1
|
Gernert M, MacKeigan D, Deking L, Kaczmarek E, Feja M. Acute and chronic convection-enhanced muscimol delivery into the rat subthalamic nucleus induces antiseizure effects associated with high responder rates. Epilepsy Res 2023; 190:107097. [PMID: 36736200 DOI: 10.1016/j.eplepsyres.2023.107097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Intracerebral drug delivery is an emerging treatment strategy aiming to manage seizures in patients with systemic drug-resistant epilepsies. In rat seizure and epilepsy models, the GABAA receptor agonist muscimol has shown powerful antiseizure potential when injected acutely into the subthalamic nucleus (STN), known for its capacity to provide remote control of different seizure types. However, chronic intrasubthalamic muscimol delivery required for long-term seizure suppression has not yet been investigated. We tested the hypothesis that chronic convection-enhanced delivery (CED) of muscimol into the STN produces long-lasting antiseizure effects in the intravenous pentylenetetrazole seizure threshold test in female rats. Acute microinjection was included to verify efficacy of intrasubthalamic muscimol delivery in this seizure model and caused significant antiseizure effects at 30 and 60 ng per hemisphere with a dose-dependent increase of responders and efficacy and only mild adverse effects compared to controls. For the chronic study, muscimol was bilaterally infused into the STN over three weeks at daily doses of 60, 300, or 600 ng per hemisphere using an implantable pump and cannula system. Chronic intrasubthalamic CED of muscimol caused significant long-lasting antiseizure effects for up to three weeks at 300 and 600 ng daily. Drug responder rate increased dose-dependently, as did drug tolerance rates. Transient ataxia and body weight loss were the main adverse effects. Drug distribution was comparable (about 2-3 mm) between acute and chronic delivery. This is the first study providing proof-of-concept that not only acute, but also chronic, continuous CED of muscimol into the STN raises seizure thresholds.
Collapse
Affiliation(s)
- Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.
| | - Devlin MacKeigan
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany
| | - Lillian Deking
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Edith Kaczmarek
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.
| |
Collapse
|
2
|
Matias M, Santos AO, Silvestre S, Alves G. Fighting Epilepsy with Nanomedicines-Is This the Right Weapon? Pharmaceutics 2023; 15:pharmaceutics15020306. [PMID: 36839629 PMCID: PMC9959131 DOI: 10.3390/pharmaceutics15020306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is a chronic and complex condition and is one of the most common neurological diseases, affecting about 50 million people worldwide. Pharmacological therapy has been, and is likely to remain, the main treatment approach for this disease. Although a large number of new antiseizure drugs (ASDs) has been introduced into the market in the last few years, many patients suffer from uncontrolled seizures, demanding the development of more effective therapies. Nanomedicines have emerged as a promising approach to deliver drugs to the brain, potentiating their therapeutic index. Moreover, nanomedicine has applied the knowledge of nanoscience, not only in disease treatment but also in prevention and diagnosis. In the current review, the general features and therapeutic management of epilepsy will be addressed, as well as the main barriers to overcome to obtain better antiseizure therapies. Furthermore, the role of nanomedicines as a valuable tool to selectively deliver drugs will be discussed, considering the ability of nanocarriers to deal with the less favourable physical-chemical properties of some ASDs, enhance their brain penetration, reduce the adverse effects, and circumvent the concerning drug resistance.
Collapse
Affiliation(s)
- Mariana Matias
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: (M.M.); (A.O.S.); Tel.: +351-275-329-002 (M.M.); +351-275-329-079 (A.O.S.)
| | - Adriana O. Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: (M.M.); (A.O.S.); Tel.: +351-275-329-002 (M.M.); +351-275-329-079 (A.O.S.)
| | - Samuel Silvestre
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC—Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
3
|
Satapathy MK, Yen TL, Jan JS, Tang RD, Wang JY, Taliyan R, Yang CH. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics 2021; 13:1183. [PMID: 34452143 PMCID: PMC8402065 DOI: 10.3390/pharmaceutics13081183] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) plays a vital role in the protection and maintenance of homeostasis in the brain. In this way, it is an interesting target as an interface for various types of drug delivery, specifically in the context of the treatment of several neuropathological conditions where the therapeutic agents cannot cross the BBB. Drug toxicity and on-target specificity are among some of the limitations associated with current neurotherapeutics. In recent years, advances in nanodrug delivery have enabled the carrier system containing the active therapeutic drug to target the signaling pathways and pathophysiology that are closely linked to central nervous system (CNS) disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), brain tumor, epilepsy, ischemic stroke, and neurodegeneration. At present, among the nano formulations, solid lipid nanoparticles (SLNs) have emerged as a putative drug carrier system that can deliver the active therapeutics (drug-loaded SLNs) across the BBB at the target site of the brain, offering a novel approach with controlled drug delivery, longer circulation time, target specificity, and higher efficacy, and more importantly, reducing toxicity in a biomimetic way. This paper highlights the synthesis and application of SLNs as a novel nontoxic formulation strategy to carry CNS drugs across the BBB to improve the use of therapeutics agents in treating major neurological disorders in future clinics.
Collapse
Affiliation(s)
- Mantosh Kumar Satapathy
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
| | - Ting-Lin Yen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
| | - Ruei-Dun Tang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan;
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| | - Rajeev Taliyan
- Department of Pharmacy, Neuropsychopharmacology Division, Birla Institute of Technology and Science, Pilani 333031, India;
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan; (M.K.S.); (T.-L.Y.); (J.-S.J.); (R.-D.T.)
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
4
|
Gernert M, Feja M. Bypassing the Blood-Brain Barrier: Direct Intracranial Drug Delivery in Epilepsies. Pharmaceutics 2020; 12:pharmaceutics12121134. [PMID: 33255396 PMCID: PMC7760299 DOI: 10.3390/pharmaceutics12121134] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsies are common chronic neurological diseases characterized by recurrent unprovoked seizures of central origin. The mainstay of treatment involves symptomatic suppression of seizures with systemically applied antiseizure drugs (ASDs). Systemic pharmacotherapies for epilepsies are facing two main challenges. First, adverse effects from (often life-long) systemic drug treatment are common, and second, about one-third of patients with epilepsy have seizures refractory to systemic pharmacotherapy. Especially the drug resistance in epilepsies remains an unmet clinical need despite the recent introduction of new ASDs. Apart from other hypotheses, epilepsy-induced alterations of the blood-brain barrier (BBB) are thought to prevent ASDs from entering the brain parenchyma in necessary amounts, thereby being involved in causing drug-resistant epilepsy. Although an invasive procedure, bypassing the BBB by targeted intracranial drug delivery is an attractive approach to circumvent BBB-associated drug resistance mechanisms and to lower the risk of systemic and neurologic adverse effects. Additionally, it offers the possibility of reaching higher local drug concentrations in appropriate target regions while minimizing them in other brain or peripheral areas, as well as using otherwise toxic drugs not suitable for systemic administration. In our review, we give an overview of experimental and clinical studies conducted on direct intracranial drug delivery in epilepsies. We also discuss challenges associated with intracranial pharmacotherapy for epilepsies.
Collapse
Affiliation(s)
- Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany;
- Center for Systems Neuroscience, D-30559 Hannover, Germany
- Correspondence: ; Tel.: +49-(0)511-953-8527
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany;
- Center for Systems Neuroscience, D-30559 Hannover, Germany
| |
Collapse
|
5
|
Naqvi S, Panghal A, Flora SJS. Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Front Neurosci 2020; 14:494. [PMID: 32581676 PMCID: PMC7297271 DOI: 10.3389/fnins.2020.00494] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) disorders especially neurodegenerative disorders are the major challenge for public health and demand the great attention of researchers to protect people against them. In past few decades, different treatment strategies have been adopted, but their therapeutic efficacy are not enough and have only shown partial mitigation of symptoms. Blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BSCFB) guard the CNS from harmful substances and pose as the major challenges in delivering drugs into CNS for treatment of CNS complications such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), stroke, epilepsy, brain tumors, multiple sclerosis (MS), and encephalitis, etc. Nanotechnology has come out as an exciting and promising new platform of treating neurological disorders and has shown great potential to overcome problems related to the conventional treatment approaches. Molecules can be nanoengineered to carry out multiple specific functions such as to cross the BBB, target specific cell or signaling pathway, respond to endogenous stimuli, and act as a vehicle for gene delivery, support nerve regeneration and cell survival. In present review, the role of nanocarrier systems such as liposomes, micelles, solid lipid nanoparticles (SLNPs), dendrimers, and nanoemulsions for delivery of various neurotherapeutic agents has been discussed, besides this, their mechanism of action, and nanoformulation of different neuroprotective agents like curcumin, edaravone, nerve growth factors in CNS disorders like Alzheimer’s, Parkinsonism, epilepsy, stroke, and brain tumors has been reviewed.
