1
|
Markus J, Landry T, Stevens Z, Scott H, Llanos P, Debatis M, Armento A, Klausner M, Ayehunie S. Human small intestinal organotypic culture model for drug permeation, inflammation, and toxicity assays. In Vitro Cell Dev Biol Anim 2020; 57:160-173. [PMID: 33237403 PMCID: PMC7687576 DOI: 10.1007/s11626-020-00526-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
The gastrointestinal tract (GIT), in particular, the small intestine, plays a significant role in food digestion, fluid and electrolyte transport, drug absorption and metabolism, and nutrient uptake. As the longest portion of the GIT, the small intestine also plays a vital role in protecting the host against pathogenic or opportunistic microbial invasion. However, establishing polarized intestinal tissue models in vitro that reflect the architecture and physiology of the gut has been a challenge for decades and the lack of translational models that predict human responses has impeded research in the drug absorption, metabolism, and drug-induced gastrointestinal toxicity space. Often, animals fail to recapitulate human physiology and do not predict human outcomes. Also, certain human pathogens are species specific and do not infect other hosts. Concerns such as variability of results, a low throughput format, and ethical considerations further complicate the use of animals for predicting the safety and efficacy xenobiotics in humans. These limitations necessitate the development of in vitro 3D human intestinal tissue models that recapitulate in vivo–like microenvironment and provide more physiologically relevant cellular responses so that they can better predict the safety and efficacy of pharmaceuticals and toxicants. Over the past decade, much progress has been made in the development of in vitro intestinal models (organoids and 3D-organotypic tissues) using either inducible pluripotent or adult stem cells. Among the models, the MatTek’s intestinal tissue model (EpiIntestinal™ Ashland, MA) has been used extensively by the pharmaceutical industry to study drug permeation, metabolism, drug-induced GI toxicity, pathogen infections, inflammation, wound healing, and as a predictive model for a clinical adverse outcome (diarrhea) to pharmaceutical drugs. In this paper, our review will focus on the potential of in vitro small intestinal tissues as preclinical research tool and as alternative to the use of animals.
Collapse
Affiliation(s)
- Jan Markus
- In Vitro Life Science Laboratories, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Deptula P, Loivamaa I, Smolander OP, Laine P, Roberts RJ, Piironen V, Paulin L, Savijoki K, Auvinen P, Varmanen P. Red-Brown Pigmentation of Acidipropionibacterium jensenii Is Tied to Haemolytic Activity and cyl-Like Gene Cluster. Microorganisms 2019; 7:microorganisms7110512. [PMID: 31671651 PMCID: PMC6920887 DOI: 10.3390/microorganisms7110512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 01/28/2023] Open
Abstract
The novel Acidipropionibacterium genus encompasses species of industrial importance but also those associated with food spoilage. In particular, Acidipropionibacterium acidipropionici, Acidipropionibacterium thoenii, and Acidipropionibacterium jensenii play an important role in food fermentation, as biopreservatives, or as potential probiotics. Notably, A. jensenii and A. thoenii can cause brown spot defects in Swiss-type cheeses, which have been tied to the rhamnolipid pigment granadaene. In the pathogenic bacterium Streptococcus agalactiae, production of granadaene depends on the presence of a cyl gene cluster, an important virulence factor linked with haemolytic activity. Here, we show that the production of granadaene in pigmented Acidipropionibacterium, including A. jensenii, A. thoenii, and Acidipropionibacterium virtanenii, is tied to haemolytic activity and the presence of a cyl-like gene cluster. Furthermore, we propose a PCR-based test, which allows pinpointing acidipropionibacteria with the cyl-like gene cluster. Finally, we present the first two whole genome sequence analyses of the A. jensenii strains as well as testing phenotypic characteristics important for industrial applications. In conclusion, the present study sheds light on potential risks associated with the presence of pigmented Acidipropionibacterium strains in food fermentation. In addition, the results presented here provide ground for development of a quick and simple diagnostic test instrumental in avoiding potential negative effects of Acidipropionibacterium strains with haemolytic activity on food quality.
Collapse
Affiliation(s)
- Paulina Deptula
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
- Department of Food Sciences, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| | - Iida Loivamaa
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland.
| | | | - Pia Laine
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | | | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland.
