1
|
Gupta N, Paul JS, Jadhav SK. Biovalorizing agro-waste 'de-oiled rice bran' for thermostable, alkalophilic and detergent stable α-amylase production with its application as laundry detergent additive and textile desizer. Int J Biol Macromol 2024; 256:128470. [PMID: 38040160 DOI: 10.1016/j.ijbiomac.2023.128470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
The current research was concerned with the use of abundant agro-waste 'de-oiled rice bran (DORB)' as a sustainable substrate to produce α-amylase followed by several targets like process parameter optimization for augmented production and immobilization. In addition, we have also focused on investigating the application of DORB_amy as an efficient laundry detergent additive and textile desizer. The best production was recorded at pH 8.0 at 37 °C after 96 h incubation with 1.5 % (w/v) maltose. The DORB_amy has optimum activity at pH 9.0 at 60 °C with a Km and Vmax of 0.31 mg/mL and 222.22 mg/mL/min respectively. The catalytic performance of DORB_amy was further enhanced after immobilization in 3.0 % calcium alginate beads with 61.95 ± 0.17 % of operational stability after five continuous reaction cycles. The findings showed excellent performance of DORB_amy in cleaning starchy stains. The washing performance of enzyme and detergent together was better than their individual performance which increases the application of α-amylase as a laundry detergent additive. About 17.34 % weight loss or desizing was done by DORB_amy with an 8-9 TEGEWA rating. The reported biochemical features like thermostability, alkalophilic and detergent-stable nature of the DORB_amy make it industrially fit with great significance.
Collapse
Affiliation(s)
- Nisha Gupta
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010, CG, India
| | - Jai Shankar Paul
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010, CG, India.
| | - Shailesh Kumar Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010, CG, India
| |
Collapse
|
2
|
Wangler A, Hüser A, Sadowski G, Held C. Simultaneous Prediction of Cosolvent Influence on Reaction Equilibrium and Michaelis Constants of Enzyme-Catalyzed Ketone Reductions. ACS OMEGA 2019; 4:6264-6272. [PMID: 31459767 PMCID: PMC6648939 DOI: 10.1021/acsomega.8b03159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 06/10/2023]
Abstract
Understanding and quantification of cosolvent influences on enzyme-catalyzed reactions are driven by a twofold interest. On the one hand, cosolvents can simulate the cellular environment for deeper understanding of in cellulo reaction conditions. On the other hand, cosolvents are applied in biotechnology to tune yield and kinetics of reactions. Further, cosolvents are even present inherently, for example, for reactions with cofactor regeneration or for enzymes that need cosolvents in a function of a stabilizer. As the experimental determination of yield and kinetics is costly and time consuming, this work aims at providing a thermodynamic predictive approach that might allow screening cosolvent influences on yield and Michaelis constants. Reactions investigated in this work are the reduction of butanone and 2-pentanone under the influence of 17 wt % of the cosolvent polyethylene glycol 6000, which is also often used as a crowder to simulate cellular environments. The considered reactions were catalyzed by a genetically modified alcohol dehydrogenase (ADH 270). Predictions of cosolvent influences are based on accounting for a cosolvent-induced change of molecular interactions among the reacting agents as well as between the reacting agents and the solvent. Such interactions were characterized by activity coefficients of the reacting agents that were predicted by means of electrolyte perturbed-chain statistical associating fluid theory. This allowed simultaneously predicting the cosolvent effects on yield and Michaelis constants for two-substrate reactions for the first time.
Collapse
|
3
|
Increased production of polyhydroxyalkanoates with controllable composition and consistent material properties by fed-batch fermentation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Padmavathi T, Bhargavi R, Priyanka PR, Niranjan NR, Pavitra PV. Screening of potential probiotic lactic acid bacteria and production of amylase and its partial purification. J Genet Eng Biotechnol 2018; 16:357-362. [PMID: 30733746 PMCID: PMC6353751 DOI: 10.1016/j.jgeb.2018.03.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 11/27/2022]
Abstract
Probiotics are the healthy living bacteria when administered in adequate amounts confers health benefits in the host. The main objective of present study was to screen the bacteria for potential probiotic characters and enzyme production. The probiotic characters like tolerance to low pH, bile salts, antibiotic sensitivity, hydrophobicity and auto-aggregation properties were evaluated. Among all isolates Lactobacillus fermentum and Lactobacillus sp G3_4_1TO2 showed maximum potential probiotic characters and produced amylase enzyme by observing the halo zone around the colonies with the diameter 0.9 mm and 1.23 mm. Lactobacillus sp G3_4_1TO2 produced maximum amylase when compared with Lb. fermentum. The protein yield was 55.4% with the specific activity of 88.9 U/mg and obtained 40.8% purification fold. The molecular weight of amylase enzyme determined by SDS PAGE was 95,000 Da. From the present study it was considered that Lactobacillus sp G3_4_1TO2 was a potential probiotic bacteria producing maximum amylase enzyme.
Collapse
Affiliation(s)
- Tallapragada Padmavathi
- Department of Microbiology, School of Sciences, Jain University, 18/3, 9th Main Road, 3rd Block, Jayanagar, Bangalore, Karnataka 560011, India
| | | | | | | | | |
Collapse
|
5
|
Lebre PH, Aliyu H, De Maayer P, Cowan DA. In silico characterization of the global Geobacillus and Parageobacillus secretome. Microb Cell Fact 2018; 17:156. [PMID: 30285747 PMCID: PMC6171300 DOI: 10.1186/s12934-018-1005-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
Background Geobacillus and Parageobacillus are two ecologically diverse thermophilic genera within the phylum Firmicutes. These taxa have long been of biotechnological interest due to their ability to secrete thermostable enzymes and other biomolecules that have direct applications in various industrial and clinical fields. Despite the commercial and industrial interest in these microorganisms, the full scope of the secreted protein, i.e. the secretome, of Geobacillus and Parageobacillus species remains largely unexplored, with most studies focusing on single enzymes. A genome-wide exploration of the global secretome can provide a platform for understanding the extracellular functional “protein cloud” and the roles that secreted proteins play in the survival and adaptation of these biotechnologically relevant organisms. Results In the present study, the global secretion profile of 64 Geobacillus and Parageobacillus strains, comprising 772 distinct proteins, was predicted using comparative genomic approaches. Thirty-one of these proteins are shared across all strains used in this study and function in cell-wall/membrane biogenesis as well as transport and metabolism of carbohydrates, amino acids and inorganic ions. An analysis of the clustering patterns of the secretomes of the 64 strains according to shared functional orthology revealed a correlation between the secreted profiles of different strains and their phylogeny, with Geobacillus and Parageobacillus species forming two distinct functional clades. Conclusions The in silico characterization of the global secretome revealed a metabolically diverse set of secreted proteins, which include proteases, glycoside hydrolases, nutrient binding proteins and toxins. Electronic supplementary material The online version of this article (10.1186/s12934-018-1005-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Habibu Aliyu
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Pieter De Maayer
- School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
6
|
Rosowski S, Becker S, Toleikis L, Valldorf B, Grzeschik J, Demir D, Willenbücher I, Gaa R, Kolmar H, Zielonka S, Krah S. A novel one-step approach for the construction of yeast surface display Fab antibody libraries. Microb Cell Fact 2018; 17:3. [PMID: 29316915 PMCID: PMC5759264 DOI: 10.1186/s12934-017-0853-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Yeast surface display (YSD) has proven to be a versatile platform technology for antibody discovery. However, the construction of antibody Fab libraries typically is a tedious three-step process that involves the generation of heavy chain as well as light chain display plasmids in different haploid yeast strains followed by yeast mating. RESULTS Within this study, we aimed at implementing a focused Golden Gate Cloning approach for the generation of YSD libraries. For this, antibodies heavy and light chains were encoded on one single plasmid. Fab display on yeast cells was either mediated by a two-directional promoter system (2dir) or by ribosomal skipping (bicis). The general applicability of this methodology was proven by the functional display of a therapeutic antibody. Subsequently, we constructed large antibody libraries with heavy chain diversities derived from CEACAM5 immunized animals in combination with a common light chain. Target-specific antibodies from both display systems were readily obtained after three rounds of fluorescence activated cell sorting. Isolated variants exhibited high affinities in the nanomolar and subnanomolar range as well as appropriate biophysical properties. CONCLUSION We demonstrated that Golden Gate Cloning appears to be a valid tool for the generation of large yeast surface display antibody Fab libraries. This procedure simplifies the hit discovery process of antibodies from immune repertoires.
Collapse
Affiliation(s)
- Simon Rosowski
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Julius Grzeschik
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Deniz Demir
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Iris Willenbücher
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Ramona Gaa
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| |
Collapse
|
7
|
Velugula-Yellela SR, Williams A, Trunfio N, Hsu CJ, Chavez B, Yoon S, Agarabi C. Impact of media and antifoam selection on monoclonal antibody production and quality using a high throughput micro-bioreactor system. Biotechnol Prog 2017; 34:262-270. [PMID: 29086492 PMCID: PMC5821576 DOI: 10.1002/btpr.2575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/01/2017] [Indexed: 01/25/2023]
Abstract
Monoclonal antibody production in commercial scale cell culture bioprocessing requires a thorough understanding of the engineering process and components used throughout manufacturing. It is important to identify high impact components early on during the lifecycle of a biotechnology‐derived product. While cell culture media selection is of obvious importance to the health and productivity of mammalian bioreactor operations, other components such as antifoam selection can also play an important role in bioreactor cell culture. Silicone polymer‐based antifoams were known to have negative impacts on cell health, production, and downstream filtration and purification operations. High throughput screening in micro‐scale bioreactors provides an efficient strategy to identify initial operating parameters. Here, we utilized a micro‐scale parallel bioreactor system to study an IgG1 producing CHO cell line, to screen Dynamis, ProCHO5, PowerCHO2, EX‐Cell Advanced, and OptiCHO media, and 204, C, EX‐Cell, SE‐15, and Y‐30 antifoams and their impacts on IgG1 production, cell growth, aggregation, and process control. This study found ProCHO5, EX‐Cell Advanced, and PowerCHO2 media supported strong cellular growth profiles, with an IVCD of 25‐35 × 106 cells‐d/mL, while maintaining specific antibody production (Qp > 2 pg/cell‐d) for our model cell line and a monomer percentage above 94%. Antifoams C, EX‐Cell, and SE‐15 were capable of providing adequate control of foaming while antifoam 204 and Y‐30 noticeably stunted cellular growth. This work highlights the utility of high throughput micro bioreactors and the importance of identifying both positive and negative impacts of media and antifoam selection on a model IgG1 producing CHO cell line. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:262–270, 2018
Collapse
Affiliation(s)
- Sai Rashmika Velugula-Yellela
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, Silver Spring, MD
| | - Abasha Williams
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, Silver Spring, MD
| | - Nicholas Trunfio
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, Silver Spring, MD.,Dept. of Chemical Engineering, University of Massachusetts, Lowell, MA
| | - Chih-Jung Hsu
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, Silver Spring, MD
| | - Brittany Chavez
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, Silver Spring, MD
| | - Seongkyu Yoon
- Dept. of Chemical Engineering, University of Massachusetts, Lowell, MA
| | - Cyrus Agarabi
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Product Quality, Office of Biotechnology Products, Division of Biotechnology Review and Research II, Silver Spring, MD
| |
Collapse
|
8
|
Statistical optimization of production conditions of β-glucosidase from Bacillus stratosphericus strain SG9. 3 Biotech 2017; 7:221. [PMID: 28677083 DOI: 10.1007/s13205-017-0866-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022] Open
Abstract
The present study illustrates the optimization and characterization of β-glucosidase from a bacterial isolate, strain SG9. Sixty-eight different variables were first screened by one factor at a time method. The screened variable optimization was then performed by Plackett-Burman design followed by Box-Behnken response surface methodology. Thirty-one variables were screened, of which five variables were found to be significant. Box-Behnken design was then performed using the most significant variables, viz., esculin, K2HPO4 and MgSO4. The maximum enzyme activity was observed with an optimal medium composition of esculin (1.9 g/L), K2HPO4 (0. 5 g/L) and MgSO4 (0.3 g/L) with a predicted value of 3392.01 IU. The maximum β-glucosidase production achieved was 3340 IU. The bacterial strain was identified by 16S rRNA gene sequence and biochemical characterization. The strain was identified as Bacillus stratosphericus and is a first report of its kind.
Collapse
|
9
|
Routledge SJ, Mikaliunaite L, Patel A, Clare M, Cartwright SP, Bawa Z, Wilks MDB, Low F, Hardy D, Rothnie AJ, Bill RM. The synthesis of recombinant membrane proteins in yeast for structural studies. Methods 2015; 95:26-37. [PMID: 26431670 DOI: 10.1016/j.ymeth.2015.09.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/22/2022] Open
Abstract
Historically, recombinant membrane protein production has been a major challenge meaning that many fewer membrane protein structures have been published than those of soluble proteins. However, there has been a recent, almost exponential increase in the number of membrane protein structures being deposited in the Protein Data Bank. This suggests that empirical methods are now available that can ensure the required protein supply for these difficult targets. This review focuses on methods that are available for protein production in yeast, which is an important source of recombinant eukaryotic membrane proteins. We provide an overview of approaches to optimize the expression plasmid, host cell and culture conditions, as well as the extraction and purification of functional protein for crystallization trials in preparation for structural studies.
Collapse
Affiliation(s)
- Sarah J Routledge
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK; School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Lina Mikaliunaite
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Anjana Patel
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Michelle Clare
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Stephanie P Cartwright
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Zharain Bawa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Martin D B Wilks
- Smallpeice Enterprises Ltd, 27 Newbold Terrace East, Leamington Spa, Warwickshire CV32 4ES, UK
| | - Floren Low
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - David Hardy
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Alice J Rothnie
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
10
|
Dash BK, Rahman MM, Sarker PK. Molecular Identification of a Newly Isolated Bacillus subtilis BI19 and Optimization of Production Conditions for Enhanced Production of Extracellular Amylase. BIOMED RESEARCH INTERNATIONAL 2015; 2015:859805. [PMID: 26180814 PMCID: PMC4477212 DOI: 10.1155/2015/859805] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 11/21/2022]
Abstract
A study was carried out with a newly isolated bacterial strain yielding extracellular amylase. The phylogenetic tree constructed on the basis of 16S rDNA gene sequences revealed this strain as clustered with the closest members of Bacillus sp. and identified as Bacillus subtilis BI19. The effect of various fermentation conditions on amylase production through shake-flask culture was investigated. Rice flour (1.25%) as a cheap natural carbon source was found to induce amylase production mostly. A combination of peptone and tryptone as organic and ammonium sulfate as inorganic nitrogen sources gave highest yield. Maximum production was obtained after 24 h of incubation at 37 °C with an initial medium pH 8.0. Addition of surfactants like Tween 80 (0.25 g/L) and sodium lauryl sulfate (0.2 g/L) resulted in 28% and 15% increase in enzyme production, respectively. Amylase production was 3.06 times higher when optimized production conditions were used. Optimum reaction temperature and pH for crude amylase activity were 50 °C and 6.0, respectively. The crude enzyme showed activity and stability over a fair range of temperature and pH. These results suggest that B. subtilis BI19 could be exploited for production of amylase at relatively low cost and time.
Collapse
Affiliation(s)
- Biplab Kumar Dash
- Department of Biotechnology and Genetic Engineering, Faculty of Applied Science and Technology, Islamic University, Kushtia 7003, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jessore University of Science and Technology, Jessore 7408, Bangladesh
| | - M. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Applied Science and Technology, Islamic University, Kushtia 7003, Bangladesh
| | - Palash Kumar Sarker
- Microbial Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh
| |
Collapse
|
11
|
Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK and their in vitro evaluation as prebiotics. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2014.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Bujna E, Kukovics F, Nguyen Q, Rezessy-Szabó J. Rice flour as potential carbon source for production of phytase byAspergillus nigerF00735 strain. ACTA ALIMENTARIA 2013. [DOI: 10.1556/aalim.42.2013.suppl.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Routledge SJ. Beyond de-foaming: the effects of antifoams on bioprocess productivity. Comput Struct Biotechnol J 2012; 3:e201210014. [PMID: 24688674 PMCID: PMC3962157 DOI: 10.5936/csbj.201210014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/12/2012] [Accepted: 11/12/2012] [Indexed: 12/02/2022] Open
Abstract
Antifoams are often added to bioprocesses with little knowledge of their impact on the cells or product. However, it is known that certain antifoams can affect the growth rates of both prokaryotic and eukaryotic organisms in addition to changing surface properties such as lipid content, resulting in changes to permeability. This in turn can be beneficial to a recombinant protein production system for soluble proteins, as has been demonstrated by increased secretion of α-amylase and GFP, or achievement of greater yields of protein due to increased biomass. However, in some cases, certain concentrations of antifoams appear to have a detrimental effect upon cells and protein production, and the effects vary depending upon the protein being expressed. These findings emphasise the importance of optimising and understanding antifoam addition to bioprocesses.
Collapse
Affiliation(s)
- Sarah J Routledge
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
14
|
Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Enzyme Microb Technol 2012; 50:343-7. [DOI: 10.1016/j.enzmictec.2012.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 11/21/2022]
|
15
|
Luciferase and fluorescent protein as dual reporters analyzing the effect of n-dodecyltrimethylammonium bromide on the physiology of Pseudomonas putida. Appl Microbiol Biotechnol 2011; 93:393-400. [DOI: 10.1007/s00253-011-3663-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/24/2011] [Accepted: 10/23/2011] [Indexed: 10/15/2022]
|
16
|
Shabbiri K, Adnan A, Noor B, Jamil S. Optimized production, purification and characterization of alpha amylase by Brevibacterium linens DSM 20158, using bio-statistical approach. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0286-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
In vitro evaluation of antioxidant and radioprotective properties of a novel extremophile from mud volcano: implications for management of radiation emergencies. Mol Cell Biochem 2011; 353:243-50. [DOI: 10.1007/s11010-011-0792-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/17/2011] [Indexed: 12/22/2022]
|
18
|
Kubrak OI, Storey JM, Storey KB, Lushchak VI. Production and properties of α-amylase fromBacillussp. BKL20. Can J Microbiol 2010; 56:279-88. [DOI: 10.1139/w10-014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a result of screening Bacillus sp. strains isolated from different natural substrates, strain BKL20 was identified as a producer of a thermostable alkaline α-amylase. Maximum production of this α-amylase was achieved by optimizing culture conditions. Production of α-amylase seemed to be independent of the presence of starch in the culture medium and was stimulated by the presence of peptone (0.3%, m/v) and yeast extract (0.2%, m/v). The enzyme was thermostable and retained amylolytic activity after 30 min of incubation at 60 and 70 °C. High activity was maintained over a broad pH range, from 6.0 to 11.0, and the enzyme remained active after alkaline incubation for 24 h. Bacillus sp. BKL20 α-amylase was not stimulated by Ca2+or other bivalent metal cations and was not inhibited by EGTA or EDTA at 1–10 mmol/L, suggesting that this α-amylase is a Ca2+-independent enzyme. It also showed good resistance to both oxidizing (H2O2) and denaturating (urea) agents.
Collapse
Affiliation(s)
- Olha I. Kubrak
- Department of Biochemistry, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Street, Ivano-Frankivsk 76025, Ukraine
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Janet M. Storey
- Department of Biochemistry, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Street, Ivano-Frankivsk 76025, Ukraine
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B. Storey
- Department of Biochemistry, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Street, Ivano-Frankivsk 76025, Ukraine
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Volodymyr I. Lushchak
- Department of Biochemistry, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Street, Ivano-Frankivsk 76025, Ukraine
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
19
|
Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Appl Microbiol Biotechnol 2010; 87:109-15. [DOI: 10.1007/s00253-010-2487-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 01/28/2010] [Accepted: 01/30/2010] [Indexed: 10/19/2022]
|
20
|
Mehier-Humbert S, Bettinger T, Yan F, Guy R. Influence of polymer adjuvants on the ultrasound-mediated transfection of cells in culture. Eur J Pharm Biopharm 2009; 72:567-73. [DOI: 10.1016/j.ejpb.2009.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/05/2009] [Accepted: 02/25/2009] [Indexed: 11/30/2022]
|
21
|
Dextran sodium sulfate enhances secretion of recombinant human transferrin in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2009; 85:155-64. [DOI: 10.1007/s00253-009-2130-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/04/2009] [Accepted: 07/06/2009] [Indexed: 11/26/2022]
|
22
|
Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Hyperthermostable, Ca(2+)-independent, and high maltose-forming alpha-amylase production by an extreme thermophile Geobacillus thermoleovorans: whole cell immobilization. Appl Biochem Biotechnol 2009; 159:464-77. [PMID: 19280125 DOI: 10.1007/s12010-009-8587-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
The synthesis of extracellular alpha-amylase in Geobacillus thermoleovorans was constitutive. The enzyme was secreted in metabolizable carbon sources as well as non-metabolizable synthetic analogues of glucose, but the titers were higher in the former than that in the latter. G. thermoleovorans is a fast-growing facultatively anaerobic bacterium that grows under both aerobic and anaerobic conditions and produces an extracellular amylolytic enzyme alpha-amylase with the by-product of lactic acid. G. thermoleovorans is a rich source of various novel thermostable biocatalysts for different industrial applications. alpha-Amylase synthesis was subject to catabolite repression in the presence of high concentrations of glucose. The addition of cAMP to the medium containing glucose did not result in the repression of alpha-amylase synthesis. The addition of maltose (1%) to the starch arginine medium resulted in a twofold enhancement in enzyme titers. Polyurethane foam (PUF)-immobilized cells secreted alpha-amylase, which was higher than that with the free cells. PUF appeared to be a better matrix for immobilization of the thermophilic bacterium than the other commonly used matrices. The repeated use of PUF-immobilized cells was possible over 15 cycles with a sustained alpha-amylase secretion. The use of this enzyme in starch saccharification eliminates the addition of Ca(2+) in starch liquefaction and its subsequent removal by ion exchangers from the product streams.
