healthy chickens. The isolates were screened for the presence of 35 previously reported VGs. Of these, 34 were identified, with iucA not being detected. VGs focG, hlyA and sfa/foc were only detected in FEC isolates. Eight VGs had a prevalence of 90% or above in the CEC isolates. Specifically, astA (100%); feoB (96.6%); iutA, iss, ompT, iroN and hlyF (all 93.1%); and vat (89.7%). The prevalence of these were significantly lower in FEC isolates (astA 79.7%, feoB 77.9%, iutA 52.5%, iss 45.8%, ompT 50.9%, iroN 37.3%, hlyF 50.9% and vat 42.4%). The odds ratios that each of these eight VGs were more likely to be associated with CEC than FEC ranged from 7.8 to 21.9. These eight VGs may be used to better define APEC and diagnostically detect APEC in Australia. Further investigations are needed to identify the roles of these VGs in pathogenicity.
Collapse
Affiliation(s)
- L Awawdeh
- School of Science, Western Sydney University, Richmond, New South Wales, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - R Forrest
- Nursing & Health Science, Te Pūkenga|Eastern Institute of Technology, Napier, New Zealand
| | - C Turni
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Dutton Park, Queensland, Australia
| | - R Cobbold
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - J Henning
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - J Gibson
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
2
|
Zhang H, Tang M, Li D, Xu M, Ao Y, Lin L. Applications and advances in molecular diagnostics: revolutionizing non-tuberculous mycobacteria species and subspecies identification. Front Public Health 2024; 12:1410672. [PMID: 38962772 PMCID: PMC11220129 DOI: 10.3389/fpubh.2024.1410672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Non-tuberculous mycobacteria (NTM) infections pose a significant public health challenge worldwide, affecting individuals across a wide spectrum of immune statuses. Recent epidemiological studies indicate rising incidence rates in both immunocompromised and immunocompetent populations, underscoring the need for enhanced diagnostic and therapeutic approaches. NTM infections often present with symptoms similar to those of tuberculosis, yet with less specificity, increasing the risk of misdiagnosis and potentially adverse outcomes for patients. Consequently, rapid and accurate identification of the pathogen is crucial for precise diagnosis and treatment. Traditional detection methods, notably microbiological culture, are hampered by lengthy incubation periods and a limited capacity to differentiate closely related NTM subtypes, thereby delaying diagnosis and the initiation of targeted therapies. Emerging diagnostic technologies offer new possibilities for the swift detection and accurate identification of NTM infections, playing a critical role in early diagnosis and providing more accurate and comprehensive information. This review delineates the current molecular methodologies for NTM species and subspecies identification. We critically assess the limitations and challenges inherent in these technologies for diagnosing NTM and explore potential future directions for their advancement. It aims to provide valuable insights into advancing the application of molecular diagnostic techniques in NTM infection identification.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Maoting Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Deyuan Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Min Xu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yusen Ao
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Williamson CHD, Vazquez AJ, Nunnally AE, Kyger K, Fofanov VY, Furstenau TN, Hornstra HM, Terriquez J, Keim P, Sahl JW. ColiSeq: a multiplex amplicon assay that provides strain level resolution of Escherichia coli directly from clinical specimens. Microbiol Spectr 2024; 12:e0413923. [PMID: 38651881 PMCID: PMC11237721 DOI: 10.1128/spectrum.04139-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
Escherichia coli is a diverse pathogen, causing a range of disease in humans, from self-limiting diarrhea to urinary tract infections (UTIs). Uropathogenic E. coli (UPEC) is the most frequently observed uropathogen in UTIs, a common disease in high-income countries, incurring billions of dollars yearly in treatment costs. Although E. coli is easily grown and identified in the clinical laboratory, genotyping the pathogen is more complicated, yet critical for reducing the incidence of disease. These goals can be achieved through whole-genome sequencing of E. coli isolates, but this approach is relatively slow and typically requires culturing the pathogen in the laboratory. To genotype E. coli rapidly and inexpensively directly from clinical samples, including but not limited to urine, we developed and validated a multiplex amplicon sequencing assay, called ColiSeq. The assay consists of targets designed for E. coli species confirmation, high resolution genotyping, and mixture deconvolution. To demonstrate its utility, we screened the ColiSeq assay against 230 clinical urine samples collected from a hospital system in Flagstaff, Arizona, USA. A limit of detection analysis demonstrated the ability of ColiSeq to identify E. coli at a concentration of ~2 genomic equivalent (GEs)/mL and to generate high-resolution genotyping at a concentration of 1 × 105 GEs/mL. The results of this study suggest that ColiSeq could be a valuable method to understand the source of UPEC strains and guide infection mitigation efforts. As sequence-based diagnostics become accepted in the clinical laboratory, workflows such as ColiSeq will provide actionable information to improve patient outcomes.IMPORTANCEUrinary tract infections (UTIs), caused primarily by Escherichia coli, create an enormous health care burden in the United States and other high-income countries. The early detection of E. coli from clinical samples, including urine, is important to target therapy and prevent further patient complications. Additionally, understanding the source of E. coli exposure will help with future mitigation efforts. In this study, we developed, tested, and validated an amplicon sequencing assay focused on direct detection of E. coli from urine. The resulting sequence data were demonstrated to provide strain level resolution of the pathogen, not only confirming the presence of E. coli, which can focus treatment efforts, but also providing data needed for source attribution and contact tracing. This assay will generate inexpensive, rapid, and reproducible data that can be deployed by public health agencies to track, diagnose, and potentially mitigate future UTIs caused by E. coli.
Collapse
Affiliation(s)
| | - Adam J. Vazquez
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Amalee E. Nunnally
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kristen Kyger
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Viacheslav Y. Fofanov
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, USA
| | - Tara N. Furstenau
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, USA
| | - Heidie M. Hornstra
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | | | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
4
|
Oliveira-Silva M, Goulart RS, Moraes MA, Nakamura-Silva R, Fujimoto RY, Sousa RC, Kobayashi RKT, Medeiros LP, Nakazato G, Pitondo-Silva A. Multidrug-resistant Escherichia coli strains isolated from swine manure biofertilizer in Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:534. [PMID: 38727864 DOI: 10.1007/s10661-024-12658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/30/2024] [Indexed: 06/21/2024]
Abstract
Escherichia coli is one of the key bacteria responsible for a variety of diseases in humans and livestock-associated infections around the globe. It is the leading cause of mortality in neonatal and weaned piglets in pig husbandry, causing diarrhea and significant harm to the industry. Furthermore, the frequent and intensive use of antimicrobials for the prevention of diseases, particularly gastrointestinal diseases, may promote the selection of multidrug-resistant (MDR) strains. These resistant genotypes can be transmitted through the excrement of animals, including swine. It is common practice to use porcine manure processed by biodigesters as fertilizer. This study aimed to examine the antimicrobial susceptibility, the presence of virulence genes frequently associated with pathotypes of intestinal pathogenic E. coli (InPEC), and antimicrobial resistance genes (ARGs) of 28 E. coli isolates collected from swine manure fertilizers. In addition, the enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) technique was used to investigate the genetic relationship among the strains. Using disk diffusion, the antimicrobial susceptibility profiles of the strains were determined. Using polymerase chain reaction (PCR), 14 distinct virulence genes associated with the most prevalent diarrhea and intestinal pathogenic E. coli (DEC/InPEC) and five ARGs were analyzed. All isolates tested positive for multidrug resistance. There was no detection of any of the 14 virulence genes associated with InPECs, indicating the presence of an avirulent commensal microbiota. Molecular classification by ERIC-PCR revealed that the majority of isolates (27 isolates) coalesced into a larger cluster with a genetic similarity of 47.7%; only one strain did not cluster in this cluster, indicating a high level of genetic diversity among the analyzed isolates. Thus, it is of the utmost importance to conduct epidemiological surveillance of animal breeding facilities in order to determine their microbiota and formulate plans to reduce the use of antimicrobials and improve animal welfare.
Collapse
Affiliation(s)
- Mariana Oliveira-Silva
- Universidade de Ribeirão Preto (UNAERP), Avenida Costábile Romano, N° 2201. Bloco J, Lab. 1, Ribeirânia., Ribeirão Preto, SP, CEP 14096-900, Brazil
| | - Rafael Silva Goulart
- Universidade de Ribeirão Preto (UNAERP), Avenida Costábile Romano, N° 2201. Bloco J, Lab. 1, Ribeirânia., Ribeirão Preto, SP, CEP 14096-900, Brazil
| | - Miguel Augusto Moraes
- Universidade de Ribeirão Preto (UNAERP), Avenida Costábile Romano, N° 2201. Bloco J, Lab. 1, Ribeirânia., Ribeirão Preto, SP, CEP 14096-900, Brazil
| | - Rafael Nakamura-Silva
- Universidade de Ribeirão Preto (UNAERP), Avenida Costábile Romano, N° 2201. Bloco J, Lab. 1, Ribeirânia., Ribeirão Preto, SP, CEP 14096-900, Brazil
| | - Rodrigo Yudi Fujimoto
- Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA, Unidade Tabuleiros Costeios, Av. Beira Mar, 3250 Jardins, Aracaju, Sergipe, CEP 49025040, Brazil
| | - Ricardo Coelho Sousa
- Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA, Unidade Tabuleiros Costeios, Av. Beira Mar, 3250 Jardins, Aracaju, Sergipe, CEP 49025040, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratório de Bacteriologia Básica E Aplicada, Departamento de Microbiologia, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445 Km 380, Londrina, PR, CEP 86057-970, Brazil
| | - Leonardo Pinto Medeiros
- Laboratório de Bacteriologia Básica E Aplicada, Departamento de Microbiologia, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445 Km 380, Londrina, PR, CEP 86057-970, Brazil
| | - Gerson Nakazato
- Laboratório de Bacteriologia Básica E Aplicada, Departamento de Microbiologia, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445 Km 380, Londrina, PR, CEP 86057-970, Brazil
| | - André Pitondo-Silva
- Universidade de Ribeirão Preto (UNAERP), Avenida Costábile Romano, N° 2201. Bloco J, Lab. 1, Ribeirânia., Ribeirão Preto, SP, CEP 14096-900, Brazil.