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | - Kirsi Savijoki
- Division of Pharmaceutical Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
3
|
Liu X, Zhang B, Sohal IS, Bello D, Chen H. Is "nano safe to eat or not"? A review of the state-of-the art in soft engineered nanoparticle (sENP) formulation and delivery in foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:299-335. [PMID: 31151727 DOI: 10.1016/bs.afnr.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With superior physicochemical properties, soft engineered nanoparticles (sENP) (protein, carbohydrate, lipids and other biomaterials) are widely used in foods. The preparation, functionalities, applications, transformations in gastrointestinal (GI) tract, and effects on gut microbiota of sENP directly incorporated for ingestion are reviewed herein. At the time of this review, there is no notable report of safety concerns of these nanomaterials found in the literature. Meanwhile, various beneficial effects have been demonstrated for the application of sENP. To address public perception and safety concerns of nanoscale materials in food, methodologies for evaluation of physiological effects of nanomaterials are reviewed. The combination of these complementary methods will be useful for the establishment of a comprehensive risk assessment system.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States
| | - Boce Zhang
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States.
| | - Ikjot Singh Sohal
- Purdue University, Center for Cancer Research, West Lafayette, IN, United States
| | - Dhimiter Bello
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States.
| | - Hongda Chen
- U.S. Department of Agriculture, National Institute of Food and Agriculture, Washington DC, United States.
| |
Collapse
|
4
|
A low-power ultrasound attenuation improves the stability of biofilm and hydrophobicity of Propionibacterium freudenreichii subsp. freudenreichii DSM 20271 and Acidipropionibacterium jensenii DSM 20535. Food Microbiol 2019; 78:104-109. [DOI: 10.1016/j.fm.2018.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 02/05/2023]
|
5
|
Saito M, Shinozaki-Kuwahara N, Tsudukibashi O, Hashizume-Takizawa T, Kobayashi R, Kurita-Ochiai T. Pseudopropionibacterium rubrum sp. nov., a novel red-pigmented species isolated from human gingival sulcus. Microbiol Immunol 2018; 62:388-394. [PMID: 29687917 DOI: 10.1111/1348-0421.12592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/03/2018] [Accepted: 04/16/2018] [Indexed: 11/27/2022]
Abstract
In this study, Strain [corrected] SK-1(T), a novel gram-positive, pleomorphic, rod-shaped, non-spore forming, non-motile organism, designated SK-1T , was isolated from human gingival sulcus and found to produce acetic acid, propionic acid, lactic acid, and succinic acid as end products of glucose fermentation. Strain SK-1T is most closely related to Pseudopropionibacterium (Propionibacterium) propionicum with sequence homologies of the 16S rRNA and RNA polymerase β subunit (rpoB) genes of 96.6% and 93.1%, respectively. The genomic DNA G + C content of the isolate was 61.8 mol%. On the basis of the sequence data of the 16S rRNA and housekeeping (rpoB) genes, a novel taxon is here proposed, Pseudopropionibacterium rubrum sp. nov. (type strain SK-1T = JCM 31317T = DSM 100122T ). The 16S rRNA and rpoB gene sequences of strain SK-1T have been deposited in the DDBJ under the accession numbers LC002971 and LC102236, respectively.
Collapse
Affiliation(s)
- Masanori Saito
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba, 271-8587, Japan
| | - Noriko Shinozaki-Kuwahara
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba, 271-8587, Japan
| | - Osamu Tsudukibashi
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba, 271-8587, Japan
| | - Tomomi Hashizume-Takizawa
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba, 271-8587, Japan
| | - Ryoki Kobayashi
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba, 271-8587, Japan
| | - Tomoko Kurita-Ochiai
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba, 271-8587, Japan
| |
Collapse
|
6
|
Ayehunie S, Landry T, Stevens Z, Armento A, Hayden P, Klausner M. Human Primary Cell-Based Organotypic Microtissues for Modeling Small Intestinal Drug Absorption. Pharm Res 2018; 35:72. [PMID: 29476278 PMCID: PMC6599640 DOI: 10.1007/s11095-018-2362-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE The study evaluates the use of new in vitro primary human cell-based organotypic small intestinal (SMI) microtissues for predicting intestinal drug absorption and drug-drug interaction. METHODS The SMI microtissues were reconstructed using human intestinal fibroblasts and enterocytes cultured on a permeable support. To evaluate the suitability of the intestinal microtissues to model drug absorption, the permeability coefficients across the microtissues were determined for a panel of 11 benchmark drugs with known human absorption and Caco-2 permeability data. Drug-drug interactions were examined using efflux transporter substrates and inhibitors. RESULTS The 3D-intestinal microtissues recapitulate the structural features and physiological barrier properties of the human small intestine. The microtissues also expressed drug transporters and metabolizing enzymes found on the intestinal wall. Functionally, the SMI microtissues were able to discriminate between low and high permeability drugs and correlated better with human absorption data (r2 = 0.91) compared to Caco-2 cells (r2 = 0.71). Finally, the functionality of efflux transporters was confirmed using efflux substrates and inhibitors which resulted in efflux ratios of >2.0 fold and by a decrease in efflux ratios following the addition of inhibitors. CONCLUSION The SMI microtissues appear to be a useful pre-clinical tool for predicting drug bioavailability of orally administered drugs.
