1
|
Zhou Z, Xu H, Fu J, Wei P, Mei J. Urolithiasis Causes Osteoporosis in Asians: Genetic Evidence from Mendelian Randomization and Pathway Analysis. J Clin Endocrinol Metab 2025; 110:1266-1278. [PMID: 38973307 DOI: 10.1210/clinem/dgae461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND It is an indisputable fact that patients with urolithiasis are prone to osteoporosis (OP), but the specific mechanism of their association is unclear. Previous studies have focused on the mediation of environmental factors such as diet; however, the potential of urolithiasis itself to induce OP remains uncertain. METHODS In this study, we used data from the Japan BioBank (6638 urolithiasis and 7788 OP cases) to investigate the direct causal relationship and mechanism between urolithiasis and OP, applying Mendelian randomization, genetic correlation analysis, colocalization, and pathway analysis. We selected 10 genetic variants as instrumental variables for urolithiasis. RESULTS The results showed a positive association between genetically predicted urolithiasis and OP, with significant direct effects persisting after adjusting for OP-associated factors in 4 models. Reverse analysis revealed no significant causal effect of genetically predicted OP on urolithiasis. While genetic correlation analysis and colocalization did not find conclusive evidence, mediation analysis identified estimated glomerular rate as a significant contributor. Co-risk factor analysis unveiled cardiovascular elements as common risks for both conditions. Bioanalysis implicates that cytokine, metabolic, and calcium signaling pathways may bridge urolithiasis and OP, with BCAS3, DGKH, TBX2, and TBX2-AS1 identified as potential causal genes. CONCLUSION In conclusion, the study establishes a direct causal link between urolithiasis and OP, independent of environmental factors. Regardless of lifestyle, urolithiasis patients should remain vigilant about the risk of OP and consider regular OP screening. The biological mechanism of urolithiasis combined with OP and related drugs still needs to be further explored.
Collapse
Affiliation(s)
- Zijie Zhou
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Haoying Xu
- Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Jiehui Fu
- Department of Sports Medicine (Orthopedics), Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou 350003, China
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China
| | - Jian Mei
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Ferre N, Parada E, Balaguer A, Feliu A, Roqué-Figuls M, Franco JVA, Escribano J. Pharmacological interventions for preventing complications in patients with idiopathic hypercalciuria: A systematic review. Nefrologia 2022; 42:506-518. [PMID: 36792305 DOI: 10.1016/j.nefroe.2021.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/03/2021] [Indexed: 06/18/2023] Open
Abstract
OBJECTIVE To assess the effects of pharmacological interventions in patients with idiopathic hypercalciuria. METHODS We performed a search of multiple databases, trial registries, grey literature and conference proceedings up to October 2019. We included randomized and quasi-randomized controlled trials that examined any pharmacological intervention for preventing complications of idiopathic hypercalciuria (given for at least four months and six of follow-up). The primary outcomes were stone-free patients, urinary symptoms and severe adverse events. RESULTS We included five RCTs (n=446 patients, all adults, 4 in individuals with kidney stones and 1 in postmenopausal women with osteoporosis). Diuretics were likely to increase the number of stone-free patients (RR 1.61, 95% CI 1.33-1.96, moderate quality of evidence (QoE)); 274 more stone-free patients/1000 patients treated (95% CI: 148-432) and produced a slight decrease in the stone formation rate (mean difference -0.18, 95% CI -0.30 to -0.06, low QoE); 180 fewer stones/year/1000 patients treated (95% CI: 300 r to 60). No data on urinary symptoms were reported. The association between diuretic use and severe adverse events was uncertain (RR 5.00, 95% CI 0.60-41.88, very low QoE); 4 more severe adverse events/1000 patients treated (95% CI: 0 fewer to 39 more). CONCLUSIONS The addition of diuretics to a normal or modified diet probably reduces the number of stone recurrences and may decrease the stone formation rate. It is uncertain whether diuretics increase the occurrence of severe adverse events. There were no studies investigating other outcomes or in children.
Collapse
Affiliation(s)
- Natalia Ferre
- Universitat Rovira i Virgili, School of Medicine, Pediatric Research Unit, Sant Llorenç 21, 43201 Reus, Spain
| | - Ester Parada
- Universitat Rovira i Virgili, School of Medicine, Pediatric Research Unit, Sant Llorenç 21, 43201 Reus, Spain; Department of Pediatrics, Hospital Universitari de Tarragona Joan XXIII, Dr. Mallafré Guasch 4, 43005 Tarragona, Spain
| | - Albert Balaguer
- Department of Pediatrics, Hospital Universitari General de Catalunya, Pere i Pons 1, 08195 Sant Cugat del Vallés, Barcelona, Spain; Universitat Internacional de Catalunya, Carrer de la Immaculada 22, 08017 Barcelona, Spain
| | - Albert Feliu
- Universitat Rovira i Virgili, School of Medicine, Pediatric Research Unit, Sant Llorenç 21, 43201 Reus, Spain; Department of Pediatrics, Hospital Universitari St Joan de Reus, Avinguda del Doctor Josep Laporte 2, 43204 Reus, Spain
| | - Marta Roqué-Figuls
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Sant Quintí 77-79, 08041 Barcelona, Spain
| | - Juan Victor A Franco
- Argentine Cochrane Centre, Instituto Universitario Hospital Italiano, Potosí 4265, C1199 CABA Buenos Aires, Argentina
| | - Joaquín Escribano
- Universitat Rovira i Virgili, School of Medicine, Pediatric Research Unit, Sant Llorenç 21, 43201 Reus, Spain; Department of Pediatrics, Hospital Universitari St Joan de Reus, Avinguda del Doctor Josep Laporte 2, 43204 Reus, Spain.
| |
Collapse
|
3
|
Ferre N, Parada E, Balaguer A, Feliu A, Roqué-Figuls M, Franco JVA, Escribano J. Pharmacological interventions for preventing complications in patients with idiopathic hypercalciuria: A systematic review. Nefrologia 2021; 42:S0211-6995(21)00150-8. [PMID: 34393000 DOI: 10.1016/j.nefro.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 04/03/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the effects of pharmacological interventions in patients with idiopathic hypercalciuria. METHODS We performed a search of multiple databases, trial registries, grey literature and conference proceedings up to October 2019. We included randomized and quasi-randomized controlled trials that examined any pharmacological intervention for preventing complications of idiopathic hypercalciuria (given for at least four months and six of follow-up). The primary outcomes were stone-free patients, urinary symptoms and severe adverse events. RESULTS We included five RCTs (n=446 patients, all adults, 4 in individuals with kidney stones and 1 in postmenopausal women with osteoporosis). Diuretics were likely to increase the number of stone-free patients (RR 1.61, 95% CI 1.33-1.96, moderate quality of evidence (QoE)); 274 more stone-free patients/1000 patients treated (95% CI: 148-432) and produced a slight decrease in the stone formation rate (mean difference -0.18, 95% CI -0.30 to -0.06, low QoE); 180 fewer stones/year/1000 patients treated (95% CI: 300 r to 60). No data on urinary symptoms were reported. The association between diuretic use and severe adverse events was uncertain (RR 5.00, 95% CI 0.60-41.88, very low QoE); 4 more severe adverse events/1000 patients treated (95% CI: 0 fewer to 39 more). CONCLUSIONS The addition of diuretics to a normal or modified diet probably reduces the number of stone recurrences and may decrease the stone formation rate. It is uncertain whether diuretics increase the occurrence of severe adverse events. There were no studies investigating other outcomes or in children.
Collapse
Affiliation(s)
- Natalia Ferre
- Universitat Rovira i Virgili, School of Medicine, Pediatric Research Unit, Sant Llorenç 21, 43201 Reus, Spain
| | - Ester Parada
- Universitat Rovira i Virgili, School of Medicine, Pediatric Research Unit, Sant Llorenç 21, 43201 Reus, Spain; Department of Pediatrics, Hospital Universitari de Tarragona Joan XXIII, Dr. Mallafré Guasch 4, 43005 Tarragona, Spain
| | - Albert Balaguer
- Department of Pediatrics, Hospital Universitari General de Catalunya, Pere i Pons 1, 08195 Sant Cugat del Vallés, Barcelona, Spain; Universitat Internacional de Catalunya, Carrer de la Immaculada 22, 08017 Barcelona, Spain
| | - Albert Feliu
- Universitat Rovira i Virgili, School of Medicine, Pediatric Research Unit, Sant Llorenç 21, 43201 Reus, Spain; Department of Pediatrics, Hospital Universitari St Joan de Reus, Avinguda del Doctor Josep Laporte 2, 43204 Reus, Spain
| | - Marta Roqué-Figuls
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Sant Quintí 77-79, 08041 Barcelona, Spain
| | - Juan Victor A Franco
- Argentine Cochrane Centre, Instituto Universitario Hospital Italiano, Potosí 4265, C1199 CABA Buenos Aires, Argentina
| | - Joaquín Escribano
- Universitat Rovira i Virgili, School of Medicine, Pediatric Research Unit, Sant Llorenç 21, 43201 Reus, Spain; Department of Pediatrics, Hospital Universitari St Joan de Reus, Avinguda del Doctor Josep Laporte 2, 43204 Reus, Spain.
| |
Collapse
|
4
|
Perez-Suarez G, Yanes MIL, de Basoa MCMF, Almeida ES, García Nieto VM. Evolution of bone mineral density in patients with idiopathic hypercalciuria: a 20-year longitudinal study. Pediatr Nephrol 2021; 36:661-667. [PMID: 32980941 DOI: 10.1007/s00467-020-04754-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/06/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Several recent studies reported bone mineral density (BMD) reduction in pediatric patients with idiopathic hypercalciuria (IH). This longitudinal study aimed to evaluate BMD evolution in IH patients through three bone densitometry studies conducted over 20 years on average. A second objective was to evaluate urine calcium and citrate excretion during this period. METHODS Case notes of 34 patients diagnosed with IH at age 7.9 ± 3, alongside results of two bone densitometry studies, performed at 10.5 ± 2.7 (BMD1) and 14.5 ± 2.7 (BMD2) years of age, were reviewed. Patients underwent a third densitometry study in adulthood (BMD3) aged 28.3 ± 2.9. Mean follow-up duration (time-lapse between BMD1 and BMD3) was 17.7 ± 1.4 years. RESULTS Statistically significant differences were found between z-BMD3 (- 0.85 ± 1.10) and z-BMD1 (- 1.47 ± 0.99) (P = 0.001) as well as between z-BMD3 and z-BMD2 (- 1.33 ± 1.20) (P = 0.016). At the end of follow-up, z-BMD3 was superior to z-BMD2 in 23 adult patients (67.6%) and lower in 11 patients (5M, 6F; 32.3%). Both men and women showed increased bone mass over time, although such increases were significant only for women. The gradual decrease observed in calcium/creatinine and citrate/creatinine ratios could be related to improvement in osteoblastic activity and especially reduction in osteoclastic activity. CONCLUSIONS In patients with IH, BMD improves, which may be related especially to female sex, increment of body mass, and reduction in bone resorption. Upon reaching adulthood, urine calcium and citrate excretion tend to decrease so lithogenic risk still remains. The cause of the latter is unknown, although it likely relates to changes in bone activity.