Collapse
|
24
|
Singh B, Satyanarayana T. Phytase production bySporotrichum thermophilein a cost-effective cane molasses medium in submerged fermentation and its application in bread. J Appl Microbiol 2008; 105:1858-65. [DOI: 10.1111/j.1365-2672.2008.03929.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Biophysical and Biochemical Characterization of a Hyperthermostable and Ca2+-independent α-Amylase of an Extreme Thermophile Geobacillus thermoleovorans. Appl Biochem Biotechnol 2008; 150:205-19. [DOI: 10.1007/s12010-008-8171-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
|
26
|
Purification and characterization of a hyperthermostable and high maltogenic alpha-amylase of an extreme thermophile Geobacillus thermoleovorans. Appl Biochem Biotechnol 2008; 142:179-93. [PMID: 18025579 DOI: 10.1007/s12010-007-0017-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/21/2006] [Accepted: 08/18/2006] [Indexed: 10/23/2022]
Abstract
The purified alpha-amylase of Geobacillus thermoleovorans had a molecular mass of 26 kDa with a pI of 5.4, and it was optimally active at 100 degrees C and pH 8.0. The T 1/2 of alpha-amylase at 100 degrees C increased from 3.6 to 5.6 h in the presence of cholic acid. The activation energy and temperature quotient (Q 10) of the enzyme were 84.10 kJ/mol and 1.31, respectively. The activity of the enzyme was enhanced strongly by Co2+ and Fe2+; enhanced slightly by Ba2+, Mn2+, Ni2+, and Mg2+; inhibited strongly by Sn2+, Hg2+, and Pb2+, and inhibited slightly by EDTA, phenyl methyl sulfonyl fluoride, N-ethylmaleimide, and dithiothreitol. The enzyme activity was not affected by Ca2+ and ethylene glycol-bis (beta-amino ethyl ether)-N,N,N,N-tetra acetic acid. Among different additives and detergents, polyethylene glycol 8000 and Tween 20, 40, and 80 stabilized the enzyme activity, whereas Triton X-100, glycerol, glycine, dextrin, and sodium dodecyl sulfate inhibited to a varied extent. alpha-Amylase exhibited activity on several starch substrates and their derivatives. The K m and K cat values (soluble starch) were 1.10 mg/ml and 5.9 x 10(3)/min, respectively. The enzyme hydrolyzed raw starch of pearl millet (Pennisetum typhoides) efficiently.
Collapse
|
27
|
Graham RLJ, Graham C, McMullan G. Microbial proteomics: a mass spectrometry primer for biologists. Microb Cell Fact 2007; 6:26. [PMID: 17697372 PMCID: PMC1971468 DOI: 10.1186/1475-2859-6-26] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/15/2007] [Indexed: 11/29/2022] Open
Abstract
It is now more than 10 years since the publication of the first microbial genome sequence and science is now moving towards a post genomic era with transcriptomics and proteomics offering insights into cellular processes and function. The ability to assess the entire protein network of a cell at a given spatial or temporal point will have a profound effect upon microbial science as the function of proteins is inextricably linked to phenotype. Whilst such a situation is still beyond current technologies rapid advances in mass spectrometry, bioinformatics and protein separation technologies have produced a step change in our current proteomic capabilities. Subsequently a small, but steadily growing, number of groups are taking advantage of this cutting edge technology to discover more about the physiology and metabolism of microorganisms. From this research it will be possible to move towards a systems biology understanding of a microorganism. Where upon researchers can build a comprehensive cellular map for each microorganism that links an accurately annotated genome sequence to gene expression data, at a transcriptomic and proteomic level.In order for microbiologists to embrace the potential that proteomics offers, an understanding of a variety of analytical tools is required. The aim of this review is to provide a basic overview of mass spectrometry (MS) and its application to protein identification. In addition we will describe how the protein complexity of microbial samples can be reduced by gel-based and gel-free methodologies prior to analysis by MS. Finally in order to illustrate the power of microbial proteomics a case study of its current application within the Bacilliaceae is given together with a description of the emerging discipline of metaproteomics.
Collapse
Affiliation(s)
- Robert LJ Graham
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, BT52 1SA, UK
| | - Ciaren Graham
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, BT52 1SA, UK
| | - Geoff McMullan
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, BT52 1SA, UK
| |
Collapse
|
28
|
Uma Maheswar Rao JL, Satyanarayana T. Improving production of hyperthermostable and high maltose-forming alpha-amylase by an extreme thermophile Geobacillus thermoleovorans using response surface methodology and its applications. BIORESOURCE TECHNOLOGY 2007; 98:345-52. [PMID: 16473003 DOI: 10.1016/j.biortech.2005.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/22/2005] [Accepted: 12/24/2005] [Indexed: 05/06/2023]
Abstract
By cultivating Geobacillus thermoleovorans in shake flasks containing cane molasses medium at 70 degrees C, the fermentation variables were optimized by 'one variable at a time' approach followed by response surface methodology (RSM). The statistical model was obtained by central composite design (CCD) using three variables (cane-molasses, urea and inoculum density). An overall 1.6- and 2.1-fold increase in enzyme production was achieved in the optimized medium in shake flasks and fermenter, respectively. The alpha-amylase titre increased significantly in cane-molasses medium (60 U ml(-1)) as compared to that in the synthetic medium (26 U ml(-1)). Thus the cost of enzyme produced in cane molasses medium (0.823 euros per million U) was much lower than that produced in the synthetic starch-yeast extract-tryptone medium (18.52 euros per million U). The shelf life of bread was improved by supplementing dough with alpha-amylase, and thus, the enzyme was found to be useful in preventing the staling of bread. Reducing sugars liberated from 20% and 30% raw pearl millet starch were fermented to ethanol; ethanol production levels attained were 35.40 and 28.0 g l(-1), respectively.
Collapse
Affiliation(s)
- J L Uma Maheswar Rao
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | | |
Collapse
|
29
|
Singh A, Van Hamme JD, Ward OP. Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 2006; 25:99-121. [PMID: 17156965 DOI: 10.1016/j.biotechadv.2006.10.004] [Citation(s) in RCA: 336] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 10/25/2006] [Accepted: 10/25/2006] [Indexed: 10/24/2022]
Abstract
Surfactants are amphiphilic compounds which can reduce surface and interfacial tensions by accumulating at the interface of immiscible fluids and increase the solubility, mobility, bioavailability and subsequent biodegradation of hydrophobic or insoluble organic compounds. Chemically synthesized surfactants are commonly used in the petroleum, food and pharmaceutical industries as emulsifiers and wetting agents. Biosurfactants produced by some microorganisms are becoming important biotechnology products for industrial and medical applications due to their specific modes of action, low toxicity, relative ease of preparation and widespread applicability. They can be used as emulsifiers, de-emulsifiers, wetting and foaming agents, functional food ingredients and as detergents in petroleum, petrochemicals, environmental management, agrochemicals, foods and beverages, cosmetics and pharmaceuticals, and in the mining and metallurgical industries. Addition of a surfactant of chemical or biological origin accelerates or sometimes inhibits the bioremediation of pollutants. Surfactants also play an important role in enhanced oil recovery by increasing the apparent solubility of petroleum components and effectively reducing the interfacial tensions of oil and water in situ. However, the effects of surfactants on bioremediation cannot be predicted in the absence of empirical evidence because surfactants sometimes stimulate bioremediation and sometimes inhibit it. For medical applications, biosurfactants are useful as antimicrobial agents and immunomodulatory molecules. Beneficial applications of chemical surfactants and biosurfactants in various industries are discussed in this review.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
30
|
Alkali-thermostable and cellulase-free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9250-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Wang F, Du GC, Li Y, Chen J. Enhanced γ-CGTase Production byBacillus Macorouswith Membrane Active Substances. FOOD BIOTECHNOL 2006. [DOI: 10.1080/08905430600709552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Graham RLJ, Pollock CE, Ternan NG, McMullan G. Top-down proteomic analysis of the soluble sub-proteome of the obligate thermophile, Geobacillus thermoleovorans T80: insights into its cellular processes. J Proteome Res 2006; 5:822-8. [PMID: 16602689 DOI: 10.1021/pr0504642] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the first analysis of the soluble sub-proteome of the obligate thermophile, Geobacillus thermoleovorans T80, utilizing a robust multidimensional protein identification protocol. A total of 1,336 proteins were initially identified utilizing automated MS/MS identification software. Intensive manual curation resulted in a final list containing a total of 294 unique proteins. Physiochemical characterization and functional classification of the soluble sub-proteome was carried out. The strategy has allowed us to gain an insight into the cellular processes of this obligate thermophile, identifying a variety of proteins known to play a role in stress response. Included within these were a number of sigma factors such as sigma(A) that initiate transcription of the heat shock operons controlled by the HrcA-CIRCE complex within gram positive bacteria. In addition, it has enabled us to assign a degree of functionality to 29 out of 36 gene products detected in this study that were hitherto described as being only hypothetical conserved proteins.
Collapse
Affiliation(s)
- Robert Leslie James Graham
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, BT52 1SA, United Kingdom.