Collapse
Affiliation(s)
- Seyoum Ayehunie
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts, USA.
| | - Tim Landry
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts, USA
| | - Zachary Stevens
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts, USA
| | - Alex Armento
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts, USA
| | - Patrick Hayden
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts, USA
| | | |
Collapse
|
7
|
Inhibition of EV71 by curcumin in intestinal epithelial cells. PLoS One 2018; 13:e0191617. [PMID: 29370243 PMCID: PMC5784943 DOI: 10.1371/journal.pone.0191617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/08/2018] [Indexed: 01/26/2023] Open
Abstract
EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections.
Collapse
|
8
|
Yadav AK, Tyagi A, Kumar A, Panwar S, Grover S, Saklani AC, Hemalatha R, Batish VK. Adhesion of Lactobacilli and their anti-infectivity potential. Crit Rev Food Sci Nutr 2017; 57:2042-2056. [PMID: 25879917 DOI: 10.1080/10408398.2014.918533] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The probiotic potential of lactic acid bacteria primarily point toward colonizing ability of Lactobacilli as the most important attribute for endowing all the known beneficial effects in a host. Lactobacillus species exert health-promoting function in the gastrointestinal tract through various mechanisms such as pathogen exclusion, maintenance of microbial balance, immunomodulation, and other crucial functions. It has been seen that many surface layer proteins are involved in host adhesion, and play significant role in the modification of some signaling pathways within the host cells. Interaction between different bacterial cell surface proteins and host receptor has been imperative for a better understanding of the mechanism through which Lactobacilli exert their health-promoting functions.
Collapse
Affiliation(s)
- Ashok Kumar Yadav
- a Department of Microbiology , National Institute of Nutrition , Hyderabad , India.,b Centre for Molecular Biology, Central University of Jammu , Samba , Jammu & Kashmir , India
| | - Ashish Tyagi
- c Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| | - Ashwani Kumar
- d Department of Biotechnology , Seth Jai Parkash Mukand Lal Institute of Engineering and Technology , Radaur , Yamuna Nagar , Haryana , India.,e Department of Nutrition Biology , Central University of Haryana , Mahendergarh , Haryana , India
| | - Surbhi Panwar
- d Department of Biotechnology , Seth Jai Parkash Mukand Lal Institute of Engineering and Technology , Radaur , Yamuna Nagar , Haryana , India
| | - Sunita Grover
- c Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| | | | - Rajkumar Hemalatha
- a Department of Microbiology , National Institute of Nutrition , Hyderabad , India
| | - Virender Kumar Batish
- c Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| |
Collapse
|
9
|
do Carmo FLR, Rabah H, Huang S, Gaucher F, Deplanche M, Dutertre S, Jardin J, Le Loir Y, Azevedo V, Jan G. Propionibacterium freudenreichii Surface Protein SlpB Is Involved in Adhesion to Intestinal HT-29 Cells. Front Microbiol 2017; 8:1033. [PMID: 28642747 PMCID: PMC5462946 DOI: 10.3389/fmicb.2017.01033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/23/2017] [Indexed: 12/16/2022] Open
Abstract
Propionibacterium freudenreichii is a beneficial bacterium traditionally used as a cheese ripening starter and more recently for its probiotic abilities based on the release of beneficial metabolites. In addition to these metabolites (short-chain fatty acids, vitamins, and bifidogenic factor), P. freudenreichii revealed an immunomodulatory effect confirmed in vivo by the ability to protect mice from induced acute colitis. This effect is, however, highly strain-dependent. Local action of metabolites and of immunomodulatory molecules is favored by the ability of probiotics to adhere to the host cells. This property depends on key surface compounds, still poorly characterized in propionibacteria. In the present study, we showed different adhesion rates to cultured human intestinal cells, among strains of P. freudenreichii. The most adhesive one was P. freudenreichii CIRM-BIA 129, which is known to expose surface-layer proteins. We evidenced here the involvement of these proteins in adhesion to cultured human colon cells. We then aimed at deciphering the mechanisms involved in adhesion. Adhesion was inhibited by antibodies raised against SlpB, one of the surface-layer proteins in P. freudenreichii CIRM-BIA 129. Inactivation of the corresponding gene suppressed adhesion, further evidencing the key role of slpB product in cell adhesion. This work confirms the various functions fulfilled by surface-layer proteins, including probiotic/host interactions. It opens new perspectives for the understanding of probiotic determinants in propionibacteria, and for the selection of the most efficient strains within the P. freudenreichii species.
Collapse
Affiliation(s)
- Fillipe L R do Carmo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Houem Rabah
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
- Pôle Agronomique OuestRennes, France
| | - Song Huang
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow UniversitySuzhou, China
| | - Floriane Gaucher
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Martine Deplanche
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Stéphanie Dutertre
- Microscopy Rennes Imaging Center, Biosit - UMS CNRS 3480/US, INSERM 018, University of Rennes 1Rennes, France
| | - Julien Jardin
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Yves Le Loir
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Vasco Azevedo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
| | - Gwénaël Jan
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| |
Collapse
|
10
|
Altieri C. Dairy propionibacteria as probiotics: recent evidences. World J Microbiol Biotechnol 2016; 32:172. [PMID: 27565782 DOI: 10.1007/s11274-016-2118-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/31/2016] [Indexed: 02/06/2023]
Abstract
Nowdays there is evidence that dairy propionibacteria display probiotic properties, which as yet have been underestimated. The aim of this paper is to review the recent highlights of data representing the probiotic potential of dairy propionibacteria, studied both by general selection criteria (useful for all probiotic potentials), and by more specific and innovative approach. Dairy propionibacteria show a robust nature, that makes them able to overcome technological hurdles, allowing their future use in various fermented probiotic foods. In addition to the general selection criteria for probiotics in areas such as food safety, technological and digestive stress tolerance, many potential health benefits have been recently described for dairy propionibacteria, including, production of several active molecules and adhesion capability, that can mean a steady action in modulation of microbiota and of metabolic activity in the gut; their impact on intestinal inflammation, modulation of the immune system, potential modulation of risk factors for cancer development modulation of intestinal absorption.
Collapse
Affiliation(s)
- Clelia Altieri
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, via Napoli 25, 71122, Foggia, Italy.
| |
Collapse
|
11
|
Zárate G, Palacios J, Villena J, Zúñiga-Hansen M. Inhibition of enteropathogens adhesion to human enterocyte-like HT-29 cells by a dairy strain of Propionibacterium acidipropionici. Benef Microbes 2016; 7:431-41. [DOI: 10.3920/bm2015.0144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adhesion to the host intestinal mucosa is considered relevant for orally delivered probiotics as it prolongs their persistence in the gut and their health promoting effects. Classical propionibacteria are microorganisms of interest due to their role as dairy starters as well as for their functions as probiotics. Propionibacterium acidipropionici Q4, is a dairy strain isolated from a Swiss-type cheese made in Argentina that displays probiotic potential. In the present work we assessed the ability of this strain to adhere to the human enterocyte-like HT-29 cell line and to counteract the adhesion of two common human enteropathogens, such as Escherichia coli C3 and Salmonella Enteritidis 90/390. The results were compared with those obtained with the well-known probiotic Lactobacillus rhamnosus GG. P. acidipropionici Q4 showed a high adhesion capacity, even higher than the reference strain L. rhamnosus GG (42.3±4.4% and 36.2±2.3%, respectively), whereas adhesion of enteropathogens was significantly lower (25.2±2.2% for E. coli and 21.0±3.4% for S. Enteritidis). Propionibacteria as well as lactobacilli were able to inhibit by exclusion and competition the adherence of E. coli C3 and S. Enteritidis 90/390 whereas only L. rhamnosus GG displaced S. Enteritidis from HT-29 intestinal cells. Inhibition of pathogens by propionibacteria was not exerted by antimicrobials or coaggregation but was mainly due to exclusion by cell surface components, such as proteins and carbohydrates. The relevance of cell surface proteins (CSP) for preventing pathogens infection was confirmed by their concentration dependent effect observed for both pathogens: 100 µg/ml of CSP inhibited E. coli attachment almost as untreated propionibacteria, whereas it partially inhibited the attachment of S. Enteritidis. Results suggest that P. acidipropionici Q4 could be considered for the development of propionibacteria containing functional foods helpful in counteracting enteropathogen infection.
Collapse
Affiliation(s)
- G. Zárate
- Centro de Referencia para Lactobacilos, Chacabuco 145, T4000ILC San Miguel de Tucumán, Argentina
| | - J.M. Palacios
- Centro de Referencia para Lactobacilos, Chacabuco 145, T4000ILC San Miguel de Tucumán, Argentina
| | - J. Villena
- Escuela de Medicina, Universidad de Valparaíso, Hontaneda 2653, 234000 Valparaíso, Chile
| | - M.E. Zúñiga-Hansen
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso (EIB-PUCV), Av. Brasil 2085, Valparaíso, Chile
| |
Collapse
|
12
|
Campaniello D, Bevilacqua A, Sinigaglia M, Altieri C. Screening of Propionibacterium spp. for potential probiotic properties. Anaerobe 2015; 34:169-73. [PMID: 26079323 DOI: 10.1016/j.anaerobe.2015.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/30/2022]
Abstract
The main topic of this paper is the evaluation of adhesion of propionibacteria to IPEC-J2 cells and the survival at pH 2.5 and with 0.3% bile salts added, bioactivity towards pathogens and antibiotic resistance of Propionibacterium freudenreichii subsp. shermanii, Propionibacterium jensenii, Propionibacterium acidipropionici and Propionibacterium thoenii. Adhesion to IPEC-J2 cell lines was ca. 25-35% and significantly increased with CaCl2. Moreover, propionibacteria showed a reduction of cell count of ca. 0.5% at pH 2.5 after 3 h, whereas cell count increased after 24 h with bile salts; finally, they significantly inhibited Escherichia coli O157:H7.