Collapse
Affiliation(s)
- Saba Naqvi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Archna Panghal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - S J S Flora
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
6
|
Dagdeviren C, Ramadi KB, Joe P, Spencer K, Schwerdt HN, Shimazu H, Delcasso S, Amemori KI, Nunez-Lopez C, Graybiel AM, Cima MJ, Langer R. Miniaturized neural system for chronic, local intracerebral drug delivery. Sci Transl Med 2019; 10:10/425/eaan2742. [PMID: 29367347 DOI: 10.1126/scitranslmed.aan2742] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/14/2017] [Accepted: 01/02/2018] [Indexed: 12/25/2022]
Abstract
Recent advances in medications for neurodegenerative disorders are expanding opportunities for improving the debilitating symptoms suffered by patients. Existing pharmacologic treatments, however, often rely on systemic drug administration, which result in broad drug distribution and consequent increased risk for toxicity. Given that many key neural circuitries have sub-cubic millimeter volumes and cell-specific characteristics, small-volume drug administration into affected brain areas with minimal diffusion and leakage is essential. We report the development of an implantable, remotely controllable, miniaturized neural drug delivery system permitting dynamic adjustment of therapy with pinpoint spatial accuracy. We demonstrate that this device can chemically modulate local neuronal activity in small (rodent) and large (nonhuman primate) animal models, while simultaneously allowing the recording of neural activity to enable feedback control.
Collapse
Affiliation(s)
- Canan Dagdeviren
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Khalil B Ramadi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pauline Joe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin Spencer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Helen N Schwerdt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hideki Shimazu
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastien Delcasso
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ken-Ichi Amemori
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carlos Nunez-Lopez
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,IQS School of Engineering, Ramon Llull University, 08017 Barcelona, Spain
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael J Cima
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Continuous bilateral infusion of vigabatrin into the subthalamic nucleus: Effects on seizure threshold and GABA metabolism in two rat models. Neurobiol Dis 2016; 91:194-208. [DOI: 10.1016/j.nbd.2016.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 01/26/2023] Open
|
8
|
Multivesicular liposomal bupivacaine at the sciatic nerve. Biomaterials 2014; 35:4557-64. [PMID: 24612918 DOI: 10.1016/j.biomaterials.2014.02.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/09/2014] [Indexed: 11/21/2022]
Abstract
Clinical translation of sustained release formulations for local anesthetics has been limited by adverse tissue reaction. Exparel™ (DepoFoam bupivacaine) is a new liposomal local anesthetic formulation whose biocompatibility near nerve tissue is not well characterized. Exparel™ injection caused sciatic nerve blockade in rats lasting 240 min compared to 120 min for 0.5% (w/v) bupivacaine HCl and 210 min for 1.31% (w/v) bupivacaine HCl (same bupivacaine content as Exparel™). On histologic sections four days after injection, median inflammation scores in the Exparel™ group (2.5 of 4) were slightly higher than in groups treated with bupivacaine solutions (score 2). Myotoxicity scores in the Exparel™ group (2.5 of 6) were similar to in the 0.5% (w/v) bupivacaine HCl group (3), but significantly less than in the 1.31% (w/v) bupivacaine HCl group (5). After two weeks, inflammation from Exparel™ (score 2 of 6) was greater than from 0.5% (w/v) bupivacaine HCl (1) and similar to that from 1.31% (w/v) bupivacaine HCl (1). Myotoxicity in all three groups was not statistically significantly different. No neurotoxicity was detected in any group. Tissue reaction to Exparel™ was similar to that of 0.5% (w/v) bupivacaine HCl. Surveillance for local tissue injury will be important during future clinical evaluation.
Collapse
|
9
|
Halliday AJ, Moulton SE, Wallace GG, Cook MJ. Novel methods of antiepileptic drug delivery -- polymer-based implants. Adv Drug Deliv Rev 2012; 64:953-64. [PMID: 22564384 DOI: 10.1016/j.addr.2012.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/15/2012] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
Epilepsy is a neurological disorder characterised by spontaneous seizures. Over one third of patients receive insufficient benefit from oral anti-epileptic drug (AED) therapy, and continue to experience seizures whilst on medication. Epilepsy researchers are consequently seeking new ways to deliver AEDs directly to the seizure focus in the brain in order to deliver higher, more effective doses to the seizure focus whilst bypassing the remainder of the brain and body to prevent side effects. The focus of this review will be polymer-based implants, which are polymeric devices loaded with AED that are designed for implantation at the seizure focus in order to achieve gradual, continuous release of AED direct into the region of the brain responsible for seizures. Polymer-based implants produced for epilepsy to date are based on a range of polymers, both biodegradable and non-biodegradable, and range from simple materials development studies through to investigations of implants in animal models of seizures and epilepsy, with varying degrees of success. This review describes the range of methods employed to manufacture polymer-based implants and compares their advantages and potential appeal to industry, and describes and compares the results and successes of polymer-based materials and devices produced to date for the treatment of epilepsy. We also discuss disadvantages and hurdles to be overcome in the field, and describe our predictions for advances to be made in the field in the coming decade.
Collapse
|
10
|
Furtado MA, Castro OW, Del Vecchio F, de Oliveira JAC, Garcia-Cairasco N. Study of spontaneous recurrent seizures and morphological alterations after status epilepticus induced by intrahippocampal injection of pilocarpine. Epilepsy Behav 2011; 20:257-66. [PMID: 21237720 DOI: 10.1016/j.yebeh.2010.11.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 11/22/2010] [Accepted: 11/25/2010] [Indexed: 11/17/2022]
Abstract
Epileptic seizures are clinical manifestations of neuronal discharges characterized by hyperexcitability and/or hypersynchrony in the cortex and other subcortical regions. The pilocarpine (PILO) model of epilepsy mimics temporal lobe epilepsy (TLE) in humans. In the present study, we used a more selective approach: microinjection of PILO into the hilus of the dentate gyrus (H-PILO). Our main goal was to evaluate the behavioral and morphological alterations present in this model of TLE. Seventy-six percent of all animals receiving H-PILO injections had continuous seizures called status epilepticus (SE). A typical pattern of evolution of limbic seizures during the SE with a latency of 29.3 ± 16.3 minutes was observed using an analysis of behavioral sequences. During the subsequent 30 days, 71% of all animals exhibited spontaneous recurrent seizures (SRSs) during a daily 8-hour videotaping session. These SRSs had a very conspicuous and characteristic pattern detected by behavioral sequences or neuroethiological analysis. Only the animals that had SE showed positive Neo-Timm staining in the inner molecular layer of the dentate gyrus (sprouting) and reduced cell density in Ammon's horn pyramidal cell subfield CA1. However, no correlation between the intensity of sprouting and the mean number and total number of SRSs was found. Additionally, using Fluoro-Jade staining, we observed neurodegeneration in the hilus and pyramidal cell subfields CA3 and CA1 24 hours after SE. These data indicate that H-PILO is a reliable, selective, efficient, low-mortality model that mimics the acute and chronic behavioral and morphological aspects of TLE.
Collapse
Affiliation(s)
- M A Furtado
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
11
|
Timko BP, Dvir T, Kohane DS. Remotely triggerable drug delivery systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:4925-43. [PMID: 20818618 DOI: 10.1002/adma.201002072] [Citation(s) in RCA: 438] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Triggerable drug delivery systems enable on-demand controlled release profiles that may enhance therapeutic effectiveness and reduce systemic toxicity. Recently, a number of new materials have been developed that exhibit sensitivity to visible light, near-infrared (NIR) light, ultrasound, or magnetic fields. This responsiveness can be triggered remotely to provide flexible control of dose magnitude and timing. Here we review triggerable materials that range in scale from nano to macro, and are activated by a range of stimuli.