| | | | | | | |
Collapse
|
33
|
Uma Maheswar Rao JL, Satyanarayana T. Amelioration in secretion of hyperthermostable and Ca2+ -independent alpha-amylase of Geobacillus thermoleovorans by some polyamines and their biosynthesis inhibitor methylglyoxal-bis-guanylhydrazone. J Appl Microbiol 2005; 97:1015-20. [PMID: 15479417 DOI: 10.1111/j.1365-2672.2004.02395.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Effect of polyamines and their biosynthesis inhibitors on the production of hyperthermostable and Ca2+ -independent alpha-amylase by Geobacillus thermoleovorans MTCC 4220. METHODS AND RESULTS The alpha-amylase was produced in starch-yeast extract-tryptone (SYT) broth with different polyamines (PA) and polyamine biosynthesis inhibitors, methylglyoxal-bis-guanylhydrazone (MGBG) and cyclohexylammonium sulphate (CHA) at 70 degrees C. The bacterial pellets were obtained after growing G. thermoleovorans at different temperatures, and used in determining total PA. The cell-free culture filtrates were used in alpha-amylase assays. During growth, total polyamines in biomass increased till 2 h, and thereafter, decreased gradually. The total polyamine content was very high in the biomass cultivated at 55 degrees C when compared with that of higher temperatures. Enzyme titre enhanced up to 70 degrees C, and thereafter declined. Extracellular enzyme and protein levels declined in the presence of exogenously added PA. The intracellular enzyme titres, however, were higher in putrescine (put) and spermidine (spd) than in spermine (spm). Polyamine biosynthesis inhibitor, MGBG enhanced secretion of alpha-amylase in a laboratory fermentor as well as shake flasks, although CHA did not affect it. CONCLUSIONS The intracellular accumulation of put in the presence of MGBG appeared to enhance synthesis and secretion of alpha-amylase. Extracellular enzyme and protein levels were low in the presence of exogenously added PA, but their intracellular levels, however, were higher in put and spd than in spm. SIGNIFICANCE AND IMPACT OF THE STUDY A substantial increase in the synthesis and secretion of alpha-amylase was attained in G. thermoleovorans in the presence of polyamine biosynthesis inhibitor MGBG.
Collapse
|
34
|
Bertau M, Jörg G. Saccharides as efficacious solubilisers for highly lipophilic compounds in aqueous media. Bioorg Med Chem 2004; 12:2973-83. [PMID: 15142556 DOI: 10.1016/j.bmc.2004.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 03/16/2004] [Indexed: 11/20/2022]
Abstract
The bioavailability of lipophilic substrates is critical for biotransformations with isolated enzymes as well as with whole cells. With the example of a series of lipophilic ketones the suitability of saccharides as potent solubilisers for highly lipophilic substrates was demonstrated. Best results were obtained for d-glucose, which increased substrate solubility up to 50 times. In whole-cell biocatalysis the sugar acts both as solubiliser and as carbon source for which reason this procedure does not impair cell physiology and is unique in being environmentally benign. The capability of saccharides to solubilise lipophilic compounds in aqueous media sources from their ability to form hydrophilic and lipophilic domains at hydrophobic interfaces, thus forming cyclodextrin-like structures around the lipophilic substrate.
Collapse
Affiliation(s)
- Martin Bertau
- Institute of Biochemistry, Technical University of Dresden, 01062 Dresden, Germany.
| | | |
Collapse
|
35
|
Uma Maheswar Rao JL, Satyanarayana T. Statistical optimization of a high maltose-forming, hyperthermostable and Ca2+-independent alpha-amylase production by an extreme thermophile Geobacillus thermoleovorans using response surface methodology. J Appl Microbiol 2003; 95:712-8. [PMID: 12969284 DOI: 10.1046/j.1365-2672.2003.02036.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM Statistical optimization for maximum production of a hyperthermostable, Ca2+-independent and high maltose-forming alpha-amylase by Geobacillus thermoleovorans. METHODS AND RESULTS G. thermoleovorans was cultivated in 250 ml flasks containing 50 ml of chemically defined glucose-arginine medium (g l(-1): glucose 20; arginine 1.2; riboflavin 150 microg ml(-1); MgSO4. 7H2O 0.2; NaCl 1.0; pH 7.0). The medium was inoculated with 5 h-old bacterial inoculum (1.8x10(8) CFU ml(-1)), and incubated in an incubator shaker at 70 degrees C for 12 h at 200 rev min(-1). The fermentation variables optimized by 'one variable at a time' approach were further optimized by response surface methodology (RSM). The statistical model was obtained using central composite design (CCD) with three variables: glucose, riboflavin and inoculum density. An over all 24 and 70% increase in enzyme production was attained in shake flasks and fermenter because of optimization by RSM, respectively. A good coverage of interactions could also be explained by RSM. The end products of the action of alpha-amylase on starch were maltose (62%), maltotriose (31%) and malto-oligosaccharides (7%). CONCLUSIONS RSM allowed optimization of medium components and cultural parameters for attaining high yields of alpha-amylase, and further, a good coverage of interactions could be explained. The yield of maltose was higher than maltotriose and malto-oligosaccharides in the starch hydrolysate. SIGNIFICANCE AND IMPACT OF THE STUDY By applying RSM, critical fermentation variables were optimized rapidly. The starch hydrolysate contained a high proportion of maltose, and therefore, the enzyme can find application in starch saccharification process for the manufacture of high maltose syrups. The use of this enzyme in starch saccharification eliminates the addition of Ca2+.
Collapse
Affiliation(s)
- J L Uma Maheswar Rao
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | | |
Collapse
|