Collapse
Affiliation(s)
- Daniela Campaniello
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Clelia Altieri
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
13
|
Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties. J Proteomics 2015; 113:447-61. [DOI: 10.1016/j.jprot.2014.07.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/19/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023]
|
14
|
Costello CM, Sorna RM, Goh YL, Cengic I, Jain NK, March JC. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol Pharm 2014; 11:2030-9. [PMID: 24798584 PMCID: PMC4096232 DOI: 10.1021/mp5001422] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 01/02/2023]
Abstract
Biomimetic in vitro intestinal models are becoming useful tools for studying host-microbial interactions. In the past, these models have typically been limited to simple cultures on 2-D scaffolds or Transwell inserts, but it is widely understood that epithelial cells cultured in 3-D environments exhibit different phenotypes that are more reflective of native tissue, and that different microbial species will preferentially adhere to select locations along the intestinal villi. We used a synthetic 3-D tissue scaffold with villous features that could support the coculture of epithelial cell types with select bacterial populations. Our end goal was to establish microbial niches along the crypt-villus axis in order to mimic the natural microenvironment of the small intestine, which could potentially provide new insights into microbe-induced intestinal disorders, as well as enabling targeted probiotic therapies. We recreated the surface topography of the small intestine by fabricating a biodegradable and biocompatible villous scaffold using poly lactic-glycolic acid to enable the culture of Caco-2 with differentiation along the crypt-villus axis in a similar manner to native intestines. This was then used as a platform to mimic the adhesion and invasion profiles of both Salmonella and Pseudomonas, and assess the therapeutic potential of Lactobacillus and commensal Escherichia coli in a 3-D setting. We found that, in a 3-D environment, Lactobacillus is more successful at displacing pathogens, whereas Nissle is more effective at inhibiting pathogen adhesion.
Collapse
Affiliation(s)
- Cait M. Costello
- Department of Biological and Environmental
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rachel M. Sorna
- Department of Biological and Environmental
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yih-Lin Goh
- Department of Biological and Environmental
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ivana Cengic
- Department of Biological and Environmental
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nina K. Jain
- Department of Biological and Environmental
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - John C. March
- Department of Biological and Environmental
Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Effect of dairy probiotic combinations on in vitro gastrointestinal tolerance, intestinal epithelial cell adhesion and cytokine secretion. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.02.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
16
|
Ranadheera CS, Evans C, Adams M, Baines S. In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat's milk ice cream and yogurt. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.09.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Poonam, Pophaly SD, Tomar SK, De S, Singh R. Multifaceted attributes of dairy propionibacteria: a review. World J Microbiol Biotechnol 2012; 28:3081-95. [PMID: 22806746 DOI: 10.1007/s11274-012-1117-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/21/2012] [Indexed: 12/31/2022]
Abstract
Dairy propionibacteria are Generally Recognized as Safe (GRAS) status microorganisms which have been traditionally used for the manufacture of Swiss type cheeses. In the last two decades various added features and functionalities have been discovered and developed from these bacteria. Propionibacteria are robust organisms with remarkable adaptability to technological and physiological stress conditions. Besides, they also display a multitude of health promoting properties like modulation of gut microbiota, improved gut physiology and immunomodulation suggesting their promising probiotic potential. Propionibacteria produce an interestingly wide range of functional biomolecules like B group vitamins, trehalose, conjugated linoleic acid, propionic acid, bacteriocins, bifidogenic factors etc. These bacteria are thus now being explored for designing novel functional foods as well as for industrial production of nutraceuticals. Growing interest in these bacteria is fueled by the first whole genome sequencing of a Propionibacterium freudenreichii strain providing a platform for better understanding of various pathways and further improvement in related process technologies.