Collapse
Affiliation(s)
- Brian P Timko
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
12
|
Abstract
OBJECTIVE Cognitive impairment is common in epilepsy, particularly in memory function. Interictal spikes (IISs) are thought to disrupt cognition, but it is difficult to delineate their contribution from general impairments in memory produced by etiology and seizures. We investigated the transient impact of focal IISs on the hippocampus, a structure crucial for learning and memory and yet highly prone to IISs in temporal lobe epilepsy (TLE). METHODS Bilateral hippocampal depth electrodes were implanted into 14 Sprague-Dawley rats, followed by intrahippocampal pilocarpine or saline infusion unilaterally. Rats that developed chronic spikes were trained in a hippocampal-dependent operant behavior task, delayed-match-to-sample. Depth-electroencephalogram (EEG) was recorded during 5,562 trials among five rats, and within-subject analyses evaluated the impact of hippocampal spikes on short-term memory operations. RESULTS Hippocampal spikes that occurred during memory retrieval strongly impaired performance (p < 0.001). However, spikes that occurred during memory encoding or memory maintenance did not affect performance in those trials. Hippocampal spikes also affected response latency, adding approximately 0.48 seconds to the time taken to respond (p < 0.001). INTERPRETATION We found that focal IIS-related interference in cognition extends to structures in the limbic system, which required intrahippocampal recordings. Hippocampal spikes seem most harmful if they occur when hippocampal function is critical, extending human studies showing that cortical spikes are most disruptive during active cortical functioning. The cumulative effects of spikes could therefore impact general cognitive functioning. These results strengthen the argument that suppression of IISs may improve memory and cognitive performance in patients with epilepsy.
Collapse
Affiliation(s)
- Jonathan K. Kleen
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire
| | - Rod C. Scott
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire
- UCL, Institute of Child Health, London, United Kingdom
| | - Gregory L. Holmes
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Hanover, New Hampshire
| | | |
Collapse
|
13
|
Abstract
This paper gives an account of the global evolution of (neuro-)chemistry in epileptology with an emphasis on the role of the International League Against Epilepsy (ILAE), which declared in its constitution a mission "to make the epilepsy-problem the object of special study and to make practical use of the results of such study." As Epilepsia is the scientific journal of the ILAE, the review emphasizes papers published in the journal.
Collapse
Affiliation(s)
- Clementina Van Rijn
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
14
|
Domnina YA, Yeo Y, Tse JY, Bellas E, Kohane DS. Spray-dried lipid-hyaluronan-polymethacrylate microparticles for drug delivery in the peritoneum. J Biomed Mater Res A 2009; 87:825-31. [PMID: 18257078 DOI: 10.1002/jbm.a.31741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Application of controlled release technology to the peritoneum would allow for sustained drug levels. However, some polymeric systems either create adhesions, or rapidly exit the peritoneum; neither result is desirable. Here we have produced particles based on sphyngomyelin, a phospholipid that occurs naturally in the peritoneum, along with hyaluronic acid and the polymethacrylate Eudragit E100 (to modulate drug release). Particles with a low proportion of E100 (5% (w/w); "high SPM") release albumin rapidly over 2 days, then more slowly; increasing the E100 to 20% (w/w; high "E100") slowed drug release markedly. When injected in the murine peritoneum, high SPM particles were disseminated as free particles, without forming collections. There was a mild inflammatory response but no formation of adhesions. High E100 particles formed collections in all animals, with an intense inflammatory response. Even so, there were very few adhesions. These results suggest that microparticulate formulations can be produced that have acceptable drug-releasing properties and are suitable for use in the peritoneum from the standpoint of biocompatibility.
Collapse
Affiliation(s)
- Yuliya A Domnina
- Division of Pediatric Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
This review covers recent developments in the area of particle engineering via spray drying. The last decade has seen a shift from empirical formulation efforts to an engineering approach based on a better understanding of particle formation in the spray drying process. Microparticles with nanoscale substructures can now be designed and their functionality has contributed significantly to stability and efficacy of the particulate dosage form. The review provides concepts and a theoretical framework for particle design calculations. It reviews experimental research into parameters that influence particle formation. A classification based on dimensionless numbers is presented that can be used to estimate how excipient properties in combination with process parameters influence the morphology of the engineered particles. A wide range of pharmaceutical application examples—low density particles, composite particles, microencapsulation, and glass stabilization—is discussed, with specific emphasis on the underlying particle formation mechanisms and design concepts.
