1
|
Prenatal alcohol exposure affects renal function in overweight schoolchildren: birth cohort analysis. Pediatr Nephrol 2020; 35:695-702. [PMID: 31820144 DOI: 10.1007/s00467-019-04429-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Prenatal ethanol exposure has been shown to reduce nephron endowment in animal models, but the effect of alcohol during human pregnancy on postnatal kidney function has not been explored. We aim to investigate the potential association of maternal alcohol consumption during pregnancy with the offspring renal function, considering potential confounding by intrauterine growth and children's current nutritional status. METHODS Prospective longitudinal study in a random sample of 1093 children from a population-based birth cohort. Anthropometrics and estimated glomerular filtration rate (eGFR) were assessed at 7 years of age. Multiple linear regression models were fitted, adjusting for child's gender, age, birthweight, and maternal age, education, prepregnancy nutritional status, and smoking. RESULTS Thirteen percent of mothers consumed alcohol during pregnancy. At 7 years of age, eGFR was significantly lower in children with prenatal alcohol exposure (134 ± 17 vs.138 ± 16 mL/min/1.73m2, p = 0.014). The effect was dose dependent and only present in overweight and obese children, among whom adjusted eGFR was -6.6(-12.0 to -1.1)mL/min/1.73m2 and -11.1(-21.3 to -1.2)mL/min/1.73m2 in those exposed to ≤ 40 g and to > 40 g of alcohol per week, respectively, compared to no consumption (ptrend = 0.002). CONCLUSIONS Prenatal alcohol exposure has a dose-dependent adverse effect on renal function at school age in overweight and obese children.
Collapse
|
2
|
Kruse M, Fiallo A, Tao J, Susztak K, Amann K, Katz E, Charron M. A High Fat Diet During Pregnancy and Lactation Induces Cardiac and Renal Abnormalities in GLUT4 +/- Male Mice. Kidney Blood Press Res 2017; 42:468-482. [DOI: 10.1159/000479383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
|
3
|
Affiliation(s)
- Lucy R. Green
- Centre for Fetal Origins of Adult Disease, Universiy of Southampton, 887(F) Princess Anne Hospital, Coxford Road, Southanmpton SO16 5YA United Kingdom
| |
Collapse
|
4
|
Sakuyama H, Katoh M, Wakabayashi H, Zulli A, Kruzliak P, Uehara Y. Influence of gestational salt restriction in fetal growth and in development of diseases in adulthood. J Biomed Sci 2016; 23:12. [PMID: 26787358 PMCID: PMC4719732 DOI: 10.1186/s12929-016-0233-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/12/2016] [Indexed: 02/07/2023] Open
Abstract
Recent studies reported the critical role of the intrauterine environment of a fetus in growth or the development of disease in adulthood. In this article we discussed the implications of salt restriction in growth of a fetus and the development of growth-related disease in adulthood. Salt restriction causes retardation of fatal growth or intrauterine death thereby leading to low birth weight or decreased birth rate. Such retardation of growth along with the upregulation of the renin angiotensin system due to salt restriction results in the underdevelopment of cardiovascular organs or decreases the number of the nephron in the kidney and is responsible for onset of hypertension in adulthood. In addition, gestational salt restriction is associated with salt craving after weaning. Moreover, salt restriction is associated with a decrease in insulin sensitivity. A series of alterations in metabolism due to salt restriction are probably mediated by the upregulation of the renin angiotensin system and an epigenetic mechanism including proinflammatory substances or histone methylation. Part of the metabolic disease in adulthood may be programmed through such epigenetic changes. The modification of gene in a fetus may be switched on through environment factors or life style after birth. The benefits of salt restriction have been assumed thus far; however, more precise investigation is required of its influence on the health of fetuses and the onset of various diseases in adulthood.
Collapse
Affiliation(s)
- Hiroe Sakuyama
- Division of Clinical Nutrition, Faculty of Home Economics, Kyoritsu Women's University, 2-2-1 Hitotsubashi, Chiyoda, Tokyo, 101-8437, Japan
| | - Minami Katoh
- Division of Clinical Nutrition, Faculty of Home Economics, Kyoritsu Women's University, 2-2-1 Hitotsubashi, Chiyoda, Tokyo, 101-8437, Japan
| | - Honoka Wakabayashi
- Division of Clinical Nutrition, Faculty of Home Economics, Kyoritsu Women's University, 2-2-1 Hitotsubashi, Chiyoda, Tokyo, 101-8437, Japan
| | - Anthony Zulli
- The Centre for Chronic Disease Prevention & Management (CCDPM), Western CHRE, Victoria University, St Albans, Australia
| | - Peter Kruzliak
- 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University, Pekarska 53, 656 91, Brno, Czech Republic.