| |
Collapse
|
5
|
Ashwini S, Bhavani PV, Deepa N, Sowmya N, Raghavendra MP. Development of sequence-characterized amplified region (SCAR) markers for accurate and differential identification of multienzyme-producing and non-enzymatic Aspergillus strains of industrial importance. Arch Microbiol 2022; 205:2. [PMID: 36436138 DOI: 10.1007/s00203-022-03340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/25/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
Aspergillus strains are known to produce multiple enzymes of industrial importance. To screen Aspergillus isolates and select a strain with the ability to produce multiple enzymes and discriminate it from non-enzymatic strains, a rapid and accurate approach is required. With this background, a DNA fingerprinting-based study was conducted to develop a simple but accurate molecular detection method with the potential to discriminate multienzyme-producing Aspergillus strains from non-enzymatic strains, irrespective of species. To achieve this, Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR was employed to derive group-specific Sequence Characterized Amplified Region (SCAR) markers (i.e., markers corresponding to PCR amplicons of known DNA sequence). To this end, both group-specific (multienzyme-producing and non-enzymatic Aspergillus group) SCAR markers were sought by comparing the ERIC fingerprint profiles and used to develop primers for use in specific and differential identification of multienzyme-producing Aspergillus isolates. As an outcome, the two SCAR-PCR formats were developed. One format is for specific identification of multienzyme-producing Aspergillus strains (SCAR-PCR1), and the other for identifying non-enzymatic Aspergillus strains (SCAR-PCR2). Both SCAR-PCRs were able to discriminate between these two contrasting groups. These formats are simple but accurate and rapid compared to the time-consuming and laborious conventional methods. Therefore, they could be efficient as an alternative strategy for the high-throughput screening of industrially important Aspergillus strains.
Collapse
Affiliation(s)
- Shankar Ashwini
- Postgraduate Department of Microbiology, Maharani's Science College for Women, JLB Road, Mysuru, Karnataka, 570005, India.,Department of Microbiology, Bharathiyar University, Coimbatore, Tamil Nadu, 641046, India
| | | | - Nagaraj Deepa
- Department of Studies in Microbiology, University of Mysore, Manasagangothri, Mysuru, 570006, India
| | - Nagaraj Sowmya
- Pentavalent Bio Sciences Private Limited, Electronic City, Phase 1, Bengaluru, Karnataka, 560100, India
| | - Maddur Puttaswamy Raghavendra
- Postgraduate Department of Microbiology, Maharani's Science College for Women, JLB Road, Mysuru, Karnataka, 570005, India.
| |
Collapse
|
6
|
Farkas A, Coman C, Szekeres E, Teban-Man A, Carpa R, Butiuc-Keul A. Molecular Typing Reveals Environmental Dispersion of Antibiotic-Resistant Enterococci under Anthropogenic Pressure. Antibiotics (Basel) 2022; 11:antibiotics11091213. [PMID: 36139992 PMCID: PMC9494986 DOI: 10.3390/antibiotics11091213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
As a consequence of global demographic challenges, both the artificial and the natural environment are increasingly impacted by contaminants of emerging concern, such as bacterial pathogens and their antibiotic resistance genes (ARGs). The aim of this study was to determine the extent to which anthropogenic contamination contributes to the spread of antibiotic resistant enterococci in aquatic compartments and to explore genetic relationships among Enterococcus strains. Antimicrobial susceptibility testing (ampicillin, imipenem, norfloxacin, gentamycin, vancomycin, erythromycin, tetracycline, trimethoprim-sulfamethoxazole) of 574 isolates showed different rates of phenotypic resistance in bacteria from wastewaters (91.9–94.4%), hospital effluents (73.9%), surface waters (8.2–55.3%) and groundwater (35.1–59.1%). The level of multidrug resistance reached 44.6% in enterococci from hospital effluents. In all samples, except for hospital sewage, the predominant species were E. faecium and E. faecalis. In addition, E. avium, E. durans, E. gallinarum, E. aquimarinus and E. casseliflavus were identified. Enterococcus faecium strains carried the greatest variety of ARGs (blaTEM-1, aac(6′)-Ie-aph(2″), aac(6′)-Im, vanA, vanB, ermB, mefA, tetB, tetC, tetL, tetM, sul1), while E. avium displayed the highest ARG frequency. Molecular typing using the ERIC2 primer revealed substantial genetic heterogeneity, but also clusters of enterococci from different aquatic compartments. Enterococcal migration under anthropogenic pressure leads to the dispersion of clinically relevant strains into the natural environment and water resources. In conclusion, ERIC-PCR fingerprinting in conjunction with ARG profiling is a useful tool for the molecular typing of clinical and environmental Enterococcus species. These results underline the need of safeguarding water quality as a strategy to limit the expansion and progression of the impending antibiotic-resistance crisis.
Collapse
Affiliation(s)
- Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Cristian Coman
- National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, 48 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Edina Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, 48 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Adela Teban-Man
- National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, 48 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Bakhshi M, Ebrahimi L, Zare R, Arzanlou M, Kermanian M. Development of a Novel Diagnostic Tool for Cercospora Species Based on BOX-PCR System. Curr Microbiol 2022; 79:290. [PMID: 35972567 DOI: 10.1007/s00284-022-02989-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
The genus Cercospora contains many devastating plant pathogens linked to leaf spot diseases afflicting various plants. Identification of Cercospora species based on morphology or host plant association has proven unreliable due to simple morphology and wide host range in many cases; hence, multi-gene DNA sequence data are essential for accurate species identification. Considering the complexity and cost involved in application of multi-locus DNA phylogenetic approaches for species delineation in Cercospora; rapid and cost-effective methods are urgently needed for species recognition. In this study, we applied rep-PCR (repetitive-sequence based polymerase chain reaction) fingerprinting methods referred to as BOX-PCR to differentiate species of Cercospora. Cluster analysis of the banding patterns of 52 Cercospora strains indicated the ability of BOX-PCR technique using BOXA1R primer to generate species-specific DNA fingerprints from all the tested strains. Since this technique was able to discriminate between all the 20 examined Cercospora species during this study, which corresponded well to the species identified based on multi-gene DNA sequence data, our findings revealed the efficiency of BOX-PCR system as a suitable complementary method for molecular identification of the genus Cercospora at species level.
Collapse
Affiliation(s)
- Mounes Bakhshi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran.
| | - Leila Ebrahimi
- Department of Entomology and Plant Pathology, College of Aburaihan, University of Tehran, Tehran, 33916-53755, Iran
| | - Rasoul Zare
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
| | - Mahdi Arzanlou
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Milad Kermanian
- Department of Entomology and Plant Pathology, College of Aburaihan, University of Tehran, Tehran, 33916-53755, Iran
| |
Collapse
|
8
|
Hossain MM, Masud MM, Hossain MI, Haque MM, Uddin MS, Alam MZ, Islam MR. Rep-PCR Analyses Reveal Genetic Variation of Ralstonia solanacearum Causing Wilt of Solanaceaous Vegetables in Bangladesh. Curr Microbiol 2022; 79:234. [PMID: 35767115 DOI: 10.1007/s00284-022-02932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
Ralstonia solanacearum, a soil-borne and seed-borne plant pathogenic bacterium, causes bacterial wilt to several important crop plants causing substantial economic losses. To provide population information on this pathogen for developing effective control strategies, Rep-PCR was used to analyze the genetic variation of 18 representative isolates of R. solanacearum collected in Bangladesh. Phenotypic analyses revealed that all eighteen isolates belong to biotype 3 with wide diversity in aggressiveness on eggplant, tomato, and chili. Rep-PCR studies utilizing the REP, ERIC, and BOXIR primers showed a wide variation at the genetic level among the R. solanacearum isolates used in this study. Dendrogram constructed using REP, ERIC, and BOXIR primers based on banding patterns implied that R. solanacearum isolates were genetically diversified and distributed in four clusters at 83%, 80%, and 63% similarity index, respectively. The genetic relationship assayed by rep-PCR highlighted a wide range of genetic variation but no relation among geographical origin, aggressiveness, and phylogenetic groups of R. solanacearum isolates. These results conceded that other molecular markers related to virulence gene(s) might reveal the complex relationship among geographical origin, aggressiveness, and phylogenetic groups.
Collapse
Affiliation(s)
- Md Mosharraf Hossain
- Agricultural Research Station (ARS), Bangladesh Agricultural Research Institute (BARI), Satkhira, 9403, Bangladesh
| | - Md Mostafa Masud
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Muhammad Iqbal Hossain
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Mahbubul Haque
- Plant Pathology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, 2202, Bangladesh
| | - Mohammad Sharif Uddin
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Zahangir Alam
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Rashidul Islam
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
9
|
Catara V, Cubero J, Pothier JF, Bosis E, Bragard C, Đermić E, Holeva MC, Jacques MA, Petter F, Pruvost O, Robène I, Studholme DJ, Tavares F, Vicente JG, Koebnik R, Costa J. Trends in Molecular Diagnosis and Diversity Studies for Phytosanitary Regulated Xanthomonas. Microorganisms 2021; 9:862. [PMID: 33923763 PMCID: PMC8073235 DOI: 10.3390/microorganisms9040862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteria in the genus Xanthomonas infect a wide range of crops and wild plants, with most species responsible for plant diseases that have a global economic and environmental impact on the seed, plant, and food trade. Infections by Xanthomonas spp. cause a wide variety of non-specific symptoms, making their identification difficult. The coexistence of phylogenetically close strains, but drastically different in their phenotype, poses an added challenge to diagnosis. Data on future climate change scenarios predict an increase in the severity of epidemics and a geographical expansion of pathogens, increasing pressure on plant health services. In this context, the effectiveness of integrated disease management strategies strongly depends on the availability of rapid, sensitive, and specific diagnostic methods. The accumulation of genomic information in recent years has facilitated the identification of new DNA markers, a cornerstone for the development of more sensitive and specific methods. Nevertheless, the challenges that the taxonomic complexity of this genus represents in terms of diagnosis together with the fact that within the same bacterial species, groups of strains may interact with distinct host species demonstrate that there is still a long way to go. In this review, we describe and discuss the current molecular-based methods for the diagnosis and detection of regulated Xanthomonas, taxonomic and diversity studies in Xanthomonas and genomic approaches for molecular diagnosis.
Collapse
Affiliation(s)
- Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, 95125 Catania, Italy
| | - Jaime Cubero
- National Institute for Agricultural and Food Research and Technology (INIA), 28002 Madrid, Spain;
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland;
| | - Eran Bosis
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel 2161002, Israel;
| | - Claude Bragard
- UCLouvain, Earth & Life Institute, Applied Microbiology, 1348 Louvain-la-Neuve, Belgium;
| | - Edyta Đermić
- Department of Plant Pathology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia;
| | - Maria C. Holeva
- Benaki Phytopathological Institute, Scientific Directorate of Phytopathology, Laboratory of Bacteriology, GR-14561 Kifissia, Greece;
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS-Ouest, Univ Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France;
| | - Francoise Petter
- European and Mediterranean Plant Protection Organization (EPPO/OEPP), 75011 Paris, France;
| | - Olivier Pruvost
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (O.P.); (I.R.)
| | - Isabelle Robène
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (O.P.); (I.R.)
| | | | - Fernando Tavares
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO-Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal; or
- FCUP-Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | | | - Ralf Koebnik
- Plant Health Institute of Montpellier (PHIM), Univ Montpellier, Cirad, INRAe, Institut Agro, IRD, 34398 Montpellier, France;
| | - Joana Costa
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, 300-456 Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| |
Collapse
|
10
|
Garabetian F, Vitte I, Sabourin A, Moussard H, Jouanillou A, Mornet L, Lesne M, Lyautey E. Uneven genotypic diversity of Escherichia coli in fecal sources limits the performance of a library-dependent method of microbial source tracking on the southwestern French Atlantic coast. Can J Microbiol 2020; 66:698-712. [PMID: 32730720 DOI: 10.1139/cjm-2020-0244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To develop a library-dependent method of tracking fecal sources of contamination of beaches on the Atlantic coast of southwestern France, a library of 6368 Escherichia coli isolates was constructed from samples of feces, from 40 known human or animal sources collected in the vicinity of Arcachon Bay in 2010, and in French Basque Country, Landes, and Béarn, between 2017 and 2018. Different schemes of source identification were tested: use of the complete or filtered reference library; characterization of the isolates by genotypic or proteomic profiling based on ERIC-PCR or MALDI-TOF mass spectrometry, respectively; isolate by isolate assignment using either classifiers based on the Pearson similarity or SVM (support vector machine). With the exception of one source identification scheme, which was discarded since it used self-assignment, all tested schemes resulted in low rates of correct classification (<35%) and significant rates of incorrect classification (>15%). The heterogeneous coverage of E. coli genotypic diversity between sources and the uneven distribution of E. coli genotypes in the library likely explain the difficulties encountered in identifying the sources of fecal contamination. Shannon diversity index of sources ranged from 0 for several wildlife species sampled once to 3.03 for sewage treatment plant effluents sampled on various occasions, showing discrepancies between sources. The uneven genotypic composition of the library was attested by the value of the Pielou index (0.54), the high proportion of nondiscriminatory genotypes (>91% of the isolates), and the very low proportion of discriminatory genotypes (<3%). Since efforts made to constitute such a library are not affordable for routine analyses, the results question the relevance of developing such a method for identifying sources of fecal contamination on such a coastline.
Collapse
Affiliation(s)
| | - Isabelle Vitte
- Laboratoires des Pyrénées et des Landes, F-64150 Lagor, France
| | - Antoine Sabourin
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600 Pessac, France.,Laboratoires des Pyrénées et des Landes, F-64150 Lagor, France
| | - Hélène Moussard
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600 Pessac, France
| | | | - Line Mornet
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600 Pessac, France
| | - Mélanie Lesne
- Laboratoires des Pyrénées et des Landes, F-64150 Lagor, France
| | - Emilie Lyautey
- Université Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| |
Collapse
|
11
|
Radmehr B, Zaferanloo B, Tran T, Beale DJ, Palombo EA. Prevalence and Characteristics of Bacillus cereus Group Isolated from Raw and Pasteurised Milk. Curr Microbiol 2020; 77:3065-3075. [PMID: 32696237 DOI: 10.1007/s00284-020-02129-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022]
Abstract
The elimination of spore-forming bacteria is not guaranteed by current pasteurisation processes and is a challenging problem for the dairy industry. Given that Bacillus cereus sensu lato (B. cereus group) is an important foodborne pathogen and spoiler in the dairy industry, this study aimed at evaluating the prevalence and characteristics of B. cereus group in raw and pasteurised milk samples collected in Victoria, Australia. Isolated B. cereus group were tested for antimicrobial susceptibility, biofilm formation and virulence properties. Genetic diversity was assessed using ERIC-PCR. Proteomic profiling using MALDI-TOF MS and chemical profiling using Fourier-transform infrared (FTIR) spectroscopy were also applied for clustering of the isolates. Results showed 42.3% of milk samples contained B. cereus group, with a higher contamination level for pasteurised milk. Virulence studies identified genes nheA, nheB, hblA and nheC in most isolates and cyk gene in 46% of all isolates. Antimicrobial susceptibility testing showed a high prevalence of resistance towards ampicillin, ceftriaxone and penicillin. The biofilm-forming capacity of our isolates showed that most (53.7%) had the ability to form a biofilm. Genetic profiling using ERIC-PCR placed most B. cereus group isolates from pasteurised milk in the same cluster, indicating that they probably originated from a similar source. Raw milk isolates showed greater diversity indicating various sources. FTIR spectroscopy showed high agreement with genetic profiling. In contrast, low agreement between proteomic (MALDI-TOF MS) and genetic typing was observed. The present study showed that the FTIR spectroscopy could be adopted as a rapid tool for the typing of B. cereus group. Overall, the virulence and antimicrobial resistance characteristics, together with the ability of isolates to produce biofilm, indicate the importance of B. cereus group in the Australian dairy industry.
Collapse
Affiliation(s)
- Behrad Radmehr
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Thien Tran
- Bruker Pty Ltd, Preston, VIC, 3072, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD, 4102, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
12
|
Fernández-Álvarez C, Santos Y. Phenotypic and Molecular Characterization of Lacinutrix venerupis Isolated from Atlantic Horse Mackerel Trachurus trachurus. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:320-327. [PMID: 31743945 DOI: 10.1002/aah.10085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to characterize two gram-negative bacterial strains that were isolated from diseased Atlantic Horse Mackerel Trachurus trachurus in 2017. Based on the results obtained from the biochemical and chemotaxonomic characterization, the isolates were identified as Lacinutrix spp. The highest similarity of the 16S rRNA gene sequences was obtained with the strain L. venerupis CECT 8573T (99.1%), while other species showed similarities of 98% (L. jangbogonensis) and 97% (L. algicola and L. mariniflava). Molecular characterization by repetitive element (REP)-PCR and enterobacterial repetitive intergenic consensus (ERIC)-PCR, as well as proteomic characterization by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS), demonstrated heterogeneity between the strains from the Atlantic Horse Mackerel and the type strain, CECT 8573T . The virulence of one of the isolates for Turbot Scophthalmus maximus, European Sea Bass Dicentrarchus labrax, Senegalese Sole Solea senegalensis, and Rainbow Trout Oncorhynchus mykiss was assessed under experimental conditions. No mortalities were recorded after intraperitoneal injections with high doses of bacteria (1 × 109 CFU/mL). Thus, further studies are necessary to elucidate the impact of this bacterial species as a fish pathogen.
Collapse
Affiliation(s)
- Clara Fernández-Álvarez
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ysabel Santos
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
13
|
Boudjemaa H, Allem R, Fonkou MDM, Zouagui S, Khennouchi NCEH, Kerkoud M. Molecular drivers of emerging multidrug resistance in Proteus mirabilis clinical isolates from Algeria. J Glob Antimicrob Resist 2019; 18:249-256. [PMID: 30797091 DOI: 10.1016/j.jgar.2019.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/04/2019] [Accepted: 01/26/2019] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES The aim of this study was to characterise the molecular drivers of multidrug resistance in Proteus mirabilis isolated from Algerian community and hospital patients. METHODS A total of 166 P. mirabilis isolates were collected from two hospitals and eight private laboratories from four cities (Khemis Miliana, Aïn Defla, Oran and Chlef) located in northwestern Algeria. All isolates were identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Antimicrobial susceptibility testing was performed by the disk diffusion and Etest methods. Genes encoding AmpC β-lactamases, extended-spectrum β-lactamases (ESBLs), quinolone resistance and aminoglycoside-modifying enzymes (AMEs) as well as plasmid replicon typing were characterised by PCR. Clonal relationships were also determined by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) typing and were compared with MALDI-TOF/MS proteomic typing. RESULTS Of the 166 P. mirabilis isolates, 14 (8.4%) exhibited resistance to important antibiotics, including amoxicillin, amoxicillin/clavulanic acid, cefotaxime, gentamicin and ciprofloxacin, of which 4/14 (28.6%) had an ESBL genotype (blaCTX-M-2) and 10 (71.4%) had an AmpC/ESBL genotype (blaCMY-2/blaTEM-1). AME genes were detected in all isolates, including ant(2'')-I, aac(3)-I, aac(6')-Ib-cr and aac(3)-IV. The qnrA gene was identified in 13 isolates (7.8%). ERIC-PCR showed one predominant clone, with eight blaCMY-2-producing isolates from UHC Oran belonging to profile A clustering together in the MALDI-TOF/MS dendrogram. CONCLUSION Here we report the first description of AME and plasmid-mediated quinolone resistance genes among ESBL- and/or AmpC β-lactamase-producing P. mirabilis isolates from community- and hospital-acquired infections in northwestern Algeria.
Collapse
Affiliation(s)
- Hadjer Boudjemaa
- Laboratory of Natural Bioresources, Department of Biology, Faculty of Natural Sciences and Life, University of Hassiba Benbouali Chlef, Box 151, 02000 Chlef, AlgeriaAlgeria.
| | - Rachida Allem
- Laboratory of Natural Bioresources, Department of Biology, Faculty of Natural Sciences and Life, University of Hassiba Benbouali Chlef, Box 151, 02000 Chlef, AlgeriaAlgeria
| | - Maxime Descartes Mbogning Fonkou
- MEPHI, UMR, IRD, Aix-Marseille Université, Marseille, France; INSERM U1095, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Souad Zouagui
- Laboratoire Central de Microbiologie du CHU d'Oran, 76 boulevard docteur Benzerdjeb (Ex Plateau), Oran, Algeria
| | - Nour Chems El Houda Khennouchi
- Laboratoire de Microbiologie et Biochimie Appliquée, Département de Biochimie, Faculté des Sciences, Université Badji Mokhtar, Annaba, Algeria
| | - Mohamed Kerkoud
- Laboratory of Natural Bioresources, Department of Biology, Faculty of Natural Sciences and Life, University of Hassiba Benbouali Chlef, Box 151, 02000 Chlef, AlgeriaAlgeria; Laboratoire de diag-gene, 8 rue lenotre, Angers, France
| |
Collapse
|
14
|
Karimi K, Arzanlou M, Pertot I. Weeds as Potential Inoculum Reservoir for Colletotrichum nymphaeae Causing Strawberry Anthracnose in Iran and Rep-PCR Fingerprinting as Useful Marker to Differentiate C. acutatum Complex on Strawberry. Front Microbiol 2019; 10:129. [PMID: 30809201 PMCID: PMC6379352 DOI: 10.3389/fmicb.2019.00129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/21/2019] [Indexed: 11/22/2022] Open
Abstract
Strawberry anthracnose caused by Colletotrichum spp. is considered one of the most serious and destructive disease of strawberry worldwide. Weeds, as possible hosts of the pathogen, could have a role as potential inoculum reservoir. To prove this hypothesis, symptomless weeds were collected in strawberry fields showing anthracnose symptoms in Iran. Ten isolates with Colletotrichum-like colonies were recovered from symptomless Amaranthus viridis L., Convolvulus arvensis L., Fumaria officinalis L., Lactuca serriola L., and Sonchus oleraceus L. plants. The isolates were identified as C. nymphaeae, based on a combination of morphological and sequence data of TUB and GADPH genes. This identification was further validated using Rep-PCR fingerprinting analysis, which produces species-specific DNA fingerprints and unveils inter and intra variation of the species examined in this study. Moreover, rep-PCR marker was used to reveal accurate taxonomic position of Colletorichum spp. causing strawberry anthracnose belonging to the C. acutatum complex, including C. acutatum sensu stricto, C. fiorinae, C. godetiae, C. nymphaeae, C. salicis, and C. simmondsii. The C. nymphaeae isolates originating from symptomless weeds confirmed their pathogenicity on detached strawberry, proving that weeds in strawberry field may have a role as reservoir of inoculum. However, further studies are necessary to quantify their actual contribution to anthracnose epidemics in strawberry fields.
Collapse
Affiliation(s)
- Kaivan Karimi
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Mahdi Arzanlou
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ilaria Pertot
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Italy
| |
Collapse
|
15
|
Azua-Bustos A, Fairén AG, González-Silva C, Ascaso C, Carrizo D, Fernández-Martínez MÁ, Fernández-Sampedro M, García-Descalzo L, García-Villadangos M, Martin-Redondo MP, Sánchez-García L, Wierzchos J, Parro V. Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert. Sci Rep 2018; 8:16706. [PMID: 30420604 PMCID: PMC6232106 DOI: 10.1038/s41598-018-35051-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 11/09/2022] Open
Abstract
The hyperarid core of the Atacama Desert, the driest and oldest desert on Earth, has experienced a number of highly unusual rain events over the past three years, resulting in the formation of previously unrecorded hypersaline lagoons, which have lasted several months. We have systematically analyzed the evolution of the lagoons to provide quantitative field constraints of large-scale impacts of the rains on the local microbial communities. Here we show that the sudden and massive input of water in regions that have remained hyperarid for millions of years is harmful for most of the surface soil microbial species, which are exquisitely adapted to survive with meager amounts of liquid water, and quickly perish from osmotic shock when water becomes suddenly abundant. We found that only a handful of bacteria, remarkably a newly identified species of Halomonas, remain metabolically active and are still able to reproduce in the lagoons, while no archaea or eukaryotes were identified. Our results show that the already low microbial biodiversity of extreme arid regions greatly diminishes when water is supplied quickly and in great volumes. We conclude placing our findings in the context of the astrobiological exploration of Mars, a hyperarid planet that experienced catastrophic floodings in ancient times.
Collapse
Affiliation(s)
- A Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain. .,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| | - A G Fairén
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain. .,Department of Astronomy, Cornell University, Ithaca, 14853, NY, USA.
| | | | - C Ascaso
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - D Carrizo
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain
| | | | | | | | | | | | | | - J Wierzchos
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - V Parro
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain
| |
Collapse
|
16
|
Riley LW. Laboratory Methods in Molecular Epidemiology: Bacterial Infections. Microbiol Spectr 2018; 6:10.1128/microbiolspec.ame-0004-2018. [PMID: 30387415 PMCID: PMC11633637 DOI: 10.1128/microbiolspec.ame-0004-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Indexed: 01/04/2023] Open
Abstract
In infectious disease epidemiology, the laboratory plays a critical role in diagnosis, outbreak investigations, surveillance, and characterizing biologic properties of microbes associated with their transmissibility, resistance to anti-infectives, and pathogenesis. The laboratory can inform and refine epidemiologic study design and data analyses. In public health, the laboratory functions to assess effect of an intervention. In addition to research laboratories, the new-generation molecular microbiology technology has been adapted into clinical and public health laboratories to simplify, accelerate, and make precise detection and identification of infectious disease pathogens. This technology is also being applied to subtype microbes to conduct investigations that advance our knowledge of epidemiology of old and emerging infectious diseases. Because of the recent explosive progress in molecular microbiology technology and the vast amount of data generated from the applications of this technology, this Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology of Infectious Diseases describes these methods separately for bacteria, viruses, and parasites. This review discusses past and current advancements made in laboratory methods used to conduct epidemiologic studies of bacterial infections. It describes methods used to subtype bacterial organisms based on molecular microbiology techniques, following a discussion on what is meant by bacterial "species" and "clones." Discussions on past and new genotyping tests applied to epidemiologic investigations focus on tests that compare electrophoretic band patterns, hybridization matrices, and nucleic acid sequences. Applications of these genotyping tests to address epidemiologic issues are detailed elsewhere in other reviews of this series. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720
| |
Collapse
|
17
|
Wdowiak-Wróbel S, Marek-Kozaczuk M, Kalita M, Karaś M, Wójcik M, Małek W. Diversity and plant growth promoting properties of rhizobia isolated from root nodules of Ononis arvensis. Antonie van Leeuwenhoek 2017; 110:1087-1103. [PMID: 28500544 PMCID: PMC5511607 DOI: 10.1007/s10482-017-0883-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/28/2017] [Indexed: 12/05/2022]
Abstract
This is the first report describing isolates from root nodules of Ononis arvensis (field restharrow). The aim of this investigation was to describe the diversity, phylogeny, and plant growth promoting features of microsymbionts of O. arvensis, i.e., a legume plant growing in different places of the southern part of Poland. Twenty-nine bacterial isolates were characterized in terms of their phenotypic properties, genome fingerprinting, and comparative analysis of their 16S rRNA, nodC and acdS gene sequences. Based on the nodC and 16S rRNA gene phylogenies, the O. arvensis symbionts were grouped close to bacteria of the genera Rhizobium and Mesorhizobium, which formed monophyletic clusters. The acdS gene sequences of all the isolates tested exhibited the highest similarities to the corresponding gene sequences of genus Mesorhizobium strains. The presence of the acdS genes in the genomes of rhizobia specific for O. arvensis implies that these bacteria may promote the growth and development of their host plant in stress conditions. The isolated bacteria showed a high genomic diversity and, in the BOX-PCR reaction, all of them (except three) exhibited DNA fingerprints specific only for them. Our studies showed that restharrow isolates formed effective symbiotic interactions with their native host (O. arvensis) and Ononis spinosa but not with Trifolium repens and Medicago sativa belonging to the same tribe Trifolieae as Ononis species and not with Lotus corniculatus, representing the tribe Loteae.
Collapse
Affiliation(s)
- Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Maria Curie -Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland.
| | - Monika Marek-Kozaczuk
- Department of Genetics and Microbiology, Maria Curie -Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Maria Curie -Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| | - Magdalena Karaś
- Department of Genetics and Microbiology, Maria Curie -Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| | - Magdalena Wójcik
- Department of Genetics and Microbiology, Maria Curie -Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| | - Wanda Małek
- Department of Genetics and Microbiology, Maria Curie -Skłodowska University, Akademicka 19 St., 20-033, Lublin, Poland
| |
Collapse
|
18
|
Lakhani HN, Vakharia DN, Hassan MM, Eissa RA. Fingerprinting and molecular comparison among two parental strains of Trichoderma spp. and their corresponding fusants produced by protoplast fusion. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1230478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Hardik N. Lakhani
- Biochemistry Department, College of Agriculture, Junagadh Agricultural University , Junagadh, India
| | - Dinesh N. Vakharia
- Biochemistry Department, College of Agriculture, Junagadh Agricultural University , Junagadh, India
| | - Mohamed M. Hassan
- Biotechnology and Genetic Engineering Unit, Scientific Research Center, Taif University , Taif, KSA
- Genetics Department, Faculty of Agriculture, Minufiya University , Minufya, Egypt
| | - Ragaa A. Eissa
- Genetics Department, Faculty of Agriculture, Minufiya University , Minufya, Egypt
| |
Collapse
|
19
|
Izadiyan M, Taghavi SM, Izadiyan P. Application of counter propagation artificial neural network for classification and genetic diversity assessment of somePseudomonasspecies. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2015. [DOI: 10.1142/s021963361550042x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Members of the genus Pseudomonas bacterium are of great interest because of their importance in plant disease. In this study, DNA fingerprints of 60 strains of Pseudomonas bacteria including three species of Pseudomonas syringae (Pseudomonas syringae pv. syringae (Pss) and Pseudomonas syringae pv. Lachrymans (Psl)), Pseudomonas savastanoi (Psa) and Pseudomonas tolaasii (Pt) were used for developing a robust predictive classification model. The DNA fingerprints were obtained by repetitive polymerase chain reaction (Rep-PCR) using enterobacterial repetitive intergenic consensus (ERIC), repetitive extragenic palindromes (REP), and BOXAIR primers. The classification results of counter propagation artificial neural network (CP-ANN) modeling indicated that a combination of Rep-PCR fingerprinting and chemometrics analysis can be used as an effective and powerful methodology to differentiate species of Pseudomonas and pathovars of P. syringae strains based on a predictive model.
Collapse
Affiliation(s)
- Mahsa Izadiyan
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| | - S. Mohsen Taghavi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Parisa Izadiyan
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Metabolic pathway involved in 2-methyl-6-ethylaniline degradation by Sphingobium sp. strain MEA3-1 and cloning of the novel flavin-dependent monooxygenase system meaBA. Appl Environ Microbiol 2015; 81:8254-64. [PMID: 26386060 DOI: 10.1128/aem.01883-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022] Open
Abstract
2-Methyl-6-ethylaniline (MEA) is the main microbial degradation intermediate of the chloroacetanilide herbicides acetochlor and metolachlor. Sphingobium sp. strain MEA3-1 can utilize MEA and various alkyl-substituted aniline and phenol compounds as sole carbon and energy sources for growth. We isolated the mutant strain MEA3-1Mut, which converts MEA only to 2-methyl-6-ethyl-hydroquinone (MEHQ) and 2-methyl-6-ethyl-benzoquinone (MEBQ). MEA may be oxidized by the P450 monooxygenase system to 4-hydroxy-2-methyl-6-ethylaniline (4-OH-MEA), which can be hydrolytically spontaneously deaminated to MEBQ or MEHQ. The MEA microbial metabolic pathway was reconstituted based on the substrate spectra and identification of the intermediate metabolites in both the wild-type and mutant strains. Plasmidome sequencing indicated that both strains harbored 7 plasmids with sizes ranging from 6,108 bp to 287,745 bp. Among the 7 plasmids, 6 were identical, and pMEA02' in strain MEA3-1Mut lost a 37,000-bp fragment compared to pMEA02 in strain MEA3-1. Two-dimensional electrophoresis (2-DE) and protein mass fingerprinting (PMF) showed that MEA3-1Mut lost the two-component flavin-dependent monooxygenase (TC-FDM) MeaBA, which was encoded by a gene in the lost fragment of pMEA02. MeaA shared 22% to 25% amino acid sequence identity with oxygenase components of some TC-FDMs, whereas MeaB showed no sequence identity with the reductase components of those TC-FDMs. Complementation with meaBA in MEA3-1Mut and heterologous expression in Pseudomonas putida strain KT2440 resulted in the production of an active MEHQ monooxygenase.
Collapse
|
21
|
Chow L, Waldron L, Gillings MR. Potential impacts of aquatic pollutants: sub-clinical antibiotic concentrations induce genome changes and promote antibiotic resistance. Front Microbiol 2015; 6:803. [PMID: 26300869 PMCID: PMC4525061 DOI: 10.3389/fmicb.2015.00803] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
Abstract
Antibiotics are disseminated into aquatic environments via human waste streams and agricultural run-off. Here they can persist at low, but biologically relevant, concentrations. Antibiotic pollution establishes a selection gradient for resistance and may also raise the frequency of events that generate resistance: point mutations; recombination; and lateral gene transfer. This study examined the response of bacteria to sub-inhibitory levels of antibiotics. Pseudomonas aeruginosa and Pseudomonas protegens were exposed kanamycin, tetracycline or ciprofloxacin at 1/10 the minimal inhibitory concentration (MIC) in a serial streaking experiment over 40 passages. Significant changes in rep-PCR fingerprints were noted in both species when exposed to sub-inhibitory antibiotic concentrations. These changes were observed in as few as five passages, despite the fact that the protocols used sample less than 0.3% of the genome, in turn suggesting much more widespread alterations to sequence and genome architecture. Experimental lines also displayed variant colony morphologies. The final MICs were significantly higher in some experimental lineages of P. protegens, suggesting that 1/10 the MIC induces de-novo mutation events that generate resistance phenotypes. The implications of these results are clear: exposure of the environmental microbiome to antibiotic pollution will induce similar changes, including generating newly resistant species that may be of significant concern for human health.
Collapse
Affiliation(s)
- Louise Chow
- Emma Veritas Laboratory, Department of Biological Sciences, Macquarie University Sydney, NSW, Australia
| | - Liette Waldron
- Emma Veritas Laboratory, Department of Biological Sciences, Macquarie University Sydney, NSW, Australia
| | - Michael R Gillings
- Emma Veritas Laboratory, Department of Biological Sciences, Macquarie University Sydney, NSW, Australia
| |
Collapse
|
22
|
Chen LZ, Li YL, Yu YL. Soil bacterial and fungal community successions under the stress of chlorpyrifos application and molecular characterization of chlorpyrifos-degrading isolates using ERIC-PCR. J Zhejiang Univ Sci B 2015; 15:322-32. [PMID: 24711353 DOI: 10.1631/jzus.b1300175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chlorpyrifos is a widely used insecticide in recent years, and it will produce adverse effects on soil when applied on crops or mixed with soil. In this study, nested polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were combined to explore the bacterial and fungal community successions in soil treated with 5 and 20 mg/kg of chlorpyrifos. Furthermore, isolates capable of efficiently decomposing chlorpyrifos were molecular-typed using enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). Under the experimental conditions, degradation of chlorpyrifos in soil was interpreted with the first-order kinetics, and the half-lives of chlorpyrifos at 5 and 20 mg/kg doses were calculated to be 8.25 and 8.29 d, respectively. DGGE fingerprint and principal component analysis (PCA) indicated that the composition of the fungal community was obviously changed with the chlorpyrifos treatment, and that samples of chlorpyrifos treatment were significantly separated from those of the control from the beginning to the end. While for the bacterial community, chlorpyrifos-treated soil samples were apparently different in the first 30 d and recovered to a similar level of the control up until 60 d, and the distance in the PCA between the chlorpyrifos-treated samples and the control was getting shorter through time and was finally clustered into one group. Together, our results demonstrated that the application of chlorpyrifos could affect the fungal community structure in a quick and lasting way, while only affecting the bacterial community in a temporary way. Finally, nine typical ERIC types of chlorpyrifos-degrading isolates were screened.
Collapse
Affiliation(s)
- Lie-zhong Chen
- Department of Plant Protection, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310029, China; State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | |
Collapse
|
23
|
Okada T, Fujita K, Suzuki H, Tsuzukibashi O, Umezawa K, Nagahama F, Ikemi T, Takada K. Distribution and sequencing of enterobacterial repetitive intergenic consensus sequence elements in Streptococcus mutans serotype c. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Multi-locus Sequence Analysis (MLSA) of Edwardsiella tarda isolates from fish. Vet Microbiol 2012; 158:367-75. [DOI: 10.1016/j.vetmic.2012.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/28/2012] [Accepted: 03/04/2012] [Indexed: 11/20/2022]
|
25
|
Patterson MF, McKay AM, Connolly M, Linton M. The effect of high hydrostatic pressure on the microbiological quality and safety of carrot juice during refrigerated storage. Food Microbiol 2012; 30:205-12. [DOI: 10.1016/j.fm.2011.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/19/2011] [Accepted: 09/21/2011] [Indexed: 11/17/2022]
|
26
|
Morsink MC, Dekter HE, Dirks-Mulder A, van Leeuwen WB. Molecular diagnostic analysis of outbreak scenarios. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 40:112-120. [PMID: 22419592 DOI: 10.1002/bmb.20562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/10/2011] [Accepted: 09/28/2011] [Indexed: 05/31/2023]
Abstract
In the current laboratory assignment, technical aspects of the polymerase chain reaction (PCR) are integrated in the context of six different bacterial outbreak scenarios. The "Enterobacterial Repetitive Intergenic Consensus Sequence" (ERIC) PCR was used to analyze different outbreak scenarios. First, groups of 2-4 students determined optimal ERIC-PCR conditions to validate the protocol and subsequently applied ERIC-PCR to identify genetic relatedness among bacterial strains. Based on these genetic fingerprints, students selected the outbreak cases from the patient samples and assessed the risk factors for the outbreak scenario. Finally, students presented their findings during a classroom presentation. The results indicated that the assignment successfully facilitated student learning on the technical aspects of (ERIC) PCR and clearly demonstrated the practical application of PCR in a clinical diagnostic setting. Additionally, the assignment was highly appreciated by the students.
Collapse
Affiliation(s)
- M C Morsink
- Department of Innovative Molecular Diagnostics, University of Applied Sciences Leiden (Hogeschool Leiden), Leiden, the Netherlands.
| | | | | | | |
Collapse
|
27
|
Nunvar J, Drevinek P, Licha I. DNA profiling of Stenotrophomonas maltophilia by PCR targeted to its species-specific repetitive palindromic sequences. Lett Appl Microbiol 2011; 54:59-66. [DOI: 10.1111/j.1472-765x.2011.03172.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Wang YM, Wang QY, Xiao JF, Liu Q, Wu HZ, Zhang YX. Genetic relationships of Edwardsiella strains isolated in China aquaculture revealed by rep-PCR genomic fingerprinting and investigation of Edwardsiella virulence genes. J Appl Microbiol 2011; 111:1337-48. [DOI: 10.1111/j.1365-2672.2011.05166.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
An increase in non-toxigenic Corynebacterium diphtheriae infections in Poland — molecular epidemiology and antimicrobial susceptibility of strains isolated from past outbreaks and those currently circulating in Poland. Int J Infect Dis 2010; 14:e907-12. [DOI: 10.1016/j.ijid.2010.05.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 04/21/2010] [Accepted: 05/03/2010] [Indexed: 11/17/2022] Open
|
30
|
Mao Y, Zhang X, Xia X, Zhong H, Zhao L. Versatile aromatic compound-degrading capacity and microdiversity of Thauera strains isolated from a coking wastewater treatment bioreactor. J Ind Microbiol Biotechnol 2010; 37:927-34. [PMID: 20490604 DOI: 10.1007/s10295-010-0740-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
Bacteria of the Thauera genus have been described as important aromatic compound degraders and have attracted increased attention. In this study, three Thauera strains (Q4, Q20-C, and 3-35) were isolated from a coking wastewater treatment plant (WWTP) with a high abundance of Thauera. The 16S rRNA, nitrite reductase, and phenol hydroxylase (LmPH) genes and pollutant-degrading capacity of these strains were characterized and compared. Their 16S rRNA gene sequences were identical, but the genomic structures differed, as demonstrated by distinct enterobacterial repetitive intergenic consensus sequence PCR profiles with a similarity of less than 0.65. The analysis of degradation of coking wastewater by these strains showed that most of the main organic pollutants--phenol, methylphenol, and indole, but not quinoline--were degraded under aerobic conditions. These strains contained different LmPHs genes and showed different phenol degradation rates (Q4 > 3-35 > Q20-C). The presence of a microdiversity of Thauera spp. implies the existence of various finely differentiated niches in the industrial WWTP. The capacity of the Thauera strains to degrade a wide spectrum of aromatic compounds suggests their potential in bioremediation applications targeting aromatic pollutant-containing wastewater.
Collapse
Affiliation(s)
- Yuejian Mao
- Key Laboratory of Microbial Metabolism, Ministry of Education, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
31
|
Effect of high pressure on the microbiological quality of cooked chicken during storage at normal and abuse refrigeration temperatures. Food Microbiol 2010; 27:266-73. [DOI: 10.1016/j.fm.2009.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/08/2009] [Accepted: 10/14/2009] [Indexed: 11/19/2022]
|
32
|
Labella A, Manchado M, Alonso M, Castro D, Romalde J, Borrego J. Molecular intraspecific characterization ofPhotobacterium damselaessp.damselaestrains affecting cultured marine fish. J Appl Microbiol 2009; 108:2122-32. [DOI: 10.1111/j.1365-2672.2009.04614.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Peng Y, Wang Z, Lu Y, Wu CF, Yang JY, Li XB. Intestinal microflora molecular markers of spleen-deficient rats and evaluation of traditional Chinese drugs. World J Gastroenterol 2009; 15:2220-7. [PMID: 19437561 PMCID: PMC2682236 DOI: 10.3748/wjg.15.2220] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To find a rapid and efficient analysis method of gastrointestinal microflora in Pi-deficient (spleen-deficient) rats and to evaluate traditional Chinese drugs.
METHODS: Enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) based assay was performed to examine changes of intestinal microflora in two Pi-deficienct animal models and to evaluate the efficacy of four traditional Chinese drugs as well as a probiotic recipe and another therapy in Pi-deficient rats.
RESULTS: A molecular marker was identified for Pi-deficiency in rats. The pharmacodynamic evaluation system, including identified molecular markers (net integral area and abundance of DNA bands), Shannon’s index for diversity of intestinal microflora, and Sorenson’s pairwise similarity coefficient, was established. The four major clinical recipes of traditional Chinese drugs for Pi-deficiency in rats, especially at their medium dose (equivalence to the clinical dose), produced more pronounced recovery activities in Pi-deficient rats, while higher doses of these recipes did not show a better therapeutic effect but some toxic effects such as perturbation deterioration of intestinal microflora.
CONCLUSION: Both fingerprint analysis and identified marker can show Pi-deficiency in rats and its difference after treatment. The identified molecular marker may be applied in screening for the active compounds both in relative traditional Chinese drugs and in pharmacodynamic study of Pi-deficiency in rats.
Collapse
|
34
|
Characterization of Penicillium Species by Ribosomal DNA Sequencing and BOX, ERIC and REP-PCR Analysis. Mycopathologia 2009; 168:11-22. [DOI: 10.1007/s11046-009-9191-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 02/17/2009] [Indexed: 11/25/2022]
|
35
|
Phenotypic and genotypic diversity among strains of Aureobasidium pullulans in comparison with related species. Antonie van Leeuwenhoek 2009; 95:165-78. [DOI: 10.1007/s10482-008-9300-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Accepted: 12/15/2008] [Indexed: 11/25/2022]
|
36
|
Phenotypic and genetic characterization of Edwardsiella tarda isolated from pond sediments. Comp Immunol Microbiol Infect Dis 2009; 32:1-8. [DOI: 10.1016/j.cimid.2007.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2007] [Indexed: 11/20/2022]
|
37
|
Manzanilla-López RH, Clark IM, Atkins SD, Hirsch PR, Kerry BR. Rapid and reliable DNA extraction and PCR fingerprinting methods to discriminate multiple biotypes of the nematophagous fungus Pochonia chlamydosporia isolated from plant rhizospheres. Lett Appl Microbiol 2008; 48:71-6. [PMID: 19018961 DOI: 10.1111/j.1472-765x.2008.02489.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To develop a simple, rapid, reliable protocol producing consistent polymerase chain reaction (PCR) fingerprints of Pochonia chlamydosporia var. chlamydosporia biotypes for analysing different fungal isolates during co-infection of plants and nematodes. METHODS AND RESULTS DNA extracted from different P. chlamydosporia biotypes was fingerprinted using enterobacterial repetitive intragenic consensus (ERIC)-PCR. Four extraction methods (rapid alkaline lysis; microLYSIS-PLUS; DNeasy; FTA cards) gave consistent results within each protocol but these varied between protocols. Reproducible fingerprints were obtained only if DNA was extracted from fresh fungal cultures that were free of agar. Some DNA degradation occurred during storage, except with the FTA cards, used with this fungus for the first time, which provide a method for long-term archiving. Rapid alkaline lysis and ERIC-PCR identified fungal isolates from root and nematode egg surfaces when plants were treated with different combinations of fungal biotypes; the dominant biotype isolated from the rhizosphere was not always the most abundant in eggs. CONCLUSIONS ERIC-PCR fingerprinting can reliably detect and identify different P. chlamydosporia biotypes. It is important to use fresh mycelium and the same DNA isolation method throughout each study. SIGNIFICANCE AND IMPACT OF THE STUDY This evaluation of methods to assess genetic diversity and identify specific P. chlamydosporia biotypes is relevant to other mycelial fungi.
Collapse
Affiliation(s)
- R H Manzanilla-López
- Nematode Interactions Unit, Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden, Hertfordshire, UK.
| | | | | | | | | |
Collapse
|
38
|
Dennis PG, Miller AJ, Clark IM, Taylor RG, Valsami-Jones E, Hirsch PR. A novel method for sampling bacteria on plant root and soil surfaces at the microhabitat scale. J Microbiol Methods 2008; 75:12-8. [DOI: 10.1016/j.mimet.2008.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 04/03/2008] [Accepted: 04/21/2008] [Indexed: 11/25/2022]
|
39
|
Ye Y, Wu Q, Zhou Y, Dong X, Zhang J. Analysis of major band of Enterobacter sakazakii by ERIC-PCR and development of a species-specific PCR for detection of Ent. sakazakii in dry food samples. J Microbiol Methods 2008; 75:392-7. [PMID: 18718850 DOI: 10.1016/j.mimet.2008.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/11/2008] [Accepted: 07/17/2008] [Indexed: 11/16/2022]
Abstract
ERIC (Enterobacterial Repetitive Intergenic Consensus)-PCR was employed to generate stable and reproductive ERIC-PCR fingerprints of Ent. sakazakii ATCC51329. Moreover, this study also cloned and sequenced a major band of Ent. sakazakii (ATCC51329) ERIC-PCR fingerprints. The major band was amplified with primer ERIC2 and sequences extending primer ERIC 2 showed poor similarity with ERIC elements. A comparison of the nucleotide acid with other sequences available in the GenBank revealed 90% of identity with Ent. sakazakii ATCC BAA-894, and 73%-74% of identity with oligopeptiase gene or protease gene of some species from the Enterobacteriaceae family. Two primers were synthesized to develop and optimize an Enterobacter sakazakii-specific PCR based on regions of major band unique to Ent. sakazakii. The expected fragment was amplified from all of Ent. sakazkaii but not from the negative controls. As few as 10(2) CFU/ml of Ent. sakazakii of PCR were directly detected in the infant formulas. This was the case even in the presence of other bacteria. A comparison of traditional methods and new developed PCR in commercial foods suggested that without using API20-E test, the DFI chromogenic medium and FDA method showed 46.15% and 50% false positive respectively. Moreover, one false negative was observed with FDA method. In contrast, PCR was highly sensitive and specific to Ent. sakazakii. A high heterogeneity between Ent. sakazakii and the other microorganisms was found on expected fragment sequence. In addition, Ent. sakazakii ATCC51329 formed a separate branch with >5% divergence from the type strain ATCC BAA-894 and major strains.
Collapse
Affiliation(s)
- Yingwang Ye
- Guangdong Provincial Key Laboratory of Microbiol Culture Collection and Application, Guangdong Institute of Microbiology, No. 100 # Central Xianiie Road, Guangzhou, China.
| | | | | | | | | |
Collapse
|
40
|
Bishi DK, Verghese S, Verma RS. Molecular typing of colonizing Streptococcus agalactiae strains by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) in a Chennai based hospital. Indian J Microbiol 2008; 48:291-6. [PMID: 23100723 DOI: 10.1007/s12088-008-0017-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/15/2008] [Accepted: 01/18/2008] [Indexed: 10/22/2022] Open
Abstract
Streptococcus agalactiae is reported to be an asymptomatic vaginal colonizer in Indian women, although it is considered one of the major causes of neonatal infections in many European countries. DNA based molecular typing methods are more reliable than the conventional serotyping method for identification and typing of this pathogen. In the present study, we have evaluated genetic diversity among colonizing S. agalactiae strains (n=86) by using a PCR-based genotyping method i.e. Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR). With ERIC-PCR fingerprinting at 60% similarity level in a dendrogram generated by UPGMA cluster analysis, 10 different ERIC groups were identified, which were subdivided into 62 distinct genotypes at ≥ 95% similarity level. Based on these findings, we demonstrate that ERIC-PCR is a simple, rapid, and inexpensive tool with sufficient discriminatory power and is applicable for characterization and genotyping of a large number of clinical isolates of S. agalactiae at molecular level.
Collapse
Affiliation(s)
- D K Bishi
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036 India ; Department of Microbiology, Frontier Lifeline Pvt. Ltd., Chennai, 600101 India
| | | | | |
Collapse
|
41
|
Peng Y, Jin J, Wu C, Yang J, Li X. Orthogonal array design in optimizing ERIC-PCR system for fingerprinting rat's intestinal microflora. J Appl Microbiol 2008; 103:2095-101. [PMID: 18045393 DOI: 10.1111/j.1365-2672.2007.03440.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The aim of the present study was to rapidly optimize enterobacterial repetitive intergenic consensus (ERIC)-PCR amplification systems for fingerprinting rat's intestinal microflora. METHODS AND RESULTS Orthogonal array design and statistic analysis methods were attempted to rapidly optimize ERIC-PCR reaction system for fingerprinting intestinal microflora. The results showed that variations of the four factors (Mg(2+), dNTP, primer and HotstarTaq polymerase concentrations) changed the fingerprinting patterns significantly. The order of effects of those factors on fingerprinting patterns was primers (F = 274.000, P = 0.000), Hotstar Taq polymerase (F = 197.000, P = 0.001), Mg(2+) (F = 181.000, P = 0.001) and dNTP (F = 27.000, P = 0.011). The optimal ERIC-PCR condition was containing 200 micromol l(-1) dNTP, 2.5 mmol l(-1) Mg(2+), 0.4 micromol l(-1) primer, 1 U HotstarTaq DNA polymerase namely 25 microl reaction system, which is proved to be a simple, fast and reliable method suitable for fingerprinting rat's intestinal microflora. CONCLUSIONS The results suggest that Mg(2+), dNTP, primer and HotstarTaq polymerase concentrations play important roles on ERIC-PCR fingerprinting patterns. Orthogonal array design is a considerable method to optimize ERIC-PCR reaction system for its rapidness, simplicity, potential to investigate mutual effects of parameters. SIGNIFICANCE AND IMPACT OF THE STUDY It is the first report on optimization of ERIC-PCR amplification systems for fingerprinting intestinal microflora using orthogonal array design or statistic analysis methods and systematically observing the effects of variables of reaction conditions.
Collapse
Affiliation(s)
- Y Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
42
|
Bhowmick P, Khushiramani R, Raghunath P, Karunasagar I, Karunasagar I. Molecular typing of Vibrio parahaemolyticus isolated from seafood harvested along the south-west coast of India. Lett Appl Microbiol 2007; 46:198-204. [DOI: 10.1111/j.1472-765x.2007.02304.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Venditti R, De Gregorio E, Silvestro G, Bertocco T, Salza MF, Zarrilli R, Di Nocera PP. A novel class of small repetitive DNA sequences inEnterococcus faecalis. FEMS Microbiol Lett 2007; 271:193-201. [PMID: 17425667 DOI: 10.1111/j.1574-6968.2007.00717.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The structural organization of Enterococcus faecalis repeats (EFAR) is described, palindromic DNA sequences identified in the genome of the Enterococcus faecalis V583 strain by in silico analyses. EFAR are a novel type of miniature insertion sequences, which vary in size from 42 to 650 bp. Length heterogeneity results from the variable assembly of 16 different sequence types. Most elements measure 170 bp, and can fold into peculiar L-shaped structures resulting from the folding of two independent stem-loop structures (SLSs). Homologous chromosomal regions lacking or containing EFAR sequences were identified by PCR among 20 E. faecalis clinical isolates of different genotypes. Sequencing of a representative set of 'empty' sites revealed that 24-37 bp-long sequences, unrelated to each other but all able to fold into SLSs, functioned as targets for the integration of EFAR. In the process, most of the SLS had been deleted, but part of the targeted stems had been retained at EFAR termini.
Collapse
Affiliation(s)
- Rossella Venditti
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina, Università Federico II, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Inter-species transplantation of gut microbiota from human to pigs. ISME JOURNAL 2007; 1:156-62. [DOI: 10.1038/ismej.2007.23] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Yan X, Xu Z, Feng X, Liu Y, Liu B, Zhang X, Zhu C, Zhao L. Cloning of environmental genomic fragments as physical markers for monitoring microbial populations in coking wastewater treatment system. MICROBIAL ECOLOGY 2007; 53:163-72. [PMID: 17186144 DOI: 10.1007/s00248-006-9157-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 08/08/2006] [Accepted: 08/22/2006] [Indexed: 05/13/2023]
Abstract
The association between community functional shift and dynamics of genomic DNA composition can be used to identify functionally relevant populations as indicator organisms for systems monitoring. In this work, fingerprinting-based community DNA hybridization was used to monitor community structural dynamics and identify genomic fragments whose abundance shifts were concomitant to changes in COD removal capacity in a reactor. A laboratory-scale anaerobic-anoxic-oxic fixed biofilm system treating coking wastewater was operated with (LR mode) or without effluent recirculation (LNR mode). The contribution to total chemical oxygen demand (COD) removal by the anoxic reactor increased from 4% in LNR mode to 26% in LR mode. Long primer RAPD (randomly amplified polymorphic DNA) community fingerprints of the anoxic reactor also changed most significantly from the one similar to the anaerobic reactor to one similar to the oxic reactor. DNA hybridization revealed one signature band of 2.1 kb shared by the anoxic and oxic reactors in LR, but not LNR mode. Clone library profiling of this band resulted in one predominant 2.1-kb genomic fragment (B3) with no homologous sequences in GenBank. Real-time polymerase chain reaction indicated that copy numbers of B3 in the anoxic reactor under LR mode were 69 times higher than that under LNR mode, concomitant to a significant increase in COD removal capacity in this reactor. The different patterns of distribution of B3 in the laboratory system and a comparable malfunctioning industrial system demonstrated the potential of this genomic fragment as physical markers in systems monitoring. In addition, this genomic fragment may allow sequence-guided isolation of the host microbe.