Collapse
|
16
|
Costantin L, Bozzi Y, Richichi C, Viegi A, Antonucci F, Funicello M, Gobbi M, Mennini T, Rossetto O, Montecucco C, Maffei L, Vezzani A, Caleo M. Antiepileptic effects of botulinum neurotoxin E. J Neurosci 2005; 25:1943-51. [PMID: 15728834 PMCID: PMC6726074 DOI: 10.1523/jneurosci.4402-04.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Experimental studies suggest that the delivery of antiepileptic agents into the seizure focus might be of potential utility for the treatment of focal-onset epilepsies. Botulinum neurotoxin E (BoNT/E) causes a prolonged inhibition of neurotransmitter release after its specific cleavage of the synaptic protein synaptosomal-associated protein of 25 kDa (SNAP-25). Here, we show that BoNT/E injected into the rat hippocampus inhibits glutamate release and blocks spike activity of pyramidal neurons. BoNT/E effects persist for at least 3 weeks, as determined by immunodetection of cleaved SNAP-25 and loss of intact SNAP-25. The delivery of BoNT/E to the rat hippocampus dramatically reduces both focal and generalized kainic acid-induced seizures as documented by behavioral and electrographic analysis. BoNT/E treatment also prevents neuronal loss and long-term cognitive deficits associated with kainic acid seizures. Moreover, BoNT/E-injected rats require 50% more electrical stimulations to reach stage 5 of kindling, thus indicating a delayed epileptogenesis. We conclude that BoNT/E delivery to the hippocampus is both antiictal and antiepileptogenic in experimental models of epilepsy.
Collapse
MESH Headings
- Animals
- Anticonvulsants/administration & dosage
- Anticonvulsants/therapeutic use
- Botulinum Toxins/administration & dosage
- Botulinum Toxins/therapeutic use
- Cell Death/drug effects
- Cognition Disorders/etiology
- Cognition Disorders/prevention & control
- Convulsants/toxicity
- Drug Evaluation, Preclinical
- Electric Stimulation
- Electroencephalography
- Epilepsies, Partial/drug therapy
- Epilepsies, Partial/physiopathology
- Epilepsy, Generalized/chemically induced
- Epilepsy, Generalized/complications
- Epilepsy, Generalized/drug therapy
- Epilepsy, Generalized/physiopathology
- Glutamic Acid/metabolism
- Hippocampus/drug effects
- Hippocampus/physiopathology
- Injections, Intralesional
- Kainic Acid/toxicity
- Kindling, Neurologic/drug effects
- Maze Learning/drug effects
- Membrane Proteins/metabolism
- Nerve Tissue Proteins/metabolism
- Pyramidal Cells/drug effects
- Pyramidal Cells/pathology
- Pyramidal Cells/physiology
- Random Allocation
- Rats
- Rats, Long-Evans
- Stereotaxic Techniques
- Synaptosomal-Associated Protein 25
Collapse
Affiliation(s)
- Laura Costantin
- Scuola Normale Superiore, Consiglio Nazionale delle Ricerche, 56100 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Thomas TT, Kohane DS, Wang A, Langer R. Microparticulate formulations for the controlled release of interleukin-2. J Pharm Sci 2004; 93:1100-9. [PMID: 15067687 DOI: 10.1002/jps.20009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin 2 (IL-2) is a pleotropic growth factor essential to immune system function. Current methods of administration are limited by the necessity of hospitalization as well as dose-limiting toxicities and side effects. There is also the issue of low therapeutic concentrations at the desired site of action; for instance, in the case of solid tumor treatment. Here we describe the design of controlled-release vehicles for the local administration of IL-2 based on single (SE) and double emulsion (DE) poly(lactic-co-glycolic acid) (PLGA) systems and a newly developed class of spray-dried lipid-protein-sugar systems composed of L-alpha-dipalmitoylphosphatidylcholine (DPPC) and 0.2% Eudragit E 100. All three systems demonstrated the release of therapeutic drug quantities. Totals of 2.0, 0.5, and 2.8 microg of IL-2 (per mg of solid) were encapsulated in the SE, DE, and spray-dried formulations, respectively. The SE and DE released of 30 and 15% of the encapsulated protein, respectively, with delivery of biologically active IL-2 during the first 5 to 10 days. The lipid-protein-sugar-based system demonstrated extended sustained release of biologically active IL-2 for a period of 4 months. These systems provide a potential framework for long-term loco-regional immunotherapeutic treatment regimens.