- Laboratory of Structural Biology and Proteomics, Central Laboratories, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| | - Yoshio Uehara
- Division of Clinical Nutrition, Faculty of Home Economics, Kyoritsu Women's University, 2-2-1 Hitotsubashi, Chiyoda, Tokyo, 101-8437, Japan.
| |
Collapse
|
5
|
Developmental origins of health and disease: experimental and human evidence of fetal programming for metabolic syndrome. J Hum Hypertens 2011; 26:405-19. [PMID: 21697895 DOI: 10.1038/jhh.2011.61] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The concept of developmental origins of health and disease has been defined as the process through which the environment encountered before birth, or in infancy, shapes the long-term control of tissue physiology and homeostasis. The evidence for programming derives from a large number of experimental and epidemiological observations. Several nutritional interventions during diverse phases of pregnancy and lactation in rodents are associated with fetal and neonatal programming for metabolic syndrome. In this paper, recent experimental models and human epidemiological studies providing evidence for the fetal programming associated with the development of metabolic syndrome and related diseases are revisited.
Collapse
|
6
|
Ritz E, Amann K, Koleganova N, Benz K. Prenatal programming-effects on blood pressure and renal function. Nat Rev Nephrol 2011; 7:137-44. [PMID: 21283139 DOI: 10.1038/nrneph.2011.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Impaired intrauterine nephrogenesis-most clearly illustrated by low nephron number-is frequently associated with low birthweight and has been recognized as a powerful risk factor for renal disease; it increases the risks of low glomerular filtration rate, of more rapid progression of primary kidney disease, and of increased incidence of chronic kidney disease or end-stage renal disease. Another important consequence of impaired nephrogenesis is hypertension, which further amplifies the risk of onset and progression of kidney disease. Hypertension is associated with low nephron numbers in white individuals, but the association is not universal and is not seen in individuals of African origin. The derangement of intrauterine kidney development is an example of a more general principle that illustrates the paradigm of plasticity during development-that is, that transcription of the genetic code is modified by epigenetic factors (as has increasingly been documented). This Review outlines the concept of prenatal programming and, in particular, describes its role in kidney disease and hypertension.
Collapse
Affiliation(s)
- Eberhard Ritz
- Division of Nephrology, Department of Internal Medicine, University of Heidelberg, Heidelberg 69100, Germany.
| | | | | | | |
Collapse
|
7
|
Benz K, Amann K. Maternal nutrition, low nephron number and arterial hypertension in later life. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1309-17. [PMID: 20226855 DOI: 10.1016/j.bbadis.2010.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/01/2010] [Accepted: 03/04/2010] [Indexed: 12/30/2022]
Abstract
A potential role of the intrauterine environment in the development of low nephron number and hypertension in later life has been recently recognized in experimental studies and is also postulated in certain conditions in human beings. Nephrogenesis is influenced by genetic as well as by environmental and in particular maternal factors. In man nephrogenesis, i.e. the formation of nephrons during embryogenesis, takes place from weeks 5 to 36 of gestation with the most rapid phase of nephrogenesis occurring from the mid-2nd trimester until 36 weeks. This 16 week period is a very vulnerable phase where genetic and environmental factors such as maternal diet or medication could influence and disturb nephron formation leading to lower nephron number. Given a constant rise in body mass until adulthood lower nephron number may become "nephron underdosing" and result in maladaptive glomerular changes, i.e. glomerular hyperfiltration and glomerular enlargement. These maladaptive changes may then eventually lead to the development of glomerular and systemic hypertension and renal disease in later life. It is the purpose of this review to discuss the currently available experimental and clinical evidence for factors and mechanisms that could interfere with nephrogenesis with particular emphasis on maternal nutrition. In addition, we discuss the emerging concept of low nephron number being a new cardiovascular risk factor in particular for essential hypertension in later life.