Collapse
Affiliation(s)
- Poonam
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana 132001, India
| | | | | | | | | |
Collapse
|
18
|
Preliminary safety evaluation of a new Bacteroides xylanisolvens isolate. Appl Environ Microbiol 2011; 78:528-35. [PMID: 22101046 DOI: 10.1128/aem.06641-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Besides conferring some health benefit to the host, a bacterial strain must present an unambiguous safety status to be considered a probiotic. We here present the preliminary safety evaluation of a new Bacteroides xylanisolvens strain (DSM 23964) isolated from human feces. First results suggest that it may be able to provide probiotic health benefits. Its identity was confirmed by biochemical analysis, by sequencing of its 16S rRNA genes, and by DNA-DNA hybridization. Virulence determinants known to occur in the genus Bacteroides, such the bft enterotoxin and other enzymatic activities involved in the degradation of the extracellular matrix and the capsular polysaccharide PS A, were absent in this strain. The investigation of the antibiotic susceptibility indicated that strain DSM 23964 was sensitive to metronidazole, meropenem agents, and clindamycin. Resistance to penicillin and ampicillin was identified to be conferred by the β-lactamase cepA gene and could therefore be restored by adding β-lactamase inhibitors. The localization of the cepA gene in the genome of strain DSM 23964 and the absence of detectable plasmids further suggest that a transfer of β-lactamase activity or the acquisition of other antibiotic resistances are highly improbable. Taken together, the presented data indicate that the strain B. xylanisolvens DSM 23964 has no virulence potential. Since it also resists the action of gastric enzymes and low-pH conditions, this strain is an interesting candidate for further investigation of its safety and potential health-promoting properties.
Collapse
|
19
|
Luo J, King S, Adams MC. Effect of probiotic Propionibacterium jensenii 702 supplementation on layer chicken performance. Benef Microbes 2011; 1:53-60. [PMID: 21831750 DOI: 10.3920/bm2009.0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of the probiotic, Propionibacterium jensenii 702 (PJ 702), supplementation on egg productivity, egg shell thickness, fatty acid profile of eggs, and body weight in early layer hens were investigated. Twenty eight twenty-week-old starter pullets were evenly divided into a treatment and a control group for an eight week experiment. Each bird in the treatment group received 107 cfu PJ 702 daily in a total volume of 1 ml by oral administration. No adverse effect was observed due to administration of PJ 702, and successful gastrointestinal transit in the bird was demonstrated by recovery of PJ 702 from faeces of the treatment group. Layer production was significantly improved by the supplementation of PJ 702. Total egg weight in the treatment group was significantly higher than the control (P<0.001). Average egg weight for the treatment group was 55.26 g, 4.2% higher than the control which averaged 53.02 g. Moreover, the fatty acid profile was significantly altered by the supplementation of PJ 702. Myristic acid (P<0.001), palmitoleic acid (P=0.001) and all-cis-11,14-eicosadienoic acid (P=0.02) were significantly lower in the treatment group compared to the control group. No difference in egg shell thickness was observed between the treatment and control group (P=0.23). In conclusion, the application of novel probiotic PJ 702 in the early layer hen is safe and effective to promote production and the quality of products in layer husbandry.
Collapse
Affiliation(s)
- J Luo
- Faculty of Science and IT, University of Newcastle, Callaghan, NSW, Australia.
| | | | | |
Collapse
|
20
|
Langerholc T, Maragkoudakis PA, Wollgast J, Gradisnik L, Cencic A. Novel and established intestinal cell line models - An indispensable tool in food science and nutrition. Trends Food Sci Technol 2011; 22:S11-S20. [PMID: 32336880 PMCID: PMC7172287 DOI: 10.1016/j.tifs.2011.03.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review presents the applications of intestinal cell models of human and pig origin in food and nutritional sciences and highlights their potential as in vitro platforms for preclinical research. Intestinal cell models are used in studies of bioavailability, adsorption and transport in nutritional or toxicological settings, allergic effects of food components, as well as probiotics and/or host-pathogen gut interactions. In addition, this review discusses the advantages of using specialized and functional cell models over generic cancer-derived cell lines.
Collapse
Affiliation(s)
- Tomaz Langerholc
- Dep. of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Science, University of Maribor, Pivola 10, 2311 Hoce, Slovenia
| | - Petros A Maragkoudakis
- European Commission - Joint Research Centre - Institute for Health and Consumer Protection, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy
| | - Jan Wollgast
- European Commission - Joint Research Centre - Institute for Health and Consumer Protection, Via Enrico Fermi 2749, 21027 Ispra (VA), Italy
| | - Lidija Gradisnik
- Dep. of Biochemistry and Nutrition, Faculty of Medicine, University of Maribor, Slomskov trg 15, 2000 Maribor, Slovenia
| | - Avrelija Cencic
- Dep. of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Science, University of Maribor, Pivola 10, 2311 Hoce, Slovenia
- Dep. of Biochemistry and Nutrition, Faculty of Medicine, University of Maribor, Slomskov trg 15, 2000 Maribor, Slovenia
| |
Collapse
|
21
|
Masuda K, Kajikawa A, Igimi S. Establishment and Evaluation of an in vitro M Cell Model using C2BBe1 Cells and Raji Cells. Biosci Microflora 2011; 30:37-44. [PMID: 25045312 PMCID: PMC4103634 DOI: 10.12938/bifidus.30.37] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/08/2010] [Indexed: 12/16/2022] Open
Abstract
In vitro M cell models, consisting of co-cultures of Caco-2 cells and
lymphoid cells, were developed and examined to observe bacterial transport. However, under
our experimental conditions, the differentiation of Caco-2 cells into M cell-like cells
could not be induced efficiently. To obtain a functionally stable M cell model based on
human cells, C2BBe1 cells were screened and co-cultured with human Raji cells. In our
co-cultures, increased sialyl Lewis A antigen expression and decreased Ulex
europeaus agglutinin 1 binding were observed. Regarding the functional
properties of the model, microsphere and lactic acid bacteria transport across the C2BBe1
co-cultures were increased compared with the levels seen in monocultures. The C2BBe1
monolayers that were co-cultured with Raji cells exhibited some M cell features;
therefore, we consider our M cell model to be useful for investigating the interactions of
bacteria with M cells.
Collapse
Affiliation(s)
- Kazuya Masuda
- United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan ; Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Akinobu Kajikawa
- Department of Food, Bioprocessing, Nutrition Sciences, North Carolina State University, Box 7624, Raleigh, NC27695, USA
| | - Shizunobu Igimi
- United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan ; Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
22
|
Cousin FJ, Mater DD, Foligne B, Jan G. Dairy propionibacteria as human probiotics: A review of recent evidence. ACTA ACUST UNITED AC 2010. [DOI: 10.1051/dst/2010032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
An In Vitro Study on Bacterial Growth Interactions and Intestinal Epithelial Cell Adhesion Characteristics of Probiotic Combinations. Curr Microbiol 2009; 60:327-35. [DOI: 10.1007/s00284-009-9545-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 11/05/2009] [Indexed: 12/23/2022]
|
24
|
Chichlowski M, Hale LP. Bacterial-mucosal interactions in inflammatory bowel disease: an alliance gone bad. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1139-49. [PMID: 18927210 PMCID: PMC2604805 DOI: 10.1152/ajpgi.90516.2008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complex interaction of genetic, microbial, and environmental factors may result in continuous activation of the mucosal immune system leading to inflammatory bowel disease (IBD). Most present treatments for IBD involve altering or suppressing the aberrant immune response; however, the role of the intestinal microbiota in the pathophysiology of IBD is becoming more evident. The epithelial layer is essential for the proper functioning of the gastrointestinal tract, and its increased permeability to the luminal antigens may lead to the inflammatory processes and mucosal damage observed in IBD. Factors affecting the efficacy of the epithelial barrier include presence of pathogenic bacteria (e.g., Helicobacter spp.), presence of probiotic bacteria, availability of selected nutrients, and others. Defective function of the mucosal barrier might facilitate the contact of bacterial antigens and adjuvants with innate and adaptive immune cells to generate prolonged inflammatory responses. This review will briefly describe the complex structure of the epithelial barrier in the context of bacterial-mucosal interactions observed in human IBD and mouse models of colitis.
Collapse
Affiliation(s)
- Maciej Chichlowski
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Laura P. Hale
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
25
|
Adams M, Luo J, Rayward D, King S, Gibson R, Moghaddam G. Selection of a novel direct-fed microbial to enhance weight gain in intensively reared calves. Anim Feed Sci Technol 2008. [DOI: 10.1016/j.anifeedsci.2007.05.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Increased induction of apoptosis by Propionibacterium freudenreichii TL133 in colonic mucosal crypts of human microbiota-associated rats treated with 1,2-dimethylhydrazine. Br J Nutr 2008; 100:1251-9. [PMID: 18466653 DOI: 10.1017/s0007114508978284] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Propionibacterium freudenreichii, a food-grade bacterium able to kill colon cancer cell lines in vitro by apoptosis, may exert an anticarcinogenic effect in vivo. To assess this hypothesis, we administered daily 2 x 10(10) colony-forming units (CFU) of P. freudenreichii TL133 to human microbiota-associated (HMA) rats for 18 d. Either saline or 1,2-dimethylhydrazine (DMH) was also administered on days 13 and 17 and rats were killed on day 19. The levels of apoptosis and proliferation in the mid and distal colon were assessed by terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) and proliferating cell nuclear antigen (PCNA) immunolabelling, respectively. The administration of P. freudenreichii TL133 significantly increased the number of apoptotic cells in DMH-treated rats compared to those given DMH only (P < 0.01). Furthermore, propionibacteria were able to decrease the proliferation index in the distal colon after treatment with DMH (P < 0.01). Conversely, propionibacteria alone did not exert such an effect on healthy colonic mucosa. P. freudenreichii TL133 thus facilitated the elimination of damaged cells by apoptosis in the rat colon after genotoxic insult and may play a protective role against colon cancer.