Collapse
Affiliation(s)
- German Perez-Suarez
- Nephrology Department, Hospital Universitario Insular de Las Palmas de Gran Canaria, Las Palmas, Canary Islands, Spain.
| | - Ma Isabel Luis Yanes
- Pediatric Nephrology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Canary Islands, Spain
| | | | | | - Víctor M García Nieto
- Pediatric Nephrology, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Canary Islands, Spain
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Kidney stones are strongly associated with low bone density and bone fracture. Clinical management focuses on prevention of kidney stones and bone fracture. We reviewed literature of kidney stones and bone disease with a special focus on updates in therapeutic strategies. We will review the literature regarding dietary management, supplements, and medications and emphasize the recent studies on bisphosphonates and kidney stone management. RECENT FINDINGS Bisphosphonate medications are commonly used in management of low bone density. Previous studies showed that they reduce urinary calcium. A recent large prospective study found that bisphosphonates may reduce the risk of kidney stones in individuals who have low bone density. In addition to lowering urinary calcium, a recent study found that bisphosphonates may act as an inhibitor in the urinary space. SUMMARY There are multiple dietary and pharmacologic strategies that can be considered for kidney stones and bone disease, such as low salt and normal calcium diet, as well as thiazides, alkali, and bisphosphonate medications. Bisphosphonates may have an important role in reducing bone resorption and reducing overall risk of kidney stone and bone disease.
Collapse
|
6
|
Miyajima S, Ishii T, Watanabe M, Ueki T, Tanaka M. Risk factors for urolithiasis in patients with Crohn's disease. Int J Urol 2020; 28:220-224. [PMID: 33191551 DOI: 10.1111/iju.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/22/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To study the risk factors for urolithiasis in patients with Crohn's disease. METHODS This retrospective study included 1071 patients with Crohn's disease who were treated at a single center. Data pertaining to the following variables were analyzed: sex; age; type of Crohn's disease; number of intestinal resections; residual small intestine length; ileostomy; history of glucocorticoid therapy; and duration of Crohn's disease treatment. RESULTS Of the 1071 patients, 34 (28 male and six female) had urolithiasis (urolithiasis group) and 1037 (711 male and 326 female) did not (non-urolithiasis group). The median residual small intestine length measured in the urolithiasis group (280.0 cm) was significantly shorter than that in the non-urolithiasis group (342.5 cm; P < 0.01). Significantly more patients in the urolithiasis group (14/34) received steroid medication than those in the non-urolithiasis group (213/1037; P < 0.01). On multivariate analysis, male sex (odds ratio 3.15; P < 0.05), history of glucocorticoid therapy (odds ratio 3.07; P < 0.05), and shorter residual small intestine length (odds ratio 0.99; P < 0.01) were risk factors for the development of urolithiasis in patients with Crohn's disease. CONCLUSION Our results suggest that male sex, history of glucocorticoid therapy, and shorter residual small intestine length are risk factors for urolithiasis in patients with Crohn's disease.
Collapse
Affiliation(s)
- Shigero Miyajima
- Departments of, Department of, Urology, Fukuoka University Chikushi Hospital, Chikusino, Fukuoka, Japan
| | - Tatsu Ishii
- Departments of, Department of, Urology, Fukuoka University Chikushi Hospital, Chikusino, Fukuoka, Japan
| | - Masato Watanabe
- Department of, Surgery, Fukuoka University Chikushi Hospital, Chikusino, Fukuoka, Japan
| | - Toshiharu Ueki
- Department of, Gastroenterology, Fukuoka University Chikushi Hospital, Chikusino, Fukuoka, Japan
| | - Masatoshi Tanaka
- Department of Urology, Fukuoka University, Fukuoka, Fukuoka, Japan
| |
Collapse
|
7
|
Kovacevic L, Lu H, Kovacevic N, Lakshmanan Y. Effect of bisphosphonates on the crystallization of stone-forming salts in synthetic urine. Investig Clin Urol 2020; 61:310-315. [PMID: 32377608 PMCID: PMC7189110 DOI: 10.4111/icu.2020.61.3.310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/01/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose We investigated the inhibitory effect of bisphosphonates (BPs) on the crystallization of calcium oxalate monohydrate (COM), calcium phosphate (CaP), and magnesium ammonium phosphate (MAP) in synthetic urine, aiming to see 1) which specific BPs work best on a particular type of crystal and 2) what is the lowest concentration of BPs that inhibits crystal formation. Materials and Methods Crystals from synthetic urine were exposed to different concentrations of BPs. Urinary turbidity was used as a marker of crystallization and was measured by spectrophotometry by use of a validated method in our laboratory. The percent inhibitory activity (IA) was calculated by using the formula: (a−b )/a×100, where a is baseline maximal turbidity and b is maximal turbidity with various concentrations of medication. Potassium citrate and magnesium citrate were used as positive controls. Results At the lowest dose of 0.001 mg/mL, risedronate induced the highest IA of 37% on CaP, whereas ibandronate had the strongest IA on COM (24%). To initiate the inhibition of MAP crystallization, risedronate required a two-fold higher concentration (0.002 mg/mL) to reach 30% IA, whereas etidronate required a four-fold higher concentration (0.004 mg/mL) to reach 42% IA. Conclusions BPs are good inhibitors of crystallization in synthetic urine, with risedronate and ibandronate being the most potent. At a low clinically acceptable dose, their highest inhibitory action was on CaP and COM crystals. Higher doses were needed to prevent MAP crystallization. Further investigation of the use of BPs in kidney stone prevention is warranted.
Collapse
Affiliation(s)
- Larisa Kovacevic
- Department of Pediatric Urology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Hong Lu
- Department of Pediatric Urology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Natalija Kovacevic
- Department of Pediatric Urology, Children's Hospital of Michigan, Detroit, MI, USA.,Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA
| | - Yegappan Lakshmanan
- Department of Pediatric Urology, Children's Hospital of Michigan, Detroit, MI, USA
| |
Collapse
|
8
|
Krieger NS, Chen L, Becker J, DeBoyace S, Wang H, Favus MJ, Bushinsky DA. Increased Osteoclast and Decreased Osteoblast Activity Causes Reduced Bone Mineral Density and Quality in Genetic Hypercalciuric Stone-Forming Rats. JBMR Plus 2020; 4:e10350. [PMID: 32258968 PMCID: PMC7117851 DOI: 10.1002/jbm4.10350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/09/2020] [Indexed: 11/16/2022] Open
Abstract
To study human idiopathic hypercalciuria (IH), we developed an animal model, genetic hypercalciuric stone-forming (GHS) rats, whose pathophysiology parallels that in IH. All GHS rats form kidney stones and have decreased BMD and bone quality compared with the founder Sprague-Dawley (SD) rats. To understand the bone defect, we characterized osteoclast and osteoblast activity in the GHS compared with SD rats. Bone marrow cells were isolated from femurs of GHS and SD rats and cultured to optimize differentiation into osteoclasts or osteoblasts. Osteoclasts were stained for TRAcP (tartrate resistant acid phosphatase), cultured to assess resorptive activity, and analyzed for specific gene expression. Marrow stromal cells or primary neonatal calvarial cells were differentiated to osteoblasts, and osteoblastic gene expression as well as mineralization was analyzed. There was increased osteoclastogenesis and increased resorption pit formation in GHS compared with SD cultures. Osteoclasts had increased expression of cathepsin K, Tracp, and MMP9 in cells from GHS compared with SD rats. Osteoblastic gene expression and mineralization was significantly decreased. Thus, alterations in baseline activity of both osteoclasts and osteoblasts in GHS rats, led to decreased BMD and bone quality, perhaps because of their known increase in vitamin D receptors. Better understanding of the role of GHS bone cells in decreased BMD and quality may provide new strategies to mitigate the low BMD and increased fracture risk found in patients with IH. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| | - Luojing Chen
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| | - Jennifer Becker
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| | - Sean DeBoyace
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| | - Hongwei Wang
- Section of EndocrinologyUniversity of Chicago Pritzker School of MedicineChicagoILUSA
| | - Murray J Favus
- Section of EndocrinologyUniversity of Chicago Pritzker School of MedicineChicagoILUSA
| | - David A Bushinsky
- Division of NephrologyUniversity of Rochester School of MedicineRochesterNYUSA
| |
Collapse
|
9
|
García Nieto VM, Luis Yanes MI, Tejera Carreño P, Perez Suarez G, Moraleda Mesa T. The idiopathic hypercalciuria reviewed. Metabolic abnormality or disease? Nefrologia 2019; 39:592-602. [PMID: 31160051 DOI: 10.1016/j.nefro.2019.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/02/2019] [Accepted: 02/20/2019] [Indexed: 02/08/2023] Open
Abstract
Idiopathic hypercalciuria (IH) is defined as that clinical situation in which an increase in urinary calcium excretion is observed, in the absence of hypercalcemia and other known causes of hypercalciuria. In recent years, its diagnosis in pediatric age has been more frequent because it has been known that it can debut with very different symptoms, in the absence of kidney stone formation. The discovery of genetic hypercalciuric stone-forming rats has allowed us to glimpse the pathophysiological mechanism of IH since they show many data in common with humans with IH as normal levels of blood calcium, intestinal calcium hyperabsorption, increased bone resorption and a defect in the renal tubular calcium reabsorption. In 1993, it was shown that in these animals there is an increase in the number of vitamin D receptors (VDR) in the intestine, which favors an increase in the functional capacity of calcitriol-VDR complexes that explains the increase in intestinal transport of calcium. The same happens at the bone level producing a greater resorption. In our opinion, IH is a 'metabolic anomaly' or, better, an inheritable constitutive metabolic characteristic. In this sense, what patients with IH would inherit is the availability of having a greater number of VDRs in their cells than those with normal urinary calcium excretion. IH cannot be considered a sensu stricto disease, so pharmacological treatment must be individualized.
Collapse
Affiliation(s)
- Víctor M García Nieto
- Sección de Nefrología Pediátrica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España.
| | - María Isabel Luis Yanes
- Sección de Nefrología Pediátrica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España
| | - Patricia Tejera Carreño
- Sección de Nefrología Pediátrica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España
| | - German Perez Suarez
- Servicio de Nefrología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, España
| | - Teresa Moraleda Mesa
- Sección de Nefrología Pediátrica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España
| |
Collapse
|
10
|
Krieger NS, Asplin JR, Granja I, Ramos FM, Flotteron C, Chen L, Wu TT, Grynpas MD, Bushinsky DA. Chlorthalidone Is Superior to Potassium Citrate in Reducing Calcium Phosphate Stones and Increasing Bone Quality in Hypercalciuric Stone-Forming Rats. J Am Soc Nephrol 2019; 30:1163-1173. [PMID: 31101664 DOI: 10.1681/asn.2018101066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The pathophysiology of genetic hypercalciuric stone-forming rats parallels that of human idiopathic hypercalciuria. In this model, all animals form calcium phosphate stones. We previously found that chlorthalidone, but not potassium citrate, decreased stone formation in these rats. METHODS To test whether chlorthalidone and potassium citrate combined would reduce calcium phosphate stone formation more than either medication alone, four groups of rats were fed a fixed amount of a normal calcium and phosphorus diet, supplemented with potassium chloride (as control), potassium citrate, chlorthalidone (with potassium chloride to equalize potassium intake), or potassium citrate plus chlorthalidone. We measured urine every 6 weeks and assessed stone formation and bone quality at 18 weeks. RESULTS Potassium citrate reduced urine calcium compared with controls, chlorthalidone reduced it further, and potassium citrate plus chlorthalidone reduced it even more. Chlorthalidone increased urine citrate and potassium citrate increased it even more; the combination did not increase it further. Potassium citrate, alone or with chlorthalidone, increased urine calcium phosphate supersaturation, but chlorthalidone did not. All control rats formed stones. Potassium citrate did not alter stone formation. No stones formed with chlorthalidone, and rats given potassium citrate plus chlorthalidone had some stones but fewer than controls. Rats given chlorthalidone with or without potassium citrate had higher bone mineral density and better mechanical properties than controls, whereas those given potassium citrate did not. CONCLUSIONS In genetic hypercalciuric stone-forming rats, chlorthalidone is superior to potassium citrate alone or combined with chlorthalidone in reducing calcium phosphate stone formation and improving bone quality.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois
| | - Ignacio Granja
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois
| | - Felix M Ramos
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Courtney Flotteron
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Luojing Chen
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine, Rochester, New York; and
| | - Marc D Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
11
|
Krieger NS, Grynpas M, VandenEynde A, Asplin JR, Frick KK, Kim MH, Ramos FM, Granja I, Bushinsky DA. Low Sodium Diet Decreases Stone Formation in Genetic Hypercalciuric Stone-Forming Rats. Nephron Clin Pract 2019; 142:147-158. [PMID: 30726853 DOI: 10.1159/000497117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/20/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Urine (u) calcium (Ca) excretion is directly dependent on dietary sodium (Na) intake leading to the recommendation for Na restriction in hypercalciuric kidney stone formers. However, there is no direct evidence that limiting Na intake will reduce recurrent stone formation. MATERIALS AND METHODS We used genetic hypercalciuric stone-forming (GHS) rats, which universally form Ca phosphate (P) kidney stones, fed either a low Na (LNa, 0.05%) or normal Na (NNa, 0.4%) Na diet (D) for 18 weeks. Urine was collected at 6-week intervals. Radiographic analysis for stone formation and bone analyses were done at the conclusion of the study. RESULTS Mean uCa was lower with LNaD than NNaD as was uP and LNaD decreased mean uNa and uChloride. There were no differences in urine supersaturation (SS) with respect to calcium phosphate (CaP) or Ca oxalate (CaOx). However, stone formation was markedly decreased with LNaD by radiographic analysis. The LNaD group had significantly lower femoral anterior-posterior diameter and volumetric bone mineral density (vBMD), but no change in vertebral trabecular vBMD. There were no differences in the bone formation rate or osteoclastic bone resorption between groups. The LNaD group had significantly lower femoral stiffness; however, the ultimate load and energy to fail was not different. CONCLUSION Thus, a low Na diet reduced uCa and stone formation in GHS rats, even though SS with respect to CaP and CaOx was unchanged and effects on bone were modest. These data, if confirmed in humans, support dietary Na restriction to prevent recurrent Ca nephrolithiasis.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA,
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Amy VandenEynde
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America® Holdings, Chicago, Illinois, USA
| | - Kevin K Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Min Ho Kim
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Felix M Ramos
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ignacio Granja
- Litholink Corporation, Laboratory Corporation of America® Holdings, Chicago, Illinois, USA
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
12
|
Prochaska M, Taylor E, Vaidya A, Curhan G. Low Bone Density and Bisphosphonate Use and the Risk of Kidney Stones. Clin J Am Soc Nephrol 2017; 12:1284-1290. [PMID: 28576907 PMCID: PMC5544505 DOI: 10.2215/cjn.01420217] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/05/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Previous studies have demonstrated lower bone density in patients with kidney stones, but no longitudinal studies have evaluated kidney stone risk in individuals with low bone density. Small studies with short follow-up reported reduced 24-hour urine calcium excretion with bisphosphonate use. We examined history of low bone density and bisphosphonate use and the risk of incident kidney stone as well as the association with 24-hour calcium excretion. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We conducted a prospective analysis of 96,092 women in the Nurses' Health Study II. We used Cox proportional hazards models to adjust for age, body mass index, thiazide use, fluid intake, supplemental calcium use, and dietary factors. We also conducted a cross-sectional analysis of 2294 participants using multivariable linear regression to compare 24-hour urinary calcium excretion between participants with and without a history of low bone density, and among 458 participants with low bone density, with and without bisphosphonate use. RESULTS We identified 2564 incident stones during 1,179,860 person-years of follow-up. The multivariable adjusted relative risk for an incident kidney stone for participants with history of low bone density compared with participants without was 1.39 (95% confidence interval [95% CI], 1.20 to 1.62). Among participants with low bone density, the multivariable adjusted relative risk for an incident kidney stone for bisphosphonate users was 0.68 (95% CI, 0.48 to 0.98). In the cross-sectional analysis of 24-hour urine calcium excretion, the multivariable adjusted mean difference in 24-hour calcium was 10 mg/d (95% CI, 1 to 19) higher for participants with history of low bone density. However, among participants with history of low bone density, there was no association between bisphosphonate use and 24-hour calcium with multivariable adjusted mean difference in 24-hour calcium of -2 mg/d (95% CI, -25 to 20). CONCLUSIONS Low bone density is an independent risk factor for incident kidney stone and is associated with higher 24-hour urine calcium excretion. Among participants with low bone density, bisphosphonate use was associated with lower risk of incident kidney stone but was not independently associated with 24-hour urine calcium excretion.
Collapse
Affiliation(s)
- Megan Prochaska
- Divisions of Renal Medicine and
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Eric Taylor
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
- Division of Nephrology and Transplantation, Maine Medical Center, Portland, Maine
| | | | - Gary Curhan
- Divisions of Renal Medicine and
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
13
|
Sharma R, Kumar C, Mallia MB, Kameswaran M, Sarma HD, Banerjee S, Dash A. In Vitro Evaluation of 188Re-HEDP: A Mechanistic View of Bone Pain Palliations. Cancer Biother Radiopharm 2017; 32:184-191. [PMID: 28598690 DOI: 10.1089/cbr.2017.2200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skeletal metastasis is common in advanced stages of various cancers, particularly of the prostate and breast carcinoma. 188Re-HEDP (1-hydroxyethane 1, 1-diphosphonic acid) is a clinically established radiopharmaceutical for bone pain palliation of osseous metastasis, and it takes advantage of high bone affinity. The present work aims at elucidating the possible mechanisms of cell killing by 188Re-HEDP in osteosarcoma cells and biodistribution studies in mice.188Re-HEDP complex was prepared by using lyophilized HEDP kits prepared in-house. In vitro cellular uptake in mineralized bone matrix was found to be 13.41% ± 0.46% (at 2 hours), which was reduced to 2.44% ± 0.12% in the presence of excess amounts of unlabeled HEDP ligand. Uptake of 188Re-HEDP in bones of normal Swiss mice in vivo and mineralized bone in vitro indicated its affinity toward the bone matrix. The study also revealed that cellular toxicity and G2/M cell cycle arrest were dose dependent. At higher doses, G2/M cell cycle arrest was observed, which might be the major cause of cell death and a possible mechanism of bone pain relief.
Collapse
Affiliation(s)
- Rohit Sharma
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India
| | - Chandan Kumar
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India
| | - Madhava B Mallia
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India
| | - Mythili Kameswaran
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India
| | - Haladhar D Sarma
- 2 Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre , Mumbai, India
| | - Sharmila Banerjee
- 3 Radiation Medicine Centre, Bhabha Atomic Research Centre , Mumbai, India
| | - Ashutosh Dash
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre , Mumbai, India
| |
Collapse
|
14
|
de Brito Galvão JF, Parker V, Schenck PA, Chew DJ. Update on Feline Ionized Hypercalcemia. Vet Clin North Am Small Anim Pract 2017; 47:273-292. [DOI: 10.1016/j.cvsm.2016.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Salek N, Mehrabi M, Shirvani Arani S, Bahrami Samani A, Erfani M, Vosoghi S, Ghannadi Maragheh M, Shamsaei M. Production, quality control, and determination of human absorbed dose of no carrier added177Lu-risedronate for bone pain palliation therapy. J Labelled Comp Radiopharm 2016; 60:20-29. [DOI: 10.1002/jlcr.3466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/14/2016] [Accepted: 09/08/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Nafise Salek
- Nuclear Fuel Cycle Research School; Nuclear Science and Technology Research Institute; Tehran Iran
- Faculty of Energy Engineering and Physics; Amirkabir University of Technology; Tehran Iran
| | - Mohsen Mehrabi
- Faculty of Energy Engineering and Physics; Amirkabir University of Technology; Tehran Iran
| | | | - Ali Bahrami Samani
- Nuclear Fuel Cycle Research School; Nuclear Science and Technology Research Institute; Tehran Iran
| | - Mostafa Erfani
- Nuclear Fuel Cycle Research School; Nuclear Science and Technology Research Institute; Tehran Iran
| | - Sara Vosoghi
- Nuclear Fuel Cycle Research School; Nuclear Science and Technology Research Institute; Tehran Iran
| | | | - Mojtaba Shamsaei
- Faculty of Energy Engineering and Physics; Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
16
|
Granjon D, Bonny O, Edwards A. A model of calcium homeostasis in the rat. Am J Physiol Renal Physiol 2016; 311:F1047-F1062. [PMID: 27358053 DOI: 10.1152/ajprenal.00230.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
We developed a model of calcium homeostasis in the rat to better understand the impact of dysfunctions such as primary hyperparathyroidism and vitamin D deficiency on calcium balance. The model accounts for the regulation of calcium intestinal uptake, bone resorption, and renal reabsorption by parathyroid hormone (PTH), vitamin D3, and Ca2+ itself. It is the first such model to incorporate recent findings regarding the role of the calcium-sensing receptor (CaSR) in the kidney, the presence of a rapidly exchangeable pool in bone, and the delayed response of vitamin D3 synthesis. Accounting for two (fast and slow) calcium storage compartments in bone allows the model to properly predict the effects of bisphophonates on the plasma levels of Ca2+ ([Ca2+]p), PTH, and vitamin D3 Our model also suggests that Ca2+ exchange rates between plasma and the fast pool vary with both sex and age, allowing [Ca2+]p to remain constant in spite of sex- and age-based hormonal and other differences. Our results suggest that the inconstant hypercalciuria that is observed in primary hyperparathyroidism can be attributed in part to counterbalancing effects of PTH and CaSR in the kidney. Our model also correctly predicts that calcimimetic agents such as cinacalcet bring down [Ca2+]p to within its normal range in primary hyperparathyroidism. In addition, the model provides a simulation of CYP24A1 inactivation that leads to a situation reminiscent of infantile hypercalcemia. In summary, our model of calcium handling can be used to decipher the complex regulation of calcium homeostasis.
Collapse
Affiliation(s)
- David Granjon
- Sorbonne Universités, UPMC Univ Paris 06, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and.,Department of Pharmacology and Toxicology, University of Lausanne, and Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, and Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
| | - Aurélie Edwards
- Sorbonne Universités, UPMC Univ Paris 06, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and
| |
Collapse
|
17
|
Arrabal-Martín M, González-Torres S, Cano-García MDC, De Haro-Muñoz T, Abad-Menor F, Arrabal-Polo MÁ, Cózar-Olmo JM. Urine Calcium and Bone Mineral Density in Calcium Stone-Forming Patients Treated with Alendronate and Hydrochlorothiazide. Urol Int 2016; 97:292-298. [DOI: 10.1159/000443484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/16/2015] [Indexed: 11/19/2022]
|
18
|
Frick KK, Krieger NS, Bushinsky DA. Modeling hypercalciuria in the genetic hypercalciuric stone-forming rat. Curr Opin Nephrol Hypertens 2015; 24:336-44. [PMID: 26050120 PMCID: PMC4495578 DOI: 10.1097/mnh.0000000000000130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In this review, we discuss how the genetic hypercalciuric stone-forming (GHS) rats, which closely model idiopathic hypercalciuria and stone formation in humans, provide insights into the pathophysiology and consequences of clinical hypercalciuria. RECENT FINDINGS Hypercalciuria in the GHS rats is due to a systemic dysregulation of calcium transport, as manifest by increased intestinal calcium absorption, increased bone resorption and decreased renal tubule calcium reabsorption. Increased levels of vitamin D receptor in intestine, bone and kidney appear to mediate these changes. The excess receptors are biologically active and increase tissue sensitivity to exogenous vitamin D. Bones of GHS rats have decreased bone mineral density (BMD) as compared with Sprague-Dawley rats, and exogenous 1,25(OH)2D3 exacerbates the loss of BMD. Thiazide diuretics improve the BMD in GHS rats. SUMMARY Studying GHS rats allows direct investigation of the effects of alterations in diet and utilization of pharmacologic therapy on hypercalciuria, urine supersaturation, stone formation and bone quality in ways that are not possible in humans.
Collapse
Affiliation(s)
- Kevin K Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | |
Collapse
|
19
|
Krieger NS, Asplin JR, Frick KK, Granja I, Culbertson CD, Ng A, Grynpas MD, Bushinsky DA. Effect of Potassium Citrate on Calcium Phosphate Stones in a Model of Hypercalciuria. J Am Soc Nephrol 2015; 26:3001-8. [PMID: 25855777 DOI: 10.1681/asn.2014121223] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/02/2015] [Indexed: 01/24/2023] Open
Abstract
Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption. However, citrate binding to intestinal calcium may increase absorption and renal excretion of both phosphate and oxalate. Thus, the effect of potassium citrate on urine calcium oxalate and calcium phosphate supersaturation and stone formation is complex and difficult to predict. To study the effects of potassium citrate on urine supersaturation and stone formation, we utilized 95th-generation inbred genetic hypercalciuric stone-forming rats. Rats were fed a fixed amount of a normal calcium (1.2%) diet supplemented with potassium citrate or potassium chloride (each 4 mmol/d) for 18 weeks. Urine was collected at 6, 12, and 18 weeks. At 18 weeks, stone formation was visualized by radiography. Urine citrate, phosphate, oxalate, and pH levels were higher and urine calcium level was lower in rats fed potassium citrate. Furthermore, calcium oxalate and calcium phosphate supersaturation were higher with potassium citrate; however, uric acid supersaturation was lower. Both groups had similar numbers of exclusively calcium phosphate stones. Thus, potassium citrate effectively raises urine citrate levels and lowers urine calcium levels; however, the increases in urine pH, oxalate, and phosphate levels lead to increased calcium oxalate and calcium phosphate supersaturation. Potassium citrate induces complex changes in urine chemistries and resultant supersaturation, which may not be beneficial in preventing calcium phosphate stone formation.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois; and
| | - Kevin K Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Ignacio Granja
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois; and
| | - Christopher D Culbertson
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Adeline Ng
- Laboratory Medicine and Pathobiology Department, University of Toronto, Toronto, Ontario, Canada
| | - Marc D Grynpas
- Laboratory Medicine and Pathobiology Department, University of Toronto, Toronto, Ontario, Canada
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
20
|
Edwards A. Regulation of calcium reabsorption along the rat nephron: a modeling study. Am J Physiol Renal Physiol 2015; 308:F553-66. [DOI: 10.1152/ajprenal.00577.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We expanded a mathematical model of transepithelial transport along the rat nephron to include the transport of Ca2+ and probe the impact of calcium-sensing mechanisms on Ca2+ reabsorption. The model nephron extends from the medullary thick ascending limb (mTAL) to the inner medullary collecting duct (IMCD). Our model reproduces several experimental findings, such as measurements of luminal Ca2+ concentrations in cortical tubules, and the effects of furosemide or deletion of the transient receptor potential channel vanilloid subtype 5 (TRPV5) on urinary Ca2+ excretion. In vitro microperfusion of rat TAL has demonstrated that activation of the calcium-sensing receptor CaSR lowers the TAL permeability to Ca2+, PCaTAL (Loupy A, Ramakrishnan SK, Wootla B, Chambrey R, de la Faille R, Bourgeois S, Bruneval P, Mandet C, Christensen EI, Faure H, Cheval L, Laghmani K, Collet C, Eladari D, Dodd RH, Ruat M, Houillier P. J Clin Invest 122: 3355, 2012). Our results suggest that this regulatory mechanism significantly impacts renal Ca2+ handling: when plasma Ca2+ concentration ([Ca2+]) is raised by 10%, the CaSR-mediated reduction in PCaTAL per se is predicted to enhance urinary Ca2+ excretion by ∼30%. If high [Ca2+] also induces renal outer medullary potassium (ROMK) inhibition, urinary Ca2+ excretion is further raised. In vitro, increases in luminal [Ca2+] have been shown to activate H+-ATPase pumps in the outer medullary CD and to lower the water permeability of IMCD. Our model suggests that if these responses exhibit the sigmoidal dependence on luminal [Ca2+] that is characteristic of CaSR, then the impact of elevated Ca2+ levels in the CD on urinary volume and pH remains limited. Finally, our model suggests that CaSR inhibitors could significantly reduce urinary Ca2+ excretion in hypoparathyroidism, thereby reducing the risk of calcium stone formation.
Collapse
Affiliation(s)
- Aurélie Edwards
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre National de la Recherche Scientifique ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
21
|
Preparation of a rhenium-188 labeled bisphosphonate for bone pain palliation therapy. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Ng AH, Frick KK, Krieger NS, Asplin JR, Cohen-McFarlane M, Culbertson CD, Kyker-Snowman K, Grynpas MD, Bushinsky DA. 1,25(OH)₂D₃ induces a mineralization defect and loss of bone mineral density in genetic hypercalciuric stone-forming rats. Calcif Tissue Int 2014; 94:531-43. [PMID: 24481706 PMCID: PMC4276134 DOI: 10.1007/s00223-014-9838-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/07/2014] [Indexed: 11/29/2022]
Abstract
Genetic hypercalciuric stone-forming (GHS) rats, bred to maximize urine (u) calcium (Ca) excretion, demonstrate increased intestinal Ca absorption, increased bone Ca resorption, and reduced renal Ca reabsorption, all leading to elevated uCa compared to the parental Sprague-Dawley (SD) rats. GHS rats have increased numbers of vitamin D receptors (VDRs) at each site, with normal levels of 1,25(OH)₂D₃ (1,25D), suggesting their VDR is undersaturated with 1,25D. We have shown that 1,25D induces a greater increase in uCa in GHS than SD rats. To examine the effect of the increased VDR on the osseous response to 1,25D, we fed GHS and SD rats an ample Ca diet and injected either 1,25D [low dose (LD) 12.5 or high dose (HD) 25 ng/100 g body weight/day] or vehicle (veh) daily for 16 days. Femoral areal bone mineral density (aBMD, by DEXA) was decreased in GHS+LD and GHS+HD relative to GHS+veh, while there was no effect on SD. Vertebral aBMD was lower in GHS compared to SD and further decreased in GHS+HD. Both femoral and L6 vertebral volumetric BMD (by μCT) were lower in GHS and further reduced by HD. Histomorphometry indicated a decreased osteoclast number in GHS+HD compared to GHS+veh or SD+HD. In tibiae, GHS+HD trabecular thickness and number increased, with a 12-fold increase in osteoid volume but only a threefold increase in bone volume. Bone formation rate was decreased in GHS+HD relative to GHS+veh, confirming the mineralization defect. The loss of BMD and the mineralization defect in GHS rats contribute to increased hypercalciuria; if these effects persist, they would result in decreased bone strength, making these bones more fracture-prone. The enhanced effect of 1,25D in GHS rats indicates that the increased VDRs are biologically active.
Collapse
Affiliation(s)
- Adeline H. Ng
- Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - Kevin K. Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nancy S. Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | - Christopher D. Culbertson
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kelly Kyker-Snowman
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Marc D. Grynpas
- Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - David A. Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
23
|
Frick KK, Asplin JR, Culbertson CD, Granja I, Krieger NS, Bushinsky DA. Persistence of 1,25D-induced hypercalciuria in alendronate-treated genetic hypercalciuric stone-forming rats fed a low-calcium diet. Am J Physiol Renal Physiol 2014; 306:F1081-7. [PMID: 24573387 DOI: 10.1152/ajprenal.00680.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genetic hypercalciuric stone-forming (GHS) rats demonstrate increased intestinal Ca absorption, increased bone resorption, and reduced renal tubular Ca reabsorption leading to hypercalciuria and all form kidney stones. GHS have increased vitamin D receptors (VDR) at these sites of Ca transport. Injection of 1,25(OH)2D3 (1,25D) leads to a greater increase in urine (u)Ca in GHS than in control Sprague-Dawley (SD), possibly due to the additional VDR. In GHS the increased uCa persists on a low-Ca diet (LCD) suggesting enhanced bone resorption. We tested the hypothesis that LCD, coupled to inhibition of bone resorption by alendronate (alen), would eliminate the enhanced 1,25D-induced hypercalciuria in GHS. SD and GHS were fed LCD and half were injected daily with 1,25D. After 8 days all were also given alen until euthanasia at day 16. At 8 days, 1,25D increased uCa in SD and to a greater extent in GHS. At 16 days, alen eliminated the 1,25D-induced increase in uCa in SD. However, in GHS alen decreased, but did not eliminate, the 1,25D-induced hypercalciuria, suggesting maximal alen cannot completely prevent the 1,25D-induced bone resorption in GHS, perhaps due to increased VDR. There was no consistent effect on mRNA expression of renal transcellular or paracellular Ca transporters. Urine CaP and CaOx supersaturation (SS) increased with 1,25D alone in both SD and GHS. Alen eliminated the increase in CaP SS in SD but not in GHS. If these results are confirmed in humans with IH, the use of bisphosphonates, such as alen, may not prevent the decreased bone density observed in these patients.
Collapse
Affiliation(s)
- Kevin K Frick
- Research Assistant Professor of Medicine, Univ. of Rochester School of Medicine and Dentistry, Division of Nephrology, Dept. of Medicine, 601 Elmwood Ave., Box 675, Rochester, NY 14642.
| | | | | | | | | | | |
Collapse
|
24
|
Tournus M, Seguin N, Perthame B, Thomas SR, Edwards A. A model of calcium transport along the rat nephron. Am J Physiol Renal Physiol 2013; 305:F979-94. [DOI: 10.1152/ajprenal.00696.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We developed a mathematical model of calcium (Ca2+) transport along the rat nephron to investigate the factors that promote hypercalciuria. The model is an extension of the flat medullary model of Hervy and Thomas ( Am J Physiol Renal Physiol 284: F65–F81, 2003). It explicitly represents all the nephron segments beyond the proximal tubules and distinguishes between superficial and deep nephrons. It solves dynamic conservation equations to determine NaCl, urea, and Ca2+ concentration profiles in tubules, vasa recta, and the interstitium. Calcium is known to be reabsorbed passively in the thick ascending limbs and actively in the distal convoluted (DCT) and connecting (CNT) tubules. Our model predicts that the passive diffusion of Ca2+ from the vasa recta and loops of Henle generates a significant axial Ca2+ concentration gradient in the medullary interstitium. In the base case, the urinary Ca2+ concentration and fractional excretion are predicted as 2.7 mM and 0.32%, respectively. Urinary Ca2+ excretion is found to be strongly modulated by water and NaCl reabsorption along the nephron. Our simulations also suggest that Ca2+ molar flow and concentration profiles differ significantly between superficial and deep nephrons, such that the latter deliver less Ca2+ to the collecting duct. Finally, our results suggest that the DCT and CNT can act to counteract upstream variations in Ca2+ transport but not always sufficiently to prevent hypercalciuria.
Collapse
Affiliation(s)
- Magali Tournus
- Université Pierre et Marie Curie (UPMC) University of Paris 06, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7598, Laboratoire Jacques-Louis Lions, Paris, France
- UPMC University of Paris 06, University of Paris 05, Institut National de la Santé et de la Recherche Médicale UMRS 872, CNRS ERL 7226, Centre de Recherche des Cordeliers, Paris, France
| | - Nicolas Seguin
- Université Pierre et Marie Curie (UPMC) University of Paris 06, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7598, Laboratoire Jacques-Louis Lions, Paris, France
| | - Benoît Perthame
- Université Pierre et Marie Curie (UPMC) University of Paris 06, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7598, Laboratoire Jacques-Louis Lions, Paris, France
| | - S. Randall Thomas
- CNRS UMR 8081, Orsay, France; and
- University of Paris Sud 11, Orsay, France
| | - Aurélie Edwards
- UPMC University of Paris 06, University of Paris 05, Institut National de la Santé et de la Recherche Médicale UMRS 872, CNRS ERL 7226, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
25
|
Abstract
Hypercalciuria is the most common metabolic abnormality found in patients with calcium-containing kidney stones. Patients with hypercalciuria often excrete more calcium than they absorb, indicating a net loss of total-body calcium. The source of this additional urinary calcium is almost certainly the skeleton, the largest repository of calcium in the body. Hypercalciuric stone formers exhibit decreased bone mineral density (BMD), which is correlated with the increase in urine calcium excretion. The decreased BMD also correlates with an increase in markers of bone turnover as well as increased fractures. In humans, it is difficult to determine the cause of the decreased BMD in hypercalciuric stone formers. To study the effect of hypercalciuria on bone, we utilized our genetic hypercalciuric stone-forming (GHS) rats, which were developed through successive inbreeding of the most hypercalciuric Sprague-Dawley rats. GHS rats excrete significantly more urinary calcium than similarly fed controls, and all the GHS rats form kidney stones while control rats do not. The hypercalciuria is due to a systemic dysregulation of calcium homeostasis, with increased intestinal calcium absorption, enhanced bone mineral resorption, and decreased renal tubule calcium reabsorption associated with an increase in vitamin D receptors in all these target tissues. We recently found that GHS rats fed an ample calcium diet have reduced BMD and that their bones are more fracture-prone, indicating an intrinsic disorder of bone not secondary to diet. Using this model, we should better understand the pathogenesis of hypercalciuria and stone formation in humans to ultimately improve the bone health of patients with kidney stones.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, 601 Elmwood Ave., Box 675, Rochester, NY, 14642, USA,
| | | |
Collapse
|
26
|
Frick KK, Asplin JR, Krieger NS, Culbertson CD, Asplin DM, Bushinsky DA. 1,25(OH)₂D₃-enhanced hypercalciuria in genetic hypercalciuric stone-forming rats fed a low-calcium diet. Am J Physiol Renal Physiol 2013; 305:F1132-8. [PMID: 23926184 DOI: 10.1152/ajprenal.00296.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The inbred genetic hypercalciuric stone-forming (GHS) rats exhibit many features of human idiopathic hypercalciuria and have elevated levels of vitamin D receptors (VDR) in calcium (Ca)-transporting organs. On a normal-Ca diet, 1,25(OH)2D3 (1,25D) increases urine (U) Ca to a greater extent in GHS than in controls [Sprague-Dawley (SD)]. The additional UCa may result from an increase in intestinal Ca absorption and/or bone resorption. To determine the source, we asked whether 1,25D would increase UCa in GHS fed a low-Ca (0.02%) diet (LCD). With 1,25D, UCa in SD increased from 1.2 ± 0.1 to 9.3 ± 0.9 mg/day and increased more in GHS from 4.7 ± 0.3 to 21.5 ± 0.9 mg/day (P < 0.001). In GHS rats on LCD with or without 1,25D, UCa far exceeded daily Ca intake (2.6 mg/day). While the greater excess in UCa in GHS rats must be derived from bone mineral, there may also be a 1,25D-mediated decrease in renal tubular Ca reabsorption. RNA expression of the components of renal Ca transport indicated that 1,25D administration results in a suppression of klotho, an activator of the renal Ca reabsorption channel TRPV5, in both SD and GHS rats. This fall in klotho would decrease tubular reabsorption of the 1,25D-induced bone Ca release. Thus, the greater increase in UCa with 1,25D in GHS fed LCD strongly suggests that the additional UCa results from an increase in bone resorption, likely due to the increased number of VDR in the GHS rat bone cells, with a possible component of decreased renal tubular calcium reabsorption.
Collapse
Affiliation(s)
- Kevin K Frick
- Univ. of Rochester School of Medicine and Dentistry, Div. of Nephrology, Dept. of Medicine, 601 Elmwood Ave., Box 675, Rochester, NY 14642.
| | | | | | | | | | | |
Collapse
|
27
|
A pilot study of the effect of sodium thiosulfate on urinary lithogenicity and associated metabolic acid load in non-stone formers and stone formers with hypercalciuria. PLoS One 2013; 8:e60380. [PMID: 23593205 PMCID: PMC3620159 DOI: 10.1371/journal.pone.0060380] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/25/2013] [Indexed: 01/28/2023] Open
Abstract
Background and Objectives Sodium thiosulfate (STS) reduced calcium stone formation in both humans and genetic hypercalciuric stone forming (GHS) rats. We sought to measure urine chemistry changes resulting from STS administration in people. Design, Setting, Participants & Measurements STS was given to healthy and hypercalciuric stone forming adults. Five normal non-stone forming adults (mean age 33 years), and 5 people with idiopathic hypercalciuria and calcium kidney stones (mean age 66 years) participated. Two baseline 24-hour urine collections were performed on days 2 and 3 of 3 days of self-selected diets. Subjects then drank STS 10 mmol twice a day for 7 days and did urine collections while repeating the self-selected diet. Results were compared by non-parametric Wilcoxon signed rank test. The primary outcome was the resulting change in urine chemistry. Results STS administration did not cause a significant change in urinary calcium excretion in either group. In both groups, 24 hour urinary ammonium (P = 0.005) and sulfate excretion (P = 0.007) increased, and urinary pH fell (P = 0.005); citrate excretion fell (P<0.05) in hypercalciuric participants but not in non-stone formers. Among stone formers with hypercalciuria, 3 of 5 patients had measurement of serum HCO3 concentration after the STS period: it did not change. The net effect was an increase in supersaturation of uric acid, and no change in supersaturation of calcium oxalate or calcium phosphate. Conclusions The basis for studies demonstrating that STS prevented stones in rats and people was not reflected by the changes in urine chemistry reported here. Although serum HCO3 did not change, urine tests suggested an acid load in both non-stone forming and hypercalciuric stone-forming participants. The long term safety of STS needs to be determined before the drug can be tested in humans for long-term prevention of stone recurrence.
Collapse
|
28
|
Arrabal-Polo MA, Arias-Santiago S, de Haro-Muñoz T, Lopez-Ruiz A, Orgaz-Molina J, Gonzalez-Torres S, Zuluaga-Gomez A, Arrabal-Martin M. Effects of Aminobisphosphonates and Thiazides in Patients With Osteopenia/Osteoporosis, Hypercalciuria, and Recurring Renal Calcium Lithiasis. Urology 2013; 81:731-7. [DOI: 10.1016/j.urology.2012.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/05/2012] [Accepted: 12/09/2012] [Indexed: 11/25/2022]
|
29
|
Frick KK, Asplin JR, Favus MJ, Culbertson C, Krieger NS, Bushinsky DA. Increased biological response to 1,25(OH)(2)D(3) in genetic hypercalciuric stone-forming rats. Am J Physiol Renal Physiol 2013; 304:F718-26. [PMID: 23344574 DOI: 10.1152/ajprenal.00645.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic hypercalciuric stone-forming (GHS) rats, bred to maximize urine (U) calcium (Ca) excretion, have increased intestinal Ca absorption and bone Ca resorption and reduced renal Ca reabsorption, leading to increased UCa compared with the Sprague-Dawley (SD) rats. GHS rats have increased vitamin D receptors (VDR) at each of these sites, with normal levels of 1,25(OH)(2)D(3) (1,25D), indicating that their VDR is undersaturated with 1,25D. We tested the hypothesis that 1,25D would induce a greater increase in UCa in GHS rats by feeding both strains ample Ca and injecting 1,25D (25 ng · 100 g body wt(-1) · day(-1)) or vehicle for 16 days. With 1,25D, UCa in SD increased from 1.7 ± 0.3 mg/day to 24.4 ± 1.2 (Δ = 22.4 ± 1.5) and increased more in GHS from 10.5 ± 0.7 to 41.9 ± 0.7 (Δ = 29.8 ± 1.8; P = 0.003). To determine the mechanism of the greater increase in UCa in GHS rats, we measured kidney RNA expression of components of renal Ca transport. Expression of transient receptor potential vanilloid (TRPV)5 and calbindin D(28K) were increased similarly in SD + 1,25D and GHS + 1,25D. The Na(+)/Ca(2+) exchanger (NCX1) was increased in GHS + 1,25D. Klotho was decreased in SD + 1,25D and GHS + 1,25D. TRPV6 was increased in SD + 1,25D and increased further in GHS + 1,25D. Claudin 14, 16, and 19, Na/K/2Cl transporter (NKCC2), and secretory K channel (ROMK) did not differ between SD + 1,25D and GHS + 1,25D. Increased UCa with 1,25D in GHS exceeded that of SD, indicating that the increased VDR in GHS induces a greater biological response. This increase in UCa, which must come from the intestine and/or bone, must exceed any effect of 1,25D on TRPV6 or NCX1-mediated renal Ca reabsorption.
Collapse
Affiliation(s)
- Kevin K Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Arrabal-Polo MA, Arrabal-Martin M, Garrido-Gomez J. Calcium renal lithiasis: metabolic diagnosis and medical treatment. SAO PAULO MED J 2013; 131:46-53. [PMID: 23538595 PMCID: PMC10852075 DOI: 10.1590/s1516-31802013000100008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 01/05/2012] [Accepted: 09/04/2012] [Indexed: 11/22/2022] Open
Abstract
Calcium renal lithiasis is a frequent condition that affects the worldwide population and has a high recurrence rate. Different metabolic changes may trigger the onset of calcium stone disorders, such as hypercalciuria, hyperoxaluria, hyperuricosuria, hypocitraturia and others. There are also other very prevalent disorders that are associated with calcium calculi, such as arterial hypertension, obesity and loss of bone mineral density. A correct diagnosis needs to be obtained through examining the serum and urinary parameters of mineral metabolism in order to carry out adequate prevention and treatment of this condition. Once the metabolic diagnosis is known, it is possible to establish dietary and pharmacological treatment that may enable monitoring of the disease and prevent recurrence of stone formation. Some advances in treating this pathological condition have been made, and these include use of sodium alendronate in patients with calcium renal lithiasis and osteopenia/osteoporosis, or use of a combination of a thiazide with a bisphosphonate. In summary, calcium renal lithiasis often requires multidrug treatment with strict control and follow-up of patients.
Collapse
|
31
|
Abstract
Calcium is an important participant in many physiologic processes including coagulation, cell membrane transfer, hormone release, neuromuscular activation, and myocardial contraction. The body cooperates in a sophisticated web of hormonally mediated interactions to maintain stable extracellular calcium levels. Calcium is vital for skeletal mineralization, and perturbations in extracellular calcium may be corrected at the expense of bone strength and integrity. The aim of this review is to delineate our current understanding of idiopathic hypercalciuria in the context of bone health, specifically its definition, etiology, epidemiology, laboratory evaluation, and potential therapeutic management.
Collapse
Affiliation(s)
- Laura E Ryan
- Center for Women's Health, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, 43210, USA.
| | | |
Collapse
|
32
|
Bianchi G, Giusti A, Pioli G, Barone A, Palummeri E, Girasole G. Bisphosphonates in the management of idiopathic hypercalciuria associated with osteoporosis: a new trick from an old drug. Ther Adv Musculoskelet Dis 2012; 2:29-35. [PMID: 22870435 DOI: 10.1177/1759720x09356399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Idiopathic hypercalciuria (IHC) is defined as a 24-hour urinary calcium excretion that exceeds 4 mg/kg/day, regardless of gender and in absence of systemic diseases or pharmacological treatments that may cause normocalcemic hypercalciuria (eg sarcoidosis, normocalcemic primary hyperparathyroidism, vitamin D intoxication, hyperthyroidism). Patients with IHC and nephrolithiasis often present increased bone turnover, decreased bone mineral density (BMD) and increased susceptibility to fragility fractures. Although the pathogenesis of IHC seems complex and multifactorial, recent evidences suggest that cells involved in bone resorption may play a critical role in the chain of events leading to the excessive urinary calcium excretion. Therefore, it has been proposed that bisphosphonates, potent inhibitors of bone resorption, may have beneficial effects in hypercalciuric patients with low BMD. This manuscript reports recent findings regarding the role of bone tissue in the pathogenesis of IHC, and supports the use of bisphosphonates in such conditions. It also reviews the literature on the effects of bisphosphonates in subjects with osteoporosis-associated IHC.
Collapse
Affiliation(s)
- Gerolamo Bianchi
- Department of Gerontology and Musculoskeletal Sciences Galliera Hospital, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Effect of hydroalcoholic extract from Copaifera langsdorffii leaves on urolithiasis induced in rats. ACTA ACUST UNITED AC 2012; 40:475-81. [DOI: 10.1007/s00240-011-0453-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
|
34
|
You L, Sheng ZY, Chen JY, Pan L, Chen L. The safety and efficacy of early-stage bi-weekly alendronate to improve bone mineral density and bone turnover in chinese post-menopausal women at risk of osteoporosis. J Int Med Res 2011; 39:302-10. [PMID: 21672334 DOI: 10.1177/147323001103900133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The efficacy and safety of early, low frequency antiresorptive drug intervention for osteopaenia on bone mineral density (BMD) and bone turnover in Chinese post-menopausal women at risk of developing osteoporosis were investigated. A total of 180 women aged 40 - 70 years were enrolled and equally randomized to receive either 70 mg alendronate once every 2 weeks plus 0.5 μg alfacalcidol daily (treatment group) or alfacalcidol 0.5 μg daily alone (control group) for 12 months. In the treatment group, lumbar spine and total hip BMD at 12 months had increased significantly from baseline and compared with the control group. There were also significant reductions in serum levels of the bone turnover biomarkers, bone-specific alkaline phosphatase and C-terminal telopeptide of type I collagen, compared with the control. No serious adverse events were observed in either group and safety profiles were similar. It was concluded that early intervention with 70 mg alendronate once every 2 weeks was safe, well tolerated and more effective than alfacalcidol alone (control) in increasing BMD and reducing bone turnover, and might prevent serious outcomes, such as fragility fractures, reduce rates of adverse effects and improve patient compliance.
Collapse
Affiliation(s)
- L You
- Department of Osteoporosis, Shanghai First People's Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai 200080, China.
| | | | | | | | | |
Collapse
|
35
|
Arrabal-Polo MA, Arrabal-Martin M, Zuluaga-Gomez A. Alendronato e hipercalciuria resortiva. Med Clin (Barc) 2011; 137:333. [DOI: 10.1016/j.medcli.2011.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/01/2011] [Accepted: 03/01/2011] [Indexed: 11/15/2022]
|
36
|
Abstract
Nephrolithiasis remains a formidable health problem in the United States and worldwide. A very important but underaddressed area in nephrolithiasis is the accompanying bone disease. Epidemiologic studies have shown that osteoporotic fractures occur more frequently in patients with nephrolithiasis than in the general population. Decreased bone mineral density and defects in bone remodeling are commonly encountered in patients with calcium nephrolithiasis. The pathophysiologic connection of bone defects to kidney stones is unknown. Hypercalciuria and hypocitraturia are two important risk factors for stone disease, and treatments with thiazide diuretics and alkali, respectively, have been shown to be useful in preventing stone recurrence in small prospective trials. However, no studies have examined the efficacy of these agents or other therapies in preventing continued bone loss in calcium stone formers. This manuscript reviews the epidemiology, pathophysiology, and potential treatments of bone disease in patients with nephrolithiasis.
Collapse
|
37
|
Abstract
Kidney stone patients often have a decrease in BMD. It is unclear if reduced BMD is caused by a primary disorder of bone or dietary factors. To study the independent effects of hypercalciuria on bone, we used genetic hypercalciuric stone-forming (GHS) rats. GHS and control (Ctl) rats were fed a low Ca (0.02% Ca, LCD) or a high Ca (1.2% Ca, HCD) diet for 6 wk in metabolic cages. All comparisons are to Ctl rats. Urine Ca was greater in the GHS rats on both diets. GHS fed HCD had reduced cortical (humerus) and trabecular (L(1)-L(5) vertebrae) BMD, whereas GHS rats fed LCD had a reduction in BMD similar to Ctl. GHS rats fed HCD had a decrease in trabecular volume and thickness, whereas LCD led to a approximately 20-fold increase in both osteoid surface and volume. GHS rats fed HCD had no change in vertebral strength (failure stress), ductibility (failure strain), stiffness (modulus), or toughness, whereas in the humerus, there was reduced ductibility and toughness and an increase in modulus, indicating that the defect in mechanical properties is mainly manifested in cortical, rather than trabecular, bone. GHS rat cortical bone is more mineralized than trabecular bone and LCD led to a decrease in the mineralization profile. Thus, the GHS rats, fed an ample Ca diet, have reduced BMD with reduced trabecular volume, mineralized volume, and thickness, and their bones are more brittle and fracture prone, indicating that GHS rats have an intrinsic disorder of bone that is not secondary to diet.