Collapse
Affiliation(s)
- Kerstin Benz
- Department of Pediatric Nephrology, University of Erlangen-Nürnberg, Germany
| | | |
Collapse
|
8
|
Goyal R, Galffy A, Field SA, Gheorghe CP, Mittal A, Longo LD. Maternal Protein Deprivation: Changes in Systemic Renin-Angiotensin System of the Mouse Fetus. Reprod Sci 2009; 16:894-904. [DOI: 10.1177/1933719109337260] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ravi Goyal
- Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, California
| | - Andrew Galffy
- Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, California
| | - Stephanie A. Field
- Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, California
| | - Ciprian P. Gheorghe
- Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, California
| | - Ashwani Mittal
- Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, California
| | - Lawrence D. Longo
- Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, California,
| |
Collapse
|
9
|
Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models. Clin Sci (Lond) 2008; 114:1-17. [PMID: 18047465 DOI: 10.1042/cs20070113] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular-related diseases are the leading cause of death in the world in both men and women. In addition to the environmental and genetic factors, early life conditions are now also considered important contributing elements to these pathologies. The concept of 'fetal' or 'developmental' origins of adult diseases has received increased recognition over the last decade, yet the mechanism by which altered perinatal environment can lead to dysfunction mostly apparent in the adult are incompletely understood. This review will focus on the mechanisms and pathways that epidemiological studies and experimental models have revealed underlying the adult cardiovascular phenotype dictated by the perinatal experience, as well as the probable key causal or triggering elements. Programmed elevated blood pressure in the adult human or animal is characterized by vascular dysfunction and microvascular rarefaction. Developmental mechanisms that have been more extensively studied include glucocorticoid exposure, the role of the kidneys and the renin-angiotensin system. Other pathophysiological pathways have been explored, such as the role of the brain and the sympathetic nervous system, oxidative stress and epigenetic changes. As with many complex diseases, a unifying hypothesis linking the perinatal environment to elevated blood pressure and vascular dysfunction in later life cannot be presumed, and a better understanding of those mechanisms is critical before clinical trials of preventive or 'deprogramming' measures can be designed.
Collapse
|
10
|
Boyce AC, Gibson KJ, Wintour EM, Koukoulas I, Gatford KL, Owens JA, Lumbers ER. The kidney is resistant to chronic hypoglycaemia in late-gestation fetal sheep. Can J Physiol Pharmacol 2007; 85:597-605. [PMID: 17823621 DOI: 10.1139/y07-047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We imposed a sustained reduction in glucose supply to late-gestation fetal sheep to see whether the reduction in glucose and insulin levels affected renal growth, renin expression and synthesis, and renal function. Maternal glucose concentrations were lowered to 1.7-1.9 mmol/L for 12-13 days by i.v. insulin infusion (n = 9, 121 days gestation, term = 150 days). Control ewes (n = 7) received vehicle. Maternal and fetal glucose concentrations were 40% and 31% lower than in controls (p < 0.001), respectively. Fetal plasma insulin levels fell 36% +/- 7% by day 7 (p < 0.05); IGF-I levels were unchanged. Arterial PO2 and pH increased and PCO2 fell (p < 0.05). Renal function was largely unaffected. Longitudinal growth was 28% slower and spleen weights were 36% smaller (p < 0.05); body and kidney weights were not affected. Renal renin levels and renin, angiotensinogen, and angiotensin receptor mRNA levels were similar to those of controls. Plasma renin levels increased from 2.1 +/- 0.6 to 7.6 +/- 2.8 ng angiotensin I.mL-1.h-1 (p = 0.01). Thus reductions in fetal glucose and insulin levels in late gestation that were sufficient to retard skeletal growth had no effect on kidney growth or function or the renal renin-angiotensin system, possibly because IGF-I levels were not reduced. There was, however, increased activity of the circulating renin-angiotensin system similar to that seen during insulin-induced hypoglycaemia.
Collapse
Affiliation(s)
- Amanda C Boyce
- Department of Physiology & Pharmacology, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia.
| | | | | | | | | | | | | |
Collapse
|
11
|
Schreuder M, Delemarre-van de Waal H, van Wijk A. Consequences of Intrauterine Growth Restriction for the Kidney. Kidney Blood Press Res 2006; 29:108-25. [PMID: 16837795 DOI: 10.1159/000094538] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Low birth weight due to intrauterine growth restriction is associated with various diseases in adulthood, such as hypertension, cardiovascular disease, insulin resistance and end-stage renal disease. The purpose of this review is to describe the effects of intrauterine growth restriction on the kidney. Nephrogenesis requires a fine balance of many factors that can be disturbed by intrauterine growth restriction, leading to a low nephron endowment. The compensatory hyperfiltration in the remaining nephrons results in glomerular and systemic hypertension. Hyperfiltration is attributed to several factors, including the renin-angiotensin system (RAS), insulin-like growth factor (IGF-I) and nitric oxide. Data from human and animal studies are presented, and suggest a faltering IGF-I and an inhibited RAS in intrauterine growth restriction. Hyperfiltration makes the kidney more vulnerable during additional kidney disease, and is associated with glomerular damage and kidney failure in the long run. Animal studies have provided a possible therapy with blockage of the RAS at an early stage in order to prevent the compensatory glomerular hyperfiltration, but this is far from being applicable to humans. Research is needed to further unravel the effect of intrauterine growth restriction on the kidney.
Collapse
Affiliation(s)
- Michiel Schreuder
- Department of Pediatric Nephrology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
12
|
Samuelsson AM, Alexanderson C, Mölne J, Haraldsson B, Hansell P, Holmäng A. Prenatal exposure to interleukin-6 results in hypertension and alterations in the renin-angiotensin system of the rat. J Physiol 2006; 575:855-67. [PMID: 16825309 PMCID: PMC1995698 DOI: 10.1113/jphysiol.2006.111260] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytokines are emerging as important in developmental processes. They may induce alterations in normal gene expression patterns, activate angiotensinogen transcription, or alter expression of the renin-angiotensin system (RAS). To determine whether prenatal exposure to interleukin-6 (IL-6) influences gene expression of the intrarenal RAS and contributes to renal dysfunction and hypertension in adulthood, we exposed female rats to IL-6 early (EIL-6 females) and late (LIL-6 females) in pregnancy and analysed blood pressure in the offspring at 5-20 weeks of age. Renal fluid and electrolyte excretion was assessed in clearance experiments, mRNA expression by real-time PCR, and protein levels by Western blot. Systolic pressure was increased at 5 weeks in IL-6 females and at 11 weeks in males. Circulatory RAS levels were increased in all IL-6 females, but angiotensin-1-converting enzyme (ACE) activity was increased only in LIL-6 females. LIL-6 males and IL-6 females showed decreased urinary flow rate and urinary sodium and potassium excretion. Dopamine excretion was decreased IL-6 females. In adult renal cortex, renin expression was increased in all IL-6 females, but angiotensinogen mRNA was increased only in LIL-6 females; AT(1) receptor (AT(1)-R) mRNA and protein levels were increased in LIL-6 females, whereas AT(2) receptor (AT(2)-R) levels were decreased in LIL-6 females and EIL-6 males. In adult renal medulla, AT(1)-R protein levels were increased in LIL-6 females, and AT(2)-R mRNA and protein levels were decreased in EIL-6 males and LIL-6 females. Prenatal IL-6 exposure may cause hypertension by altering the renal and circulatory RAS and renal fluid and electrolyte excretion, especially in females.
Collapse
Affiliation(s)
- Anne-Maj Samuelsson
- Institute of Neuroscience and Physiology, Göteborg University, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
13
|
Yum MK, Kim CR, Park EY, Kim JH, Park KJ. Different etiologies of intrauterine growth restriction and different consistencies in the occurrence of abnormal local nonstationarity of fetal heart rate. Clin Exp Hypertens 2006; 28:147-56. [PMID: 16546840 DOI: 10.1080/10641960500468391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Fetuses with intrauterine growth restriction (IUGR) can be programmed in utero to develop hypertension in adult life. The etiology of IUGR in human fetuses is not uniform. The present study demonstrated that different etiologies of growth restriction, idiopathic cause, and pregnancy-induced hypertension, produce different consistencies in the occurrence of an abnormal local very-short-term nonstationarity of heart rate during intrauterine period. Whether the consistent abnormality that was found in the growth-restricted fetuses associated with pregnancy-induced hypertension is linked to the different risk of later hypertension requires future studies.
Collapse
Affiliation(s)
- Myung-Kul Yum
- Department of Pediatrics, Hanyang University School of Medicine, Seoul, Korea.
| | | | | | | | | |
Collapse
|
14
|
Abstract
There is increasing evidence that primary hypertension, coronary heart disease, and other aspects of the so-called metabolic syndrome that develop in adulthood are primed in fetal life or early postnatally. The identification of this phenomenon, also known as prenatal or fetal programming, and the detailed characterization of the underlying pathomechanisms will greatly influence the understanding of these diseases. The present paper reviews recent experimental and clinical evidence that low nephron number, found in patients with renal dysplasia and low birth weight, is a risk factor for cardiovascular disease in later life. Therefore, it is important to identify children at risk as early as possible in order to treat them early and to prevent the development of end-organ damage. This could be an important goal for pediatrics in the near future.
