1
|
AlAlwan MQ, Alsaad FA, Alhashem HY, Altaweel I, AlAlwan QM, Al Obaid JJ, Almohammed Ali HA. Hippocampal sclerosis in association with Sturge-weber syndrome: An intertwining of 2 epileptogenic lesions. Radiol Case Rep 2025; 20:2581-2587. [PMID: 40129821 PMCID: PMC11930653 DOI: 10.1016/j.radcr.2024.12.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 03/26/2025] Open
Abstract
Epilepsy is a common neurological disease that to this day presents a significant neurological challenge worldwide. It has diverse etiologies with different manifestations associated with complex progressive brain alterations. Secondary epileptogenesis was a concept that emerged from the study of drug-refractory focal epilepsy subjects. It implies that repetitive seizure activity originating from a primary source could transform a previously normal cortical region into a secondary epileptogenic focus. Experimental and clinical studies have been searching for this phenomenon and its effects on neural circuitry for a long time. However, despite achieved advancements, the exact mechanisms of underlying secondary epileptogenicity remain a controversial field of study. Our case involves a 34-year-old female with a history of epilepsy, initially presenting with manageable epilepsy in infancy that gradually escalated to drug-refractory epilepsy. Magnetic resonance imaging (MRI) of the patient revealed 2 epileptogenic focuses, left-sided Sturge-Weber syndrome (SWS) and ipsilateral hippocampal sclerosis (HS). Furthermore, the term "Dual pathology" was used in the simultaneous presence of HS with other potential extra-hippocampal epileptogenic lesions and is often used by previous studies as a way of understanding secondary epileptogenicity. Thereby, this newly presented case of dual pathology will be addressed within the framework of secondary epileptogenicity in the review of current literature.
Collapse
Affiliation(s)
- Mohammed Q. AlAlwan
- Department of Radiology, King Fahd Hospital Hofuf, Al-Ahsa 36441, Saudi Arabia
| | | | - Hussain Y. Alhashem
- Department of Radiology, King Fahd Hospital Hofuf, Al-Ahsa 36441, Saudi Arabia
| | - Ibrahim Altaweel
- Collage of Medicine, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Qasem M. AlAlwan
- Department of Radiology, King Fahd Hospital Hofuf, Al-Ahsa 36441, Saudi Arabia
| | | | | |
Collapse
|
2
|
Villamizar-Torres D, Cepeda Trillos AC, Vargas-Moreno A. Mesial temporal sclerosis and epilepsy: a narrative review. ACTA EPILEPTOLOGICA 2024; 6:28. [PMID: 40217409 PMCID: PMC11960268 DOI: 10.1186/s42494-024-00172-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/11/2024] [Indexed: 04/15/2025] Open
Abstract
Mesial temporal sclerosis (MTS) stands out as a prevalent etiology of medically intractable temporal lobe epilepsy. Understanding the pathological alterations, clinical manifestations and risk factors of MTS is crucial for the recognition and suspicion of this condition. In this paper, we provide a comprehensive narrative review on the pathophysiology, clinical manifestations, and treatment options for MTS. By doing so, we aim to provide an up-to-date understanding of this condition.
Collapse
Affiliation(s)
- Daniel Villamizar-Torres
- Member of the neurosurgery research group, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
- Radiology deparment, Hospital Universitario San Ignacio, Bogotá, 110231, Colombia
| | - Andrea Carolina Cepeda Trillos
- Member of the neurosurgery research group, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia.
- Member of the epilepsy research group, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia.
| | - Alejandro Vargas-Moreno
- Member of the neurosurgery research group, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
- Neurosurgery department, Hospital Universitario San Ignacio, Bogotá, 110231, Colombia
| |
Collapse
|
3
|
Chen J, Li Z, Wang Y, Chen L. GABAergic Interneuron Cell Therapy for Drug-Resistant Epilepsy. Neurosci Bull 2024; 40:680-682. [PMID: 38491232 PMCID: PMC11127856 DOI: 10.1007/s12264-024-01195-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 03/18/2024] Open
Affiliation(s)
- Junzi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, First Affiliated Hospital and School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, First Affiliated Hospital and School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, First Affiliated Hospital and School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Liying Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
4
|
Southwell DG. Interneuron Transplantation for Drug-Resistant Epilepsy. Neurosurg Clin N Am 2024; 35:151-160. [PMID: 38000838 DOI: 10.1016/j.nec.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Current epilepsy surgical techniques, such as brain resection, laser ablation, and neurostimulation, target seizure networks macroscopically, and they may yield an unfavorable balance between seizure reduction, procedural invasiveness, and neurologic morbidity. The transplantation of GABAergic interneurons is a regenerative technique for altering neural inhibition in cortical circuits, with potential as an alternative and minimally invasive approach to epilepsy treatment. This article (1) reviews some of the preclinical evidence supporting interneuron transplantation as an epilepsy therapy, (2) describes a first-in-human study of interneuron transplantation for epilepsy, and (3) considers knowledge gaps that stand before the effective clinical application of this novel treatment.
Collapse
Affiliation(s)
- Derek G Southwell
- Department of Neurosurgery, Graduate Program in Neurobiology, Duke University, DUMC 3807, 200 Trent Drive, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Sarkar P, Sherwani P, Dev R, Tiwari A. Role of T2 relaxometry in localization of mesial temporal sclerosis and the degree of hippocampal atrophy in patients with intractable temporal lobe epilepsy: A cross sectional study. Hippocampus 2023; 33:1189-1196. [PMID: 37587770 DOI: 10.1002/hipo.23572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023]
Abstract
Mesial temporal lobe epilepsy is one of the most common causes of refractory epilepsy worldwide. A good percentage of patients do not have detectable hippocampal atrophy on magnetic resonance imaging (MRI). The objective of this study is to evaluate whether T2 relaxometry can identify hippocampal pathology and lateralize the epileptic focus in patients with intractable temporal lobe epilepsy (TLE). T2 relaxometry can also be used to correlate the clinical severity of the disease with the relaxometry readings in those who have hippocampal atrophy as well as those who do not. Thirty two patients having clinical and electrophysiological features of TLE were enrolled and a MRI brain with T2 relaxometry was done. Hippocampal T2 relaxometry values were calculated in the head, body, and tail of the hippocampus and average T2 relaxometry values were calculated, and a comparison was done with the controls. For patients with unilateral involvement, the contralateral side was taken as control and in cases of bilateral involvement, controls were identified from normal subjects. T2 relaxometry is found to be superior to MR visual analysis in the early detection of cases of hippocampal sclerