1
|
Chen X, Shan T, Ren B, Zhang L, Xu HHK, Wang N, Zhou X, Li H, Cheng L. Dimethylaminododecyl Methacrylate-Incorporated Dental Materials Could Be the First Line of Defense against Helicobacter pylori. Int J Mol Sci 2023; 24:13644. [PMID: 37686449 PMCID: PMC10487857 DOI: 10.3390/ijms241713644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
Oral cavity is an essential reservoir for H. pylori. We aimed to investigate the antibacterial effects of dimethylaminododecyl methacrylate (DMADDM) against H. pylori. Modified giomers were prepared by introducing 0%, 1.25% and 2.5% DMADDM monomers. Broth microdilution assay, spot assay, Alamer Blue assay, PMA-qPCR, crystal violet staining, scanning electron microscopy observation and live/dead bacterial staining were performed to evaluate the antibacterial and antibiofilm effects of DMADDM and modified giomers in vitro. Urease assay, qPCR, hematoxylin-eosin staining and ELISA were performed to evaluate the inflammation levels and colonization of H. pylori in vivo. In vitro experiments indicated that the minimum inhibitory concentration and minimum bactericidal concentration of DMADDM were 6.25 μg/mL and 25 μg/mL, respectively. It inhibited H. pylori in a dose- and time-dependent manner, and significantly reduced the expression of cagA, vacA, flaA and ureB. DMADDM-modified giomers inhibited the formation of H. pylori biofilm and reduced live cells within it. In vivo experiments confirmed that the pretreatment with DMADDM-modified dental resin effectively reduced the gastric colonization of oral-derived H. pylori, suppressed systemic and local gastric inflammation. DMADDM monomers and DMADDM-modified giomers possessed excellent antibacterial and antibiofilm effects on H. pylori. Pretreatment with DMADDM-modified giomers significantly inhibited the gastric infection by H. pylori.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tiantian Shan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21021, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nanxi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hong Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Venerito M, Malfertheiner P. Interaction of Helicobacter pylori infection and nonsteroidal anti-inflammatory drugs in gastric and duodenal ulcers. Helicobacter 2010; 15:239-50. [PMID: 20633184 DOI: 10.1111/j.1523-5378.2010.00762.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Gastric (GU) and duodenal ulcers (DU) are in most instances either induced by Helicobacter pylori infection or by nonsteroidal anti-inflammatory drugs (NSAIDs). Whether eradication of H. pylori is beneficial in NSAID users for preventing NSAID induced GU and DU has been the focus of different studies. MATERIALS AND METHODS Mechanisms shared by both H. pylori and NSAIDs for the induction of GU and DU were reviewed and randomized controlled trials on H. pylori eradication for prevention and healing of GU and DU in patients requiring NSAID therapy were identified by a PubMed search. RESULTS Key factors in the induction of GU and DU for both H. pylori and NSAIDs are a decrease in pH, imbalance between apoptosis and proliferation, reduction in mucosal blood flow, and recruitment of polymorphonucleates in distinct compartments. For primary ulcer prevention, H. pylori eradication before starting an NSAID therapy reduces the risk of NSAID induced GU and virtually abolishes the risk of DU. H. pylori eradication alone is not sufficient for secondary prevention of NSAID induced GU and DU. H. pylori infection appears to further increase the protective effects of proton-pump inhibitors (PPI) to reduce the risk of ulcer relapse. H. pylori eradication does not influence the healing of both GU and DU if NSAID intake is discontinued. CONCLUSIONS Duodenal ulcer is more closely related to H. pylori infection than GU in NSAID users. H. pylori eradication is recommended for primary prevention of GU and DU in patients requiring NSAID therapy. PPI therapy is mandatory for secondary prevention of gastroduodenal ulcers, and appears to further reduce the risk of ulcer relapse in the presence of H. pylori.
Collapse
Affiliation(s)
- Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | | |
Collapse
|
3
|
Kim BG, Yim SH, Jeong SJ, Choi YS, Nam YS, Jeong JH, Yun SW, Do JH, Lim HM, Park ES. Pro-Oxidantive Effect of Dehydroepiandrosterone on Indomethacin-Induced Acute Gastritis in Rats. Biomol Ther (Seoul) 2009. [DOI: 10.4062/biomolther.2009.17.1.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
4
|
Henriksnäs J, Atuma C, Phillipson M, Sandler S, Engstrand L, Holm L. Acute effects of Helicobacter pylori extracts on gastric mucosal blood flow in the mouse. World J Gastroenterol 2009; 15:219-25. [PMID: 19132773 PMCID: PMC2653315 DOI: 10.3748/wjg.15.219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the mechanisms underlying the reduction in gastric blood flow induced by a luminal water extract of Helicobacter pylori (HPE).
METHODS: The stomachs of isoflurane-anesthetized mice were exteriorized, and the mucosal surface exposed. Blood flow was measured with the laser-Doppler technique, and systemic arterial blood pressure monitored. C57BL/6 mice were exposed to water extract produced from H pylori strain 88-23. To investigate the role of a nerve- or iNOS-mediated pathway, we used intraluminal lidocaine and iNOS-/- mice. Blood flow response to the endogenous nitric oxide synthase inhibitor asymmetric dimethyl arginine (ADMA) was also assessed.
RESULTS: In wild-type mice, HPE decreased mucosal blood flow by approximately 30%. This reduction was abolished in iNOS-deficient mice, and by pre-treatment with lidocaine. Luminally applied ADMA resulted in reduction in blood flow similar to that observed in wild-type mice exposed to HPE.
CONCLUSION: A H pylori water extract reduces gastric mucosal blood flow acutely through iNOS- and nerve-mediated pathways.
Collapse
|
5
|
Maróstica M, Arçari DP, Bartchewsky W, Trevisan M, Ribeiro ML, Pedrazzoli J, Hoehr NF, Gambero A. Effects of a one-week treatment with acid gastric inhibitors on Helicobacter pylori-infected mice. Scand J Gastroenterol 2007; 42:1404-12. [PMID: 17994467 DOI: 10.1080/00365520701514396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Antiacid drugs, including omeprazole and ranitidine, were prescribed to Helicobacter pylori-infected subjects in combination with antibiotics during eradication treatment. Several reports suggest that these drugs have additional pharmacological properties, such as antineutrophil, antiapoptotic and antioxidant characteristics. The aim of this work was to study the effects of acid suppressive medication treatment in the H. pylori infection experimental model, focusing on possible additional pharmacological properties. MATERIAL AND METHODS The ability of gastric acid suppression was assessed in pylorus-ligated animals. Gastric H. pylori colonization levels, myeloperoxidase (MPO) acitivity, macroscopic damage, Bax and Bcl-2 expression and DNA damage levels were assessed in C57BL/6-infected mice after treatment for one week with omeprazole (100 mg kg(-1)) or ranitidine (100 mg kg(-1)). RESULTS Omeprazole treatment increased bacteria colonization and MPO activity in mice stomachs. Both antiacid drugs efficiently improved macroscopic damage, although only omeprazole restored the expression of the antiapoptotic Bcl-2 protein in gastric mucosa of infected animals. CONCLUSIONS Some additional omeprazole-related properties, such as antineutrophil properties, were not observed in H. pylori-infected mice after one week of treatment, suggesting that this property is restricted to in vitro approaches. However, the antiapoptotic activity of omeprazole could be attributed to an ability to modify the protein expression of Bcl-2, decreased by H. pylori infection.
Collapse
Affiliation(s)
- Marta Maróstica
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Henriksnäs J, Phillipson M, Storm M, Engstrand L, Soleimani M, Holm L. Impaired mucus-bicarbonate barrier in Helicobacter pylori-infected mice. Am J Physiol Gastrointest Liver Physiol 2006; 291:G396-403. [PMID: 16614375 DOI: 10.1152/ajpgi.00017.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To resist the harsh intrinsic milieu, several lines of defense exist in the stomach. The aim of this study was to investigate the effect of the gastric pathogen Helicobacter pylori on these mechanisms in vivo. We used FVB/N mice expressing human alpha-1,3/4-fucosyl transferase (producing Lewis b epitopes) and inoculated with H. pylori 1. Mice were anesthetized with isoflurane or Hypnorm-midazolam, the stomach was exteriorized, and the surface of the corpus mucosa was exposed. Mucus thickness was measured with micropipettes, juxtamucosal pH (pH(jm)) was measured with pH-sensitive microelectrodes, blood flow was measured with laser-Doppler flowmetry, and mRNA levels of the bicarbonate transporter SLC26A9 were quantified with real-time PCR. The increase in mucosal blood flow seen in response to luminal acid (pH 1.5) in control animals (140 +/- 9% of control) was abolished in infected mice. The firmly adherent mucus layer was significantly thinner in infected mice (31 +/- 2 microm) than in control mice (46 +/- 5 microm), and no mucus accumulation occurred in infected mice. pH(jm) decreased significantly more on exposure to luminal acid in infected mice (luminal pH 1.5, pH(jm) 2.4 +/- 0.7) than in control mice (pH(jm) 6.4 +/- 0.5). Despite reduced pH(jm), SLC26A9 mRNA expression was significantly, by increased 1.9-fold, in infected mice. The reduction in pH(jm) by infection with H. pylori might be due to a reduced firmly adherent mucus layer, increased mucus permeability to H(+), and/or inhibition of bicarbonate transport. The upregulation of SLC26A9 in H. pylori-infected epithelium might be a result of continuous inhibition of the transporter, e.g., by ammonium, a H. pylori product, which has been previously shown to inhibit SLC26A9.
Collapse
Affiliation(s)
- Johanna Henriksnäs
- Dept. of Medical Cell Biology, Uppsala Univ., PO Box 571, Uppsala SE-751 23, Sweden.
| | | | | | | | | | | |
Collapse
|
7
|
Toda N, Herman AG. Gastrointestinal function regulation by nitrergic efferent nerves. Pharmacol Rev 2005; 57:315-38. [PMID: 16109838 DOI: 10.1124/pr.57.3.4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) smooth muscle responses to stimulation of the nonadrenergic noncholinergic inhibitory nerves have been suggested to be mediated by polypeptides, ATP, or another unidentified neurotransmitter. The discovery of nitric-oxide (NO) synthase inhibitors greatly contributed to our understanding of mechanisms involved in these responses, leading to the novel hypothesis that NO, an inorganic, gaseous molecule, acts as an inhibitory neurotransmitter. The nerves whose transmitter function depends on the NO release are called "nitrergic", and such nerves are recognized to play major roles in the control of smooth muscle tone and motility and of fluid secretion in the GI tract. Endothelium-derived relaxing factor, discovered by Furchgott and Zawadzki, has been identified to be NO that is biosynthesized from l-arginine by the constitutive NO synthase in endothelial cells and neurons. NO as a mediator or transmitter activates soluble guanylyl cyclase and produces cyclic GMP in smooth muscle cells, resulting in relaxation of the vasculature. On the other hand, NO-induced GI smooth muscle relaxation is mediated, not only by cyclic GMP directly or indirectly via hyperpolarization, but also by cyclic GMP-independent mechanisms. Numerous cotransmitters and cross talk of autonomic efferent nerves make the neural control of GI functions complicated. However, the findingsrelated to the nitrergic innervation may provide us a new way of understanding GI tract physiology and pathophysiology and might result in the development of new therapies of GI diseases. This review article covers the discovery of nitrergic nerves, their functional roles, and pathological implications in the GI tract.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Azuchi-machi, Chuo-ku, Osaka, Japan.