Collapse
Affiliation(s)
- Kerstin Amann
- Department of Pathology, University of Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany.
| | | | | |
Collapse
|
15
|
Pladys P, Lahaie I, Cambonie G, Thibault G, Lê NLO, Abran D, Nuyt AM. Role of brain and peripheral angiotensin II in hypertension and altered arterial baroreflex programmed during fetal life in rat. Pediatr Res 2004; 55:1042-9. [PMID: 15071169 DOI: 10.1203/01.pdr.0000127012.37315.36] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrauterine programming of hypertension is associated with evidence of increased renin-angiotensin system (RAS) activity. The current study was undertaken to investigate whether arterial baroreflex and blood pressure variability are altered in a model of in utero programming of hypertension secondary to isocaloric protein deprivation and whether activation of the RAS plays a role in this alteration. Pregnant Wistar rats were fed a normal-protein (18%) or low-protein (9%) diet during gestation, which had no effect on litter size, birth weight, or pup survival. Mean arterial blood pressure (MABP; 126 +/- 3 mm Hg 9% versus 108 +/- 4 mm Hg 18%; p < 0.05) and blood pressure variability were significantly greater in the adult offspring of the 9% protein-fed mothers. Arterial baroreflex control of heart rate, generated by graded i.v. infusion of phenylephrine and nitroprusside, was significantly shifted toward higher pressure; i.v. angiotensin-converting enzyme inhibitor normalized MABP and shifted the arterial baroreflex curve of the 9% offspring toward lower pressure without affecting the 18% offspring. For examining whether brain RAS is also involved in programming of hypertension, angiotensin-converting enzyme inhibitor and losartan (specific AT(1) receptor antagonist) were administered intracerebroventricularly; both significantly reduced MABP of the 9% but not the 18% offspring. Autoradiographic receptor binding studies demonstrated an increase in brain AT(1) expression in the subfornical organ and the vascular organ of the lamina terminalis in the 9% offspring. These data demonstrate a major tonic role of brain and peripheral RAS on hypertension associated with antenatal nutrient deprivation.
Collapse
Affiliation(s)
- Patrick Pladys
- Research Center, Hôpital Sainte-Justine, Department of Pediatrics, University of Montreal, 3175 Côte Sainte-Catherine, Montreal, Quebec, Canada, H3T 1C5
| | | | | | | | | | | | | |
Collapse
|
16
|
Filiz S, Dalcik C, Filiz TM, Dalcik H. Localization of Neural Cell Adhesion Molecule and Pan-cadherin Immunoreactivity in Intrauterine Growth-retarded Newborn Rat Kidneys. Appl Immunohistochem Mol Morphol 2003; 11:352-8. [PMID: 14663363 DOI: 10.1097/00129039-200312000-00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To examine the expression and distribution pattern of neural cell adhesion molecule (N-CAM) and pan-cadherin immunoreactivity in intrauterine growth retardation (IUGR) newborn kidneys, we used a rat model of maternal protein restriction throughout pregnancy. Weak or moderate immunoreactivity for N-CAM and pan-cadherin was seen in some proximal tubules, in the thick segments of Henle, and in the collecting tubules of the control sections. However, the number of tubules expressing N-CAM and pan-cadherin was increased in the IUGR group compared with the control group. Increased density of N-CAM and pan-cadherin immunoreactivity was observed mostly in the proximal tubules, in the thick segments of Henle, and in the collecting tubules of IUGR newborn rat kidneys. Furthermore, N-CAM and pan-cadherin immunoreactivity was present in the thin limb of Henle in the IUGR group, whereas it was absent in the control group. Glomeruli were negative in both groups except for some glomeruli that showed very weak N-CAM staining in the IUGR group. Thus it was demonstrated for the first time that IUGR newborn rat kidneys express N-CAM and cadherin adhesion molecules at specific sites of the nephron.
Collapse
Affiliation(s)
- Serdar Filiz
- Department of Histology and Embryology, Faculty of Medicine, University of Kocaeli, Derince, Kocaeli, Turkey.
| | | | | | | |
Collapse
|
17
|
Vanderheyden T, Kumar S, Fisk NM. Fetal renal impairment. ACTA ACUST UNITED AC 2003; 8:279-89. [PMID: 15001131 DOI: 10.1016/s1084-2756(03)00022-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2003] [Accepted: 01/31/2003] [Indexed: 11/22/2022]
Abstract
Renal function in utero deals chiefly with urine production rather than the excretion of metabolites, which are cleared by the placenta. Fetal renal impairment (FRI) in bilateral renal disease thus presents as oligohydramnios or anhydramnios; this can lead to lung hypoplasia and early neonatal death. As in the adult, FRI can be divided into prerenal, renal and postrenal causes. Causes of prerenal FRI include intrauterine growth restriction, unbalanced intertwin transfusion in monochorionic twins and maternal drug ingestion. Bilateral renal agenesis, multicystic dysplasia and both the autosomal dominant and recessive forms of polycystic kidney disease are examples of renal causes, whereas postrenal etiologies are usually caused by lower urinary tract obstruction (LUTO). When both kidneys are affected and there is severe mid-trimester oligohydramnios, the prognosis is poor. Although animal studies have shown that prolonged LUTO leads to lung hypoplasia and renal damage, and that decompression of the fetal kidney in early pregnancy restores fetal pulmonary and renal function, the value of fetal therapy such as vesico-amniotic shunting remains controversial, with a high procedure-related complication rate and a high incidence of end-stage renal failure in childhood. Fetal cystoscopic treatment of posterior urethral valves in utero may obviate some of these difficulties but remains an investigational procedure.