Collapse
|
27
|
Hervé C, Fondrevez M, Chéron A, Barloy-Hubler F, Jan G. Transcarboxylase mRNA: A marker which evidences P. freudenreichii survival and metabolic activity during its transit in the human gut. Int J Food Microbiol 2007; 113:303-14. [PMID: 17156879 DOI: 10.1016/j.ijfoodmicro.2006.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 08/20/2006] [Indexed: 11/17/2022]
Abstract
Dairy propionibacteria have recently been considered as probiotics which may beneficially modulate the intestinal ecosystem. However, appropriate vectors (food matrices containing the probiotic) which preserve their viability and offer good tolerance towards digestive stresses need to be developed. In addition, the development of efficient non-invasive methods which specifically monitor Propionibacterium freudenreichii concentration and activity within the human gut is required. To address this latter need, an enzyme involved in propionic fermentation, transcarboxylase, was evaluated in this study as molecular marker in P. freudenreichii. In vitro, the three transcarboxylase subunits were shown to be encoded by an operon and their expression regulated. It occurred during propionic fermentation, ceased in starved cells and was not affected by digestive stresses. The 5S subunit gene of transcarboxylase allowed specific detection of P. freudenreichii by real time PCR in the complex human faecal microbiota. A dairy vector harbouring P. freudenreichii was developed and afforded elevated probiotic faecal concentrations in humans. In vivo, this PCR method allowed rapid quantification of faecal P. freudenreichii in agreement with the cultural method (cfu counting). Moreover, real time Reverse Transcription (RT) -PCR evidenced transcription of the 5S subunit gene during transit through the human digestive tract. This work constitutes a methodological advance for survival and activity evaluation in human trials of the probiotics belonging to the P. freudenreichii species. It strongly suggests that this bacterium not only survives but remains metabolically active in the human gut.
Collapse
Affiliation(s)
- Christophe Hervé
- Laboratoires Standa, UMR-STLO, 65 rue de Saint-Brieuc, 35042 RENNES cedex, France.
| | | | | | | | | |
Collapse
|
28
|
Abstract
The demonstration that immune and epithelial cells can discriminate between different microbial species has extended our understanding of the actions of probiotics beyond simple barrier and antimicrobial concepts. Several probiotic mechanisms of action, relative to inflammatory bowel disease, have been elucidated: (1) competitive exclusion, whereby probiotics compete with microbial pathogens for a limited number of receptors present on the surface epithelium; (2) immunomodulation and/or stimulation of an immune response of gut-associated lymphoid and epithelial cells; (3) antimicrobial activity and suppression of pathogen growth; (4) enhancement of barrier function; and (5) induction of T cell apoptosis in the mucosal immune compartment. The unraveling of these mechanisms of action has led to new support for the use of probiotics in the management of clinical inflammatory bowel disease. Though level 1 evidence now supports the therapeutic use of probiotics in the treatment of postoperative pouchitis, only levels 2 and 3 evidence is currently available in support of the use of probiotics in the treatment of ulcerative colitis and Crohn's disease. Nevertheless, one significant and consistent finding has emerged during the course of research in the past year: not all probiotic bacteria have similar therapeutic effects. Rigorously designed, controlled clinical trials are vital to investigate the unresolved issues related to efficacy, dose, duration of use, single or multi-strain formulation, and the concomitant use of probiotics, synbiotics, or antibiotics.
Collapse
Affiliation(s)
- Richard N Fedorak
- Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
29
|
Huang Y, Kotula L, Adams MC. The in vivo assessment of safety and gastrointestinal survival of an orally administered novel probiotic, Propionibacterium jensenii 702, in a male Wistar rat model. Food Chem Toxicol 2003; 41:1781-7. [PMID: 14563403 DOI: 10.1016/s0278-6915(03)00215-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study aimed to evaluate in vivo gastrointestinal survival and safety of orally administered probiotic bacterium, Propionibacterium jensenii 702, using a male Wistar rat model. A high dose of 10(10) cfu/rat/day of P. jensenii 702 was fed to each rat for 81 days. The repeated dose toxicity and translocation of P. jensenii 702 into rat tissues were evaluated, along with the rat faecal beta-glucuronidase activities and dairy propionibacteria counts. Results showed that P. jensenii 702 had no adverse effect on general health status, body weight gain, visceral organs and faecal beta-glucuronidase activities. No viable cells of P. jensenii 702 were recovered from blood and tissue samples (mesenteric lymph nodes, liver and spleen) of rats, and no treatment-associated illness or death was observed. Faecal dairy propionibacteria counts reached 10(8) cfu/g after 36 days treatment and remained between 10(8)-10(9) cfu/g till the end of 81 days treatment. The results indicate that P. jensenii 702 was able to survive the in vivo gastrointestinal tract transit of rats, with no adverse affects on the animals. However, further human clinical trials are required before strain P. jensenii 702 could be incorporated into food for human consumption as probiotics.
Collapse
Affiliation(s)
- Yang Huang
- School of Applied Sciences, The University of Newcastle, PO Box 127, Ourimbah, NSW 2258, Australia
| | | | | |
Collapse
|