| | | |
Collapse
|
8
|
Henriksnäs J, Phillipson M, Petersson J, Engstrand L, Holm L. An in vivo model for gastric physiological and pathophysiological studies in the mouse. ACTA ACUST UNITED AC 2005; 184:151-9. [PMID: 15916675 DOI: 10.1111/j.1365-201x.2005.01434.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM In vivo models for studying gastrointestinal physiology and pathophysiology are well established in rats. Since a number of genetically modified mice are available there is a need for reliable mouse models. The aim of this project was to develop an in vivo mouse model for gastrointestinal studies. METHODS C57bl/6, NMRI and transgenic FVB/N (expressing human alpha-1,3/4-fucosyltransferase) mice were anaesthetized with isoflurane and the gastric mucosa exteriorized for intravital microscopy. Acid-base status and acid secretion were measured and blood pressure was continuously monitored. Gastric mucosal blood flow was recorded by laser-Doppler flowmetry. Mucus thickness and accumulation rate were measured with micropipettes. RESULTS We have developed an in vivo mouse model for studies of the gastric mucosa. With isoflurane anaesthesia the preparation can be studied for up to 5 h with stable blood pressure and mucosal blood flow. Acid-base status agrees with results from other laboratories. Blood flow increased in both C57bl/6 and alpha1.3/4-FT mice in response to luminal HCl, and the mucus gel could be divided into a firmly and a loosely adherent layer, all comparable with results in the rat. However, the firmly adherent mucus layer was thinner (45 +/- 2 microm), and the mucus accumulation rate lower, than in the rat. Furthermore, both basal and stimulated acid secretion showed lower outputs than in the rat. CONCLUSIONS This model has great potential for investigations of gastrointestinal physiology and pathophysiology and can be applied for Helicobacter pylori infection studies.
Collapse
Affiliation(s)
- J Henriksnäs
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
9
|
Abstract
This paper reviews the new literature from the past year on the association between colonization with Helicobacter pylori and non-malignant disease of the upper gastrointestinal tract. This issue has, in the past year, remained a topic of wide research interest yielding many important new data. These data show that H. pylori eradication is the most effective therapy for peptic ulcer disease, but that a considerable proportion of ulcer patients remain to have dyspeptic symptoms. The discussion on the interaction between H. pylori and NSAID use in the etiology of ulcer disease has not yet been settled. Several studies, both from Asia and Europe, now reported that H. pylori eradication has a minimal effect on the primary prevention of ulcer disease in NSAID users, but eradication appears of relevance for the secondary prevention of ulcer disease in addition to proton pump inhibitor maintenance therapy. Various studies brought further support for the hypothesis that H. pylori eradication is of some benefit for patients with non-ulcer dyspepsia, although the effects are limited. The prevalence of H. pylori is lower among GERD patients than among controls, but H. pylori eradication has not been consistently shown to increase the risk for the newly development of GERD in an individual subject undergoing H. pylori eradication. The discussion on H. pylori and GERD should not preclude us from treating H. pylori-infected patients for accepted clinical indications. In patients using proton pump inhibitors for GERD, H. pylori eradication leads to a resolution of their corpus-predominant pangastritis, without impairing the efficacy of PPI therapy.
Collapse
Affiliation(s)
- Ernst J Kuipers
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, 3000 CA Rotterdam, the Netherlands.
| | | |
Collapse
|
10
|
Lamarque D. Physiopathologie des lésions gastro-duodénales induites par les anti-inflammatoires non stéroïdiens. ACTA ACUST UNITED AC 2004; 28 Spec No 3:C18-26. [PMID: 15366671 DOI: 10.1016/s0399-8320(04)95275-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The pathogenesis of the gastroduodenal lesions induced by non-steroidal anti-inflammatory drugs and aspirin is primarily caused by a reduction in mucosal blood flow, which is the consequence of inhibition of cyclooxygenase-producing vasodilator prostaglandins. The subsequent phase is adherence of leukocytes to the endothelium, which may depend on cyclooxygenase-2. Endothelial lesions accentuate the fall of mucosal blood flow and promote the inflammatory process in the gastric mucosa. The inflammatory process is amplified by expression of TNFalpha in polymorphonuclears induced by non-steroidal anti-inflammatory drugs. A few days after starting treatment, epithelial proliferation and increased mucosal blood flow, partly dependent on cyclooxygenase-2 and nitric oxide expression, compensates for the damaging process. Selective inhibitors of inducible cyclooxygenase-2 have reduced gastrointestinal toxicity, which could partially be explained by the protection effect of cyclooxygenase-2 on the gastrointestinal mucosa during inflammation or epithelial repair. Selective inhibitors may worsen inflammatory bowel disease. Non-steroidal inflammatory drugs and aspirin, but perhaps not selective inhibitors, increase the mucosal lesions associated with Helicobacter pylori-induced gastritis. Co-administration of selective inhibitors and aspirin leads to gastrointestinal toxicity equivalent to that of non-specific anti-inflammatory drugs.
Collapse
|