Collapse
|
38
|
Asplin JR, Donahue SE, Lindeman C, Michalenka A, Strutz KL, Bushinsky DA. Thiosulfate reduces calcium phosphate nephrolithiasis. J Am Soc Nephrol 2009; 20:1246-53. [PMID: 19369406 DOI: 10.1681/asn.2008070754] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An uncontrolled trial reported that sodium thiosulfate reduces formation of calcium kidney stones in humans, but this has not been established in a controlled human study or animal model. Using the genetic hypercalciuric rat, an animal model of calcium phosphate stone formation, we studied the effect of sodium thiosulfate on urine chemistries and stone formation. We fed genetic hypercalciuric rats normal food with or without sodium thiosulfate for 18 wk and measured urine chemistries, supersaturation, and the upper limit of metastability of urine. Eleven of 12 untreated rats formed stones compared with only three of 12 thiosulfate-treated rats (P < 0.002). Urine calcium and phosphorus were higher and urine citrate and volume were lower in the thiosulfate-treated rats, changes that would increase calcium phosphate supersaturation. Thiosulfate treatment lowered urine pH, which would lower calcium phosphate supersaturation. Overall, there were no statistically significant differences in calcium phosphate supersaturation or upper limit of metastability between thiosulfate-treated and control rats. In vitro, thiosulfate only minimally affected ionized calcium, suggesting a mechanism of action other than calcium chelation. In summary, sodium thiosulfate reduces calcium phosphate stone formation in the genetic hypercalciuric rat. Controlled trials testing the efficacy and safety of sodium thiosulfate for recurrent kidney stones in humans are needed.
Collapse
Affiliation(s)
- John R Asplin
- Litholink Corp., 2250 W. Campbell Park Drive, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW In this review, recent advances in the epidemiology, genetics, clinical associations and management of idiopathic hypercalciuria will be discussed. RECENT FINDINGS A significant genetic contribution exists in the pathophysiology of hypercalciuria. Although several candidate genes and genetic alterations have been proposed, identification of precise gene(s) responsible remains elusive. Decreased bone density has been increasingly associated with hypercalciuria. Recent publications have suggested that bisphosphonates may play a role in the management in patients in whom both hypercalciuria and decreased bone density are present. SUMMARY Idiopathic hypercalciuria is a common disorder in children and can present with a range of clinical presentations such as hematuria, voiding dysfunction, flank pain, abdominal pain, nephrolithiasis, urinary tract infection and decreased bone mineral density. Dietary modifications are often sufficient in the management of hypercalciuria. If the symptoms persist or a rare monogenic disorder is present, consideration should be given to medical treatment with a thiazide diuretic and/or citrate therapy.
Collapse
|
40
|
Escribano J, Balaguer A, Pagone F, Feliu A, Roqué I Figuls M. Pharmacological interventions for preventing complications in idiopathic hypercalciuria. Cochrane Database Syst Rev 2009; 2009:CD004754. [PMID: 19160242 PMCID: PMC7053686 DOI: 10.1002/14651858.cd004754.pub2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Idiopathic hypercalciuria is an inherited metabolic abnormality characterised by excessive amounts of calcium excreted into the urine in patients with normal serum levels of calcium. The morbidity of hypercalciuria is related to kidney stone disease and bone demineralization. In children, hypercalciuria can cause recurrent haematuria, frequency-dysuria syndrome, urinary tract infection and abdominal and lumbar pain. Several pharmacological treatments have been described that can decrease the levels of urinary calcium or its index of urinary crystallization. OBJECTIVES To assess the benefits and harms of pharmacological interventions for preventing complications and decreasing urological symptoms in patients with idiopathic hypercalciuria. SEARCH STRATEGY We searched MEDLINE, EMBASE, the Cochrane Renal Group's specialised register, the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library), handsearched relevant conference proceedings and reference lists of articles. SELECTION CRITERIA All randomised controlled trials (RCTs) and quasi-RCTS that compared any pharmacological intervention for preventing complications in idiopathic hypercalciuria, with placebo, other pharmacological intervention or a different administration mode or dose of the same treatment given for a minimum duration of four months and had a follow-up period of at least six months. DATA COLLECTION AND ANALYSIS Four authors assessed the studies for inclusion and extracted the data. Disagreements were resolved through discussion. Results were expressed as risk ratios (RR) with 95% confidence intervals (CI) or mean difference (MD). MAIN RESULTS Five studies (316 adult patients) were included. Four compared thiazides with standard treatment (periodic clinical follow-up and increased water intake) or specific dietary recommendations and one analysed the effect of thiazide plus a neutral potassium salt. There was a significant decrease in the number of new stone recurrences in those treated with thiazides (RR 1.61, 95% CI 1.33 to 1.96), although the follow-up periods varied. The stone formation rate also showed a statistically significant decrease in the patients treated with diuretics (MD -0.18, 95% CI -0.30 to -0.06). Thiazides plus potassium salts significantly decreased calciuria and vitamin D levels. AUTHORS' CONCLUSIONS There is some evidence that in patients with idiopathic hypercalciuria and recurrent stones, the addition of thiazides to a normal or modified diet for short to long periods (five months to three years) reduced the number of stone recurrences and decreased the stone formation rate. Thiazides and neutral potassium phosphate decreased calciuria in symptomatic patients with idiopathic hypercalciuria. There were no studies investigating the effect of pharmacological treatment on other clinical complications or asymptomatic idiopathic hypercalciuria.
Collapse
Affiliation(s)
- Joaquin Escribano
- Department of Pediatrics, Hospital Universitari St Joan de Reus, Universitat Rovira i Virgili, St Joan s/n, Reus, Catalonia, Spain, 43201.
| | | | | | | | | |
Collapse
|
41
|
Giusti A, Barone A, Pioli G, Girasole G, Siccardi V, Palummeri E, Bianchi G. Alendronate and indapamide alone or in combination in the management of hypercalciuria associated with osteoporosis: a randomized controlled trial of two drugs and three treatments. Nephrol Dial Transplant 2008; 24:1472-7. [PMID: 19075192 DOI: 10.1093/ndt/gfn690] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The role of bisphosphonates (BPs) in the management of patients with hypercalciuria (HC) associated with osteoporosis is still uncertain. The aim of the study was to evaluate the effect of alendronate and indapamide alone or in combination on bone mineral density (BMD) and 24-h urinary calcium excretion (24-CaU) in post-menopausal women with HC and low BMD. METHODS A total of 77 post-menopausal women with HC (24-CaU > 4 mg/kg/day) and low BMD [T-score < -2.0 at lumbar spine (LS), femoral neck (FN) or total hip (TH)] from two centres of Northern Italy were randomized to receive indapamide 2.5 mg daily alone (24 patients, IND group), alendronate 70 mg weekly alone (27 patients, ALN group) or the combination therapy (26 patients, ALN + IND group). Throughout the study, all subjects received daily calcium supplements, depending on their dietary intake, to maintain a daily input of 1000 mg. Patients were instructed to increase water intake up to 2000 mL daily. The percentage and absolute changes of BMD at LS, FN and TH, and the variation of 24-CaU from baseline at 1 year were the primary outcomes. Serum calcium, phosphate, parathyroid hormone and bone alkaline phosphatase were also measured. RESULTS Overall 67 women completed the study and were included in the final analysis. Patients in the three groups were similar with regard to baseline characteristics. BMD did not significantly change from baseline after 1 year of treatment with indapamide (LS: +1 +/- 3.1%; FN: -0.3 +/- 3.5%; TH: -0.4 +/- 3.1%), while it showed a significant increase from baseline in the other two groups (ALN; LS: +5.8 +/- 4.2%, P < 0.001; FN: +3.9 +/- 7.9%, P = 0.018; TH: +2 +/- 3.6%, P = 0.006) (ALN + IND; LS: +8.2 +/- 5.3%, P < 0.001; FN: +4.9 +/- 6.7%, P = 0.007; TH: +2.9 +/- 4.2%, P = 0.004). Patients in the combination group showed a significantly higher increase of BMD at LS compared to ALN (P = 0.04). After 1 year, 24-CaU values significantly decreased from baseline in all groups (IND, 239 +/- 78 versus 364 +/- 44, P < 0.001) (ALN, 279 +/- 68 versus 379 +/- 79, P < 0.001) (ALN + IND, 191 +/- 68 versus 390 +/- 55, P < 0.001). The mean percentage decrease of 24-CaU in ALN + IND group (-50%) was significantly greater compared to ALN (-24%, P < 0.001) and IND (-35%, P = 0.012). CONCLUSIONS These results show a benefit, in terms of BMD improvement and 24-CaU reduction, associated with BPs' therapy in combination with indapamide in HC associated with osteoporosis. The combination therapy demonstrated a reduction of 24-CaU and an increase in LS BMD superior to that observed with alendronate alone. Our results support a new potential approach with BPs associated with thiazide diuretics or indapamide in the management of post-menopausal women with HC and associated bone loss. Studies on the larger sample size are needed to demonstrate the efficacy on the fracture outcome.
Collapse
Affiliation(s)
- Andrea Giusti
- E.O. Galliera Hospital, Department of Gerontology and Musculoskeletal Sciences, Corso Mentana 10, Genoa 16128, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Freundlich M, Alon US. Bisphosphonates in children with hypercalciuria and reduced bone mineral density. Pediatr Nephrol 2008; 23:2215-20. [PMID: 18704505 DOI: 10.1007/s00467-008-0940-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 05/05/2008] [Accepted: 06/09/2008] [Indexed: 11/24/2022]
Abstract
Previous studies have demonstrated reduced bone mineral density (BMD) and biochemical changes of excessive bone resorption in some patients with idiopathic hypercalciuria (IH). Consequently, bisphosphonates have been successfully employed in research animals and adults with IH and reduced BMD. We evaluated the effect of treatment with bisphosphonates in seven patients ages 10-16 years with persistent IH and reduced BMD. In five children, preceding traditional therapy failed. All children received oral alendronate and one also IV Zoledronic acid for 6-18 (median 9.0, mean 10.7) months. With treatment, BMD Z scores in the lumbar spine improved from -2.0 +/- 0.3 to -0.8 +/- 0.8 (p = 0.002) and in the femoral neck from -1.8 +/- 0.4 to -0.7 +/- 0.9 (p = 0.01); urine N-telopeptides/creatinine decreased from 372 +/- 289 to 72 +/- 39 nmol/mmol (p = 0.05) and calcium/creatinine from 0.29 +/- 0.12 to 0.13 +/- 0.06 mg/mg (p = 0.009). Height Z scores, normal at baseline in all, remained unaffected, and no new stones or fractures were documented throughout the treatment period. Serum creatinine, electrolytes, calcium, phosphorus and parathyroid hormone remained normal as well. In summary, in children with IH and decreased BMD, treatment with bisphosphonates normalized urine calcium excretion, eliminated urinary symptoms, and significantly improved reduced BMD. These short-term beneficial effects indicate the need for larger prospective studies on the potential of bisphosphonates to serve as a new tool in treating children with IH and reduced BMD.
Collapse
|
43
|
Bone Disease and Idiopathic Hypercalciuria. Clin Rev Bone Miner Metab 2008. [DOI: 10.1007/s12018-008-9023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Abstract
Observational and epidemiologic studies alike have shown that idiopathic hypercalciuric (IH) stone-forming patients typically show bone mineral density scores that are significantly lower than those observed for age- and sex-matched normal subjects or those for nonhypercalciuric stone-forming patients. Most of these studies have relied on changes in bone mineral density and have not explored the mechanism(s) involved. There have been a small number of studies that have relied on dynamic bone histomorphometry to ascertain the nature of the bone defect in IH patients. When performed, these studies clearly have shown increased bone resorption and high bone turnover in patients with fasting hypercalciuria whereas suppressed bone formation indices are the most consistent finding in patients with the absorptive variant of IH. The causes of this apparent difference in bone remodeling between the 2 variants of IH still is uncertain. Available evidence suggests that potential mechanisms may be dependent in large part to genetic, metabolic, and nutritional causes of hypercalciuria and bone loss in patients with IH.
Collapse
Affiliation(s)
- Joseph E Zerwekh
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8885, USA.
| |
Collapse
|
45
|
Effect of bolus and divided feeding on urine ions and supersaturation in genetic hypercalciuric stone-forming rats. Kidney Int 2007; 73:423-9. [PMID: 18046318 DOI: 10.1038/sj.ki.5002699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Because urine ion excretion varies throughout the day, clinicians monitor 24 h urine samples to measure ion excretion and supersaturation in kidney stone patients. However, these results are averages and may not reflect maximal supersaturation which drives stone formation. We measured ion excretion and saturation in genetic hypercalciuric stone-forming rats on both a normal or low calcium diet over 0-3, 3-6 and 6-24 h using two feeding protocols, where the daily food allotment was fed either as a bolus or divided into three portions. With a normal calcium diet, urine calcium, oxalate, volume, and calcium oxalate supersaturation were significantly greater on the bolus compared to the divided feeds in the prandial and postprandial periods. Bolus eaters also excreted more calcium and oxalate and had increased volume over 24 h. Maximal calcium oxalate supersaturation was greater during the initial time periods than during the entire 24 h, regardless of the feeding schedule. With the low calcium diet, the effect of bolus feeding was reduced. Thus, urine ion excretion and supersaturation vary with the type of feeding. If these results are confirmed in man, it suggests that eating as a bolus may result in greater prandial and postprandial calcium oxalate supersaturation. This may increase growth on Randall's plaques and promote stone disease.
Collapse
|
46
|
Abstract
Hypercalcuria is the most common metabolic disorder found in patients with nephrolithiasis. As the prevalence of kidney stones rises in industrialized nations, understanding the pathogenesis and treatment of hypercalciuria becomes increasingly important. Idiopathic hypercalciuria (IH), defined as an excess urine calcium excretion without an apparent underlying etiology, is the most frequent cause of hypercalciuria and will be the focus of this paper. Calcium homeostasis is tightly controlled and slight disturbances in transport at the level of the intestine, bone, and/or kidney can lead to excessive urine calcium excretion and promote stone formation. IH is a systemic disorder with dysregulation of calcium transport at a combination of these calcium regulatory sites. The goal of treatment is to prevent stone formation and relies on a combination of dietary and pharmaceutical interventions. Dietary management includes increasing fluid intake, salt restriction, animal protein restriction, and maintaining a normal calcium intake. Thiazide diuretics have proven effective in preventing calcium stone formation by reducing the urinary excretion of calcium. It is important to note that while decreasing urinary calcium excretion is important the clinician should focus primarily on reducing the supersaturation of calcium oxalate as this determines the true tendency for stone formation.
Collapse
Affiliation(s)
- Scott E Liebman
- University of Rochester School of Medicine and Dentistry, Nephrology Division, Strong Memorial Hospital, 601 Elmwood Avenue, Box 675, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
47
|
Heller HJ, Zerwekh JE, Gottschalk FA, Pak CYC. Reduced bone formation and relatively increased bone resorption in absorptive hypercalciuria. Kidney Int 2007; 71:808-15. [PMID: 17311067 DOI: 10.1038/sj.ki.5002181] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Absorptive hypercalciuria (AH), a common stone-forming condition characterized biochemically by intestinal hyperabsorption of calcium and hypercalciuria may be associated with bone loss. In AH type I (AH-1), hypercalciuria persists despite restriction in dietary calcium intake. We therefore hypothesized that the skeleton may contribute to the hypercalciuria in this subgroup of patients. Histomorphometric analysis of iliac crest biopsies were performed on nine stone-formers with AH-1 and on nine matched normal subjects. After stabilization on a stone-prevention diet, calcium homeostasis in the stone formers was then evaluated on inpatient constant metabolic diet before and after short-term blockade of bone resorption by alendronate (10 mg daily, 17 days total). Compared with controls, the stone-formers had lower indices of bone formation (osteoblast surface/bone surface 1.8+/-2.1 vs 3.0+/-1.5%, P=0.04; wall thickness 35.8+/-6.9 vs 47.2+/-7.6%, P=0.001) and relatively higher bone resorption (osteoclast surface/bone surface 0.4+/-0.2 vs 0.2+/-0.2%, P=0.05). In the stone-formers, a short-term course of alendronate treatment corrected fasting urinary calcium (0.14+/-0.06 to 0.06+/-0.04 mg Ca/mg Cr, P=0.001) and marginally reduced 24-h urinary calcium by 48 mg/day (P=0.06). Increased intestinal calcium absorption and hypercalciuria persisted, but estimated calcium balance improved (P=0.007). Our results suggest that the hypercalciuria of AH-1 originates primarily from intestinal hyperabsorption of calcium, but bone resorption in excess of bone formation may contribute.
Collapse
Affiliation(s)
- H J Heller
- Department of Internal Medicine, UT Southwestern Medical Center at Dallas, Center for Mineral Metabolism and Clinical Research, Dallas, Texas, USA
| | | | | | | |
Collapse
|
48
|
Srivastava T, Alon US. Pathophysiology of hypercalciuria in children. Pediatr Nephrol 2007; 22:1659-73. [PMID: 17464515 PMCID: PMC6904412 DOI: 10.1007/s00467-007-0482-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/11/2007] [Accepted: 03/12/2007] [Indexed: 12/17/2022]
Abstract
Urinary excretion of calcium is the result of a complex interplay between three organs-namely, the gastrointestinal tract, bone, and kidney-which is finely orchestrated by multiple hormones. Hypercalciuria is believed to be a polygenic trait and is influenced significantly by diet. This paper briefly reviews calcium handling by the renal tubule in normal and in hereditary disorders as it relates to the pathophysiology of hypercalciuria. The effects of dietary sodium, potassium, protein, calcium, and phosphate on calcium excretion, and the association of hypercalciuria with bone homeostasis is discussed, leading to recommendations on means to address excessive urinary calcium excretion.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Bone and Mineral Disorder Clinic, The Children’s Mercy Hospital and Clinics, University of Missouri, 2401 Gillham Road, Kansas City, MO 64108 USA
| | - Uri S. Alon
- Section of Nephrology, Bone and Mineral Disorder Clinic, The Children’s Mercy Hospital and Clinics, University of Missouri, 2401 Gillham Road, Kansas City, MO 64108 USA
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW We will describe the pathophysiology of hypercalciuria and the mechanism of the resultant stone formation in a rat model and draw parallels to human hypercalciuria and stone formation. RECENT FINDINGS Through inbreeding we have established a strain of rats that excrete 8-10 times more urinary calcium than control rats. These genetic hypercalciuric rats absorb more dietary calcium at lower 1,25-dihydroxyvitamin D3 levels. Elevated urinary calcium excretion on a low-calcium diet indicated a defect in renal calcium reabsorption and/or an increase in bone resorption. Bone from hypercalciuric rats released more calcium when exposed to 1,25-dihydroxyvitamin D3. Bisphosphonate significantly reduced urinary calcium excretion in rats fed a low-calcium diet. Clearance studies showed a primary defect in renal calcium reabsorption. The intestine, bone and kidneys of the hypercalciuric rats had increased numbers of vitamin D receptors. When hydroxyproline is added to their diet they form calcium oxalate stones, the most common stone type in humans. Increased numbers of vitamin D receptors may cause hypercalciuria in these rats and humans. SUMMARY Understanding the mechanism of hypercalciuria and stone formation in this animal model will help clinicians devise effective treatment strategies for preventing recurrent stone formation in humans.
Collapse
Affiliation(s)
- David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Decreased bone mineral density and increased prevalence of bone fractures have been found in patients with idiopathic hypercalciuria. The purpose of this review is to summarize the recent published evidence that supports a potential role of the bone, and its link to the kidney and intestine, in the pathogenesis of idiopathic hypercalciuria. The effects of hypercalciuria on bone and the implications for treatment are also reviewed. RECENT FINDINGS Evidence suggests that the incidence of a first fracture in kidney stone patients is fourfold higher than the control population. Support for the role of bone in the pathophysiology of hypercalciuria has been corroborated. New studies have detailed the effects of several cytokines - increased number and sensitivity of vitamin D receptors, and increased acid production - upon the bone acting cells. Similarly, recent clinical and experimental studies have suggested that genetic factors confer a predisposition to the formation of renal calcium stones and bone demineralization. SUMMARY Whether hypercalciuria is the result of a primary bone disorder, a consequence of a persisting negative calcium balance or a combination of both still remains to be determined. Nevertheless, bone status must be evaluated and followed up in patients with idiopathic hypercalciuria.
Collapse
Affiliation(s)
- Ita P Heilberg
- Division of Nephrology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|