Collapse
Affiliation(s)
- Tommy T Thomas
- Department of Biomedical Engineering, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
18
|
Kohane DS, Anderson DG, Yu C, Langer R. pH-triggered release of macromolecules from spray-dried polymethacrylate microparticles. Pharm Res 2003; 20:1533-8. [PMID: 14620503 DOI: 10.1023/a:1026162628965] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE pH-triggered microparticles release their therapeutic payloads at acidic pH (e.g., in the phagosome), making intracellular drug delivery more efficient. Here we modify lipid-based microparticles that are safe and efficacious in nerve and brain and are potentially inhalable, making them pH-triggerable by incorporating an acid-soluble polymethacrylate, Eudragit E100 (E100). METHODS Microparticles were produced by spray-drying and characterized by electron microscopy, Coulter counting, density measurement, and release kinetics of fluorescently labeled proteins. In addition, biocompatibility and cellular uptake were observed in rats. RESULTS Microparticles were spheroids 3 to 5 microm in diameter with densities of 0.12 to 0.25 g/L. Microparticles with 20% (w/w) or more E100 demonstrated slow release of fluorescently labeled proteins at pH 7.4 but rapid release at pH 5. pH-triggerability was maintained for over 2 weeks in solution. Protein loadings of 0.2-20% (w/w) were pH-triggerable. Histologic examination of particles in rat connective tissue near nerve and muscle demonstrated biocompatibility aside from muscle edema in the cell layers adjacent to the particles and a localized inflammatory reaction with macrophages laden with microparticles. CONCLUSIONS Microparticles containing E100 were pH-triggerable for many days and were taken up by macrophages, suggesting that they may be useful for intracellular drug delivery.
Collapse
Affiliation(s)
- Daniel S Kohane
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
19
|
Todorovic SM, Rastogi AJ, Jevtovic-Todorovic V. Potent analgesic effects of anticonvulsants on peripheral thermal nociception in rats. Br J Pharmacol 2003; 140:255-60. [PMID: 12970103 PMCID: PMC1574030 DOI: 10.1038/sj.bjp.0705434] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Anticonvulsant agents are commonly used to treat neuropathic pain conditions because of their effects on voltage- and ligand-gated channels in central pain pathways. However, their interaction with ion channels in peripheral pain pathways is poorly understood. Therefore, we studied the potential analgesic effects of commonly used anticonvulsant agents in peripheral nociception. 2. We injected anticonvulsants intradermally into peripheral receptive fields of sensory neurons in the hindpaws of adult rats, and studied pain perception using the model of acute thermal nociception. Commonly used anticonvulsants such as voltage-gated Na+ channel blockers, phenytoin and carbamazepine, and voltage-gated Ca2+ channel blockers, gabapentin and ethosuximide, induced dose-dependent analgesia in the injected paw, with ED50 values of 0.30, 0.32 and 8, 410 microg per 100 microl, respectively. 3. Thermal nociceptive responses were not affected in the contralateral, noninjected paws, indicating a lack of systemic effects with doses of anticonvulsants that elicited local analgesia. 4. Hill slope coefficients for the tested anticonvulsants indicate that the dose-response curve was less steep for gabapentin than for phenytoin, carbamazepine and ethosuximide. 5. Our data strongly suggest that cellular targets like voltage-gated Na+ and Ca2+ channels, similar to those that mediate the effects of anticonvulsant agents in the CNS, may exist in the peripheral nerve endings of rat sensory neurons. Thus, peripherally applied anticonvulsants that block voltage-gated Na+ and Ca2+ channels may be useful analgesics.
Collapse
Affiliation(s)
- Slobodan M Todorovic
- Department of Anesthesiology, University of Virginia Health System, Mail Box 800710, Charlottesville, VA 22908, U.S.A
- Author for correspondence:
| | - A J Rastogi
- Department of Anesthesiology, University of Virginia Health System, Mail Box 800710, Charlottesville, VA 22908, U.S.A
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Virginia Health System, Mail Box 800710, Charlottesville, VA 22908, U.S.A
| |
Collapse
|