Collapse
Affiliation(s)
- Xing Yan
- Laboratory of Molecular Microbial Ecology and Ecogenomics, College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Alves A, Phillips AJL, Henriques I, Correia A. Rapid differentiation of species of Botryosphaeriaceae by PCR fingerprinting. Res Microbiol 2006; 158:112-21. [PMID: 17293086 DOI: 10.1016/j.resmic.2006.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/13/2006] [Accepted: 10/09/2006] [Indexed: 11/18/2022]
Abstract
The fingerprinting methods referred to as MSP-PCR (microsatellite-primed polymerase chain reaction) and rep-PCR (repetitive-sequence-based polymerase chain reaction) were used to discriminate between species of Botryosphaeriaceae (Fungi, Ascomycota). Several primers were tested with both methods and each primer enabled clear differentiation of all the species tested. Cluster analysis of banding patterns of the isolates corresponded well with known species delineations based on morphology and phylogenetic analysis. The methods described in this paper provide simple and rapid procedures that can be used for routine differentiation of Botryosphaeriaceae isolates at the species level. The two methods are also useful for studying intraspecific variability.
Collapse
Affiliation(s)
- Artur Alves
- CESAM, Centro de Estudos do Ambiente e do Mar, Campus Universitário de Santiago, Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
47
|
Sampaio JLM, Chimara E, Ferrazoli L, da Silva Telles MA, Del Guercio VMF, Jericó ZVN, Miyashiro K, Fortaleza CMCB, Padoveze MC, Leão SC. Application of four molecular typing methods for analysis of Mycobacterium fortuitum group strains causing post-mammaplasty infections. Clin Microbiol Infect 2006; 12:142-9. [PMID: 16441452 DOI: 10.1111/j.1469-0691.2005.01312.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cluster of cases of post-augmentation mammaplasty surgical site infections occurred between 2002 and 2004 in Campinas, in the southern region of Brazil. Rapidly growing mycobacteria were isolated from samples from 12 patients. Eleven isolates were identified as Mycobacterium fortuitum and one as Mycobacterium porcinum by PCR-restriction digestion of the hsp65 gene. These 12 isolates, plus six additional M. fortuitum isolates from non-related patients, were typed by pulsed-field gel electrophoresis (PFGE) and three PCR-based techniques: 16S-23S rRNA internal transcribed spacer (ITS) genotyping; randomly amplified polymorphic DNA (RAPD) PCR; and enterobacterial repetitive intergenic consensus (ERIC) PCR. Four novel M. fortuitum allelic variants were identified by restriction analysis of the ITS fragment. One major cluster, comprising six M. fortuitum isolates, and a second cluster of two isolates, were identified by the four methods. RAPD-PCR and ITS genotyping were less discriminative than ERIC-PCR. ERIC-PCR was comparable to PFGE as a valuable complementary tool for investigation of this type of outbreak.
Collapse
Affiliation(s)
- J L M Sampaio
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tripathi AK, Verma SC, Chowdhury SP, Lebuhn M, Gattinger A, Schloter M. Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 2006; 56:1677-1680. [PMID: 16825649 DOI: 10.1099/ijs.0.63934-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A non-pigmented, motile, Gram-negative bacterium designated MTCC 4195T was isolated from surface-sterilized seeds and plant tissue from deep-water rice (Oryza sativa) cultivated in Suraha Tal Lake in northern India. This isolate was shown to reinfect and colonize deep-water rice endophytically. The highest level of 16S rRNA sequence similarity (96.8 %) to strain MTCC 4195T was shown by Ochrobactrum gallinifaecis DSM 15295T. Strain MTCC 4195T utilized γ-hydroxybutyric acid, adonitol, d-glucosaminic acid and arabinose as carbon sources, but failed to use gentiobiose or citrate. The cell-wall fatty acids of strain MTCC 4195T were characterized by the presence of a relatively large proportion of C18 : 1
ω7c and a relative small proportion of C16 : 0 in comparison with Ochrobactrum species. DNA–DNA relatedness studies showed less than 52 % binding with the DNAs of type strains of other species of the genus Ochrobactrum. On the basis of phenotypic and genotypic characteristics and the results of 16S rRNA gene sequence analysis, the novel species Ochrobactrum oryzae sp. nov. is proposed, with MTCC 4195T (=DSM 17471T) as the type strain.
Collapse
MESH Headings
- Carbohydrate Metabolism
- Carboxylic Acids/metabolism
- Cell Wall/chemistry
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fatty Acids/analysis
- Fatty Acids/chemistry
- Genes, rRNA
- India
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Ochrobactrum/classification
- Ochrobactrum/genetics
- Ochrobactrum/isolation & purification
- Ochrobactrum/physiology
- Oryza/microbiology
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Water Microbiology
Collapse
Affiliation(s)
- Anil K Tripathi
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi - 221005, India
| | - Subhash C Verma
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi - 221005, India
| | - Soumitra Paul Chowdhury
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi - 221005, India
| | - Michael Lebuhn
- Institute of Water Quality Control and Waste Management, Technical University of Munich, Am Coulombwall, 85748 Garching, Germany
| | - Andreas Gattinger
- GSF-National Centre for Environment and Health, Institute of Soil Ecology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Michael Schloter
- GSF-National Centre for Environment and Health, Institute of Soil Ecology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
49
|
Sampaio JLM, Viana-Niero C, de Freitas D, Höfling-Lima AL, Leão SC. Enterobacterial repetitive intergenic consensus PCR is a useful tool for typing Mycobacterium chelonae and Mycobacterium abscessus isolates. Diagn Microbiol Infect Dis 2006; 55:107-18. [PMID: 16529900 DOI: 10.1016/j.diagmicrobio.2006.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 12/22/2005] [Accepted: 01/03/2006] [Indexed: 10/24/2022]
Abstract
Outbreaks of rapidly growing mycobacterium (RGM) infections are increasingly being reported worldwide. Information about genetic relatedness of isolates obtained during outbreaks can provide opportunities for prompt intervention. Pulsed-field gel electrophoresis (PFGE) is expensive, time consuming, and labor intensive. Other than that, Mycobacterium abscessus isolates can suffer DNA degradation during electrophoresis. Polymerase chain reaction (PCR)-based methods are cheaper, faster, and easier to perform, but discriminatory power varies depending on the primer used. In this study, we tested the competence of enterobacterial repetitive intergenic consensus (ERIC) PCR in comparison with PFGE to distinguish unrelated isolates (24 Mycobacterium chelonae and 24 M. abscessus) obtained from human and/or environmental samples and to group 56 isolates from 6 outbreaks confirmed epidemiologically, caused by M. chelonae and M. abscessus after ophthalmologic refractive surgery and mesotherapy. Enterobacterial repetitive intergenic consensus PCR presented discriminatory power, calculated using Simpson's index of diversity, of 0.989 for M. abscessus and 0.975 for M. chelonae and grouped outbreak isolates in distinct groups showing epidemiologic concordance. Pulsed-field gel electrophoresis also grouped outbreak isolates and presented discriminatory power of 0.972 and 0.993 for M. abscessus and M. chelonae, respectively. DNA from 8 (22%) of 36 M. abscessus isolates analyzed showed degradation during electrophoresis. Compared with PFGE and epidemiologic information as the gold standard, ERIC PCR is a simple, high throughput, affordable, reproducible, and discriminatory molecular typing method for inference of genetic relatedness of RGMs of the M. chelonae-abscessus group.
Collapse
MESH Headings
- Bacteriological Techniques
- DNA, Bacterial/genetics
- DNA, Intergenic/genetics
- Disease Outbreaks
- Electrophoresis, Gel, Pulsed-Field
- Eye Infections, Bacterial/diagnosis
- Eye Infections, Bacterial/epidemiology
- Eye Infections, Bacterial/microbiology
- Gene Expression Regulation, Bacterial
- Humans
- Interspersed Repetitive Sequences/genetics
- Mycobacterium/classification
- Mycobacterium/genetics
- Mycobacterium Infections/diagnosis
- Mycobacterium Infections/epidemiology
- Mycobacterium Infections/microbiology
- Phylogeny
- Polymerase Chain Reaction/methods
- Skin Diseases, Bacterial/diagnosis
- Skin Diseases, Bacterial/epidemiology
- Skin Diseases, Bacterial/microbiology
Collapse
Affiliation(s)
- Jorge Luiz Mello Sampaio
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Botucatu, 862-3 andar-04023-062, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
50
|
Heyndrickx M, Rijpens N, Herman L. Molecular Detection and Typing of Foodborne Bacterial Pathogens: A Review. Appl Microbiol 2005. [DOI: 10.1007/0-306-46888-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|