Collapse
Affiliation(s)
- Tina Vanderheyden
- Institute of Reproductive and Developmental Biology, Queen Charlotte's and Chelsea Hospital,Imperial College, Hammersmith Campus, Du Cane Road, London W12OSH, UK.
| | | | | |
Collapse
|
18
|
Abstract
Recent evidence, from both epidemiological and animal experimental studies, suggest that the very first environment, the intrauterine, is extremely important in determining the future health of the individual. Genetic and 'lifestyle' factors impinge on, and can exacerbate, a 'programming' effect of an adverse fetal environment. In this review, we present compelling evidence to suggest that one of the major organs affected by an unfavourable prenatal environment is the kidney. Many of the factors that can affect fetal renal development (i.e. exposure to excess glucocorticoids, insufficient vitamin A, protein/calorie malnutrition (in rats) and alterations in the intrarenal renin angiotensinogen system), also produce hypertension in the adult animal. When nephron number is compromised during kidney development, maladaptive functional changes occur and can lead, eventually, to hypertension and/or renal disease. Surprisingly, it is during the very earliest stages of kidney development that the vulnerability to these effects occurs.
Collapse
Affiliation(s)
- Karen M Moritz
- Howard Florey Institute, University of Melbourne, Parkville, 3010, Australia
| | | | | |
Collapse
|
19
|
Abstract
There is evidence to suggest that an individual's susceptibility to cardiovascular disease cannot be entirely explained by differences in life style factors (i.e., low physical activity, high fat/salt diet), or genetic causes, but may also be influenced by factors encountered during intrauterine life. Epidemiological studies found the link between low birth weight for gestational age (a broad index of sub-optimal intrauterine environment) and increased incidence of cardiovascular and metabolic diseases in adulthood. Many animal models in which the intrauterine environment was altered during early/late or throughout gestation demonstrated long-term effects on adult health. In general stress in early gestation is more likely to be associated with adult cardiovascular disease including hypertension, whereas late gestation stress may also be associated with adult hypotension in addition to metabolic/endocrine abnormalities. Two systems have been widely hypothesised to serve as mechanisms via which adverse prenatal influences impinge on adult cardiovascular and metabolic disease; hippocampal-hypothalamo-pituitary-adrenal axis (HHPA) and renin-angiotensin system (RAS). Interestingly, at least in our animal model of adult hypertension after brief/early prenatal glucocorticoid exposure, HHPA axis is not altered when studied either in late gestation or at several stages during adulthood. However, our more recent results, using the same animal model, suggest a major role for the central and renal RAS. This review will mainly focus on animal models and potential mechanisms via which a perturbed intrauterine environment (undernutrition or steroid exposure) lead to adult cardiovascular and/or metabolic disease.
Collapse
Affiliation(s)
- M Dodic
- Howard Florey Institute, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
20
|
Dodic M, Hantzis V, Duncan J, Rees S, Koukoulas I, Johnson K, Wintour EM, Moritz K. Programming effects of short prenatal exposure to cortisol. FASEB J 2002; 16:1017-26. [PMID: 12087063 DOI: 10.1096/fj.01-1045com] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent studies have linked fetal exposure to a suboptimal intrauterine environment with adult hypertension. The aims of this study were twofold: 1) to see whether cortisol treatment administered to the ewe for 2 days at 27 days of gestation (term approximately 150 days) resulted in high blood pressure in offspring; 2) to study the effect of the same treatment on gene expression in the brain at 130 days of gestation and in lambs at 2 months of age. Mean arterial pressure was significantly higher in the adult female and male offspring of sheep treated with cortisol than in the control group (females: 89+/-2 mmHg vs. 81+/-2; P<0.05 and males: 102+/-4 mmHg vs. 91+/-3; P<0.05). Prenatal cortisol treatment led to up-regulation of angiotensinogen, AT1, MR, and GR mRNA in the hippocampus in fetuses at 130 days of gestation but not in the animals at 2 months of age. This is the first evidence that short prenatal exposure to cortisol programmed high blood pressure in the adult female and male offspring of sheep. Altered gene expression in the hippocampus could have a significant effect on the development of the hippocampus, and on postnatal behavior.
Collapse
Affiliation(s)
- Miodrag Dodic
- Howard Florey Institute, University of Melbourne, Parkville 3010, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dodic M, Baird R, Hantzis V, Koukoulas I, Moritz K, Peers A, Wintour EM. Organs/systems potentially involved in one model of programmed hypertension in sheep. Clin Exp Pharmacol Physiol 2001; 28:952-6. [PMID: 11703404 DOI: 10.1046/j.1440-1681.2001.03556.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. When pregnant ewes and their fetuses are exposed to the synthetic glucocorticoid dexamethasone for 2 days early in pregnancy (days 26-28; term 145-150 days), female offspring have increased blood pressure relative to a control group. In one series, this was shown to be due to increased cardiac output, concomitant with a reset mean arterial pressure/heart rate reflex. The first group of such animals had, by the age of 7 years, left ventricular hypertrophy and reduced cardiac functional capacity. 2. The elevation in blood pressure is not maintained by any change in the peripheral renin-angiotensin system (RAS). 3. There is, however, preliminary evidence that some aspects of local RAS (particularly in the kidney and brain) could have participated in the 'programming' event. The levels of mRNA for angiotensin II receptors (AT1, AT2) and angiotensinogen are increased in the kidney of such dexamethasone-treated fetuses in late gestation (130 days), some 100 days after steroid treatment. Similar increases in AT1 mRNA in the medulla oblongata of the fetal brain and large increases of mRNA for angiotensinogen occur in the hypothalamus. 4. These findings, together with evidence from the literature, suggest that both the kidney and parts of the brain are affected by events that also 'program' high blood pressure in the offspring of animals in which the intra-uterine environment has been perturbed at some stage.
Collapse
Affiliation(s)
- M Dodic
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
1. Brain sparing is a feature of intra-uterine growth retardation (IUGR). This implies that there is a redistribution of metabolic supply so that body growth slows to a greater extent than brain growth. 2. Intra-uterine growth retardation, as evidenced by a low birthweight for gestational age is a predisposing factor for hypertension, cardiovascular disease and diabetes mellitus in adult life. 3. In species like humans, nephrogenesis is complete before birth. In the rat, it is completed shortly after birth. In both species, it can be shown that either undernutrition or IUGR is associated with reduced nephron number. 4. It has been proposed that oligonephropathy results in hyperfiltration, which ultimately leads to glomerulosclerosis and hypertension. The renin-angiotensin system (RAS) is necessary for normal renal development and fetal renal function. In the rat, blockade of the RAS in the first weeks of life by pharmacological agents reduces glomerular number and has been shown to cause hypertension in adult life. Renal denervation reduces the activity of the fetal RAS and also causes abnormal development of the renin-secreting cells. 5. There is tonic renal sympathetic nerve activity in the late gestation fetal sheep. The level of renal sympathetic nerve activity (RSNA) is influenced by the fetal behavioural state. 6. However, interactions between the developing kidney and the developing sympathetic nervous system are poorly understood. On the one hand, renal innervation may be important in the provision of neurotrophic factors that stimulate the development of the RAS and kidney. On the other, high levels of RSNA associated with circulating catecholamines and vasopressin may cause vasoconstriction and limit nephrogenesis. This latter effect could be a predisposing factor to adult hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- E R Lumbers
- School of Physiology and Pharmacology, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
23
|
Kilby MD, Platt C, Whittle MJ, Oxley J, Lindop GB. Renin gene expression in fetal kidneys of pregnancies complicated by twin-twin transfusion syndrome. Pediatr Dev Pathol 2001; 4:175-9. [PMID: 11178634 DOI: 10.1007/s100240010124] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Twin-twin transfusion syndrome (TTTS) complicates one in five monochorionic pregnancies and is generally associated with high mortality and morbidity. One twin (the recipient) grows appropriately and has polyhydramnios while the other (the donor) may have a reduced growth velocity and severe oligohydramnios. The disparities in amniotic fluid volumes represent differences in fetal urine output. These differences occur secondary to hemodynamic changes, in which the vascular arrangement of placental anastomoses in TTTS leads to unidirectional flow from the donor to the recipient twin. A better understanding of the pathophysiology may contribute to improved management of this morbid condition. We studied three consecutive prospectively diagnosed stillborn twin pairs affected by early-onset TTTS. Renin gene expression was studied in sections of fetal kidneys with immunocytochemistry using a renin antiserum and with in situ hybridization using riboprobes complementary to renin mRNA, and renin-secreting cells (RCC) were counted. The overall maturation of the renal cortex was assessed by the percentage of immature glomeruli. The donor twin kidneys were smaller than those of the recipients, but the maturation of the renal cortex was not significantly different (28.2% immature glomeruli in the donor and 24.4% in the recipient kidney). The donor kidney showed increased renin gene expression with hyperplastic juxtaglomerular apparatuses (JGAs) that contained excess RCCs (median 20.02 [25th-75th centiles, 5.4, 25.1 RCCs per 100 glomeruli]). In contrast, the recipient kidney was virtually devoid of these cells (0.04 [0, 0.36] RCCs per 100 glomeruli; P < 0.05). In the donor kidney, increased renin release may, by a local action, contribute to renal vasoconstriction and oliguria. Increased renin and/or angiotensin II in the blood passing through the placental anastomoses may, by an endocrine action, suppress renin synthesis in the recipient kidney, thereby increasing renal blood flow and causing polyuria and polyhydramnios. These changes in the renal RAS could thus contribute to the pathogenesis of TTTS. The renal renin changes noted here may represent a contributory or compensating mechanism, the success of which may dictate the overall survival of the twin pregnancy and allow better understanding of the pathophysiology and perhaps therapy that may be employed in this condition.
Collapse
Affiliation(s)
- M D Kilby
- Division of Reproductive and Child Health, University of Birmingham, Edgbaston, UK
| | | | | | | | | |
Collapse
|
24
|
Abstract
A growing body of evidence supports the concept of fetal programming in cardiovascular disease in man, which asserts that an insult experienced in utero exerts a long-term influence on cardiovascular function, leading to disease in adulthood. However, this hypothesis is not universally accepted, hence animal models may be of value in determining potential physiological mechanisms which could explain how fetal undernutrition results in cardiovascular disease in later life. This review describes two major animal models of cardiovascular programming, the in utero protein-restricted rat and the cross-fostered spontaneously hypertensive rat. In the former model, moderate maternal protein restriction during pregnancy induces an increase in offspring blood pressure of 20-30 mmHg. This hypertensive effect is mediated, in part, by fetal exposure to excess maternal glucocorticoids as a result of a deficiency in placental 11-ss hydroxysteroid dehydrogenase type 2. Furthermore, nephrogenesis is impaired in this model which, coupled with increased activity of the renin-angiotensin system, could also contribute to the greater blood pressure displayed by these animals. The second model discussed is the cross-fostered spontaneously hypertensive rat. Spontaneously hypertensive rats develop severe hypertension without external intervention; however, their adult blood pressure may be lowered by 20-30 mmHg by cross-fostering pups to a normotensive dam within the first two weeks of lactation. The mechanisms responsible for this antihypertensive effect are less clear, but may also involve altered renal function and down-regulation of the renin-angiotensin system. These two models clearly show that adult blood pressure is influenced by exposure to one of a number of stimuli during critical stages of perinatal development.
Collapse
Affiliation(s)
- N Ashton
- School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
25
|
Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab 2000; 279:E83-7. [PMID: 10893326 DOI: 10.1152/ajpendo.2000.279.1.e83] [Citation(s) in RCA: 612] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Environmental factors and diet are generally believed to be accelerators of obesity and hypertension, but they are not the underlying cause. Our animal model of obesity and hypertension is based on the observation that impaired fetal growth has long-term clinical consequences that are induced by fetal programming. Using fetal undernutrition throughout pregnancy, we investigated whether the effects of fetal programming on adult obesity and hypertension are mediated by changes in insulin and leptin action and whether increased appetite may be a behavioral trigger of adult disease. Virgin Wistar rats were time mated and randomly assigned to receive food either ad libitum (AD group) or at 30% of ad libitum intake, or undernutrition (UN group). Offspring from UN mothers were significantly smaller at birth than AD offspring. At weaning, offspring were assigned to one of two diets [a control diet or a hypercaloric (30% fat) diet]. Food intake in offspring from UN mothers was significantly elevated at an early postnatal age. It increased further with advancing age and was amplified by hypercaloric nutrition. UN offspring also showed elevated systolic blood pressure and markedly increased fasting plasma insulin and leptin concentrations. This study is the first to demonstrate that profound adult hyperphagia is a consequence of fetal programming and a key contributing factor in adult pathophysiology. We hypothesize that hyperinsulinism and hyperleptinemia play a key role in the etiology of hyperphagia, obesity, and hypertension as a consequence of altered fetal development.
Collapse
Affiliation(s)
- M H Vickers
- Research Centre for Developmental Medicine and Biology, Faculty of Medicine and Health Science, University of Auckland, 92019 Auckland, New Zealand
| | | | | | | | | |
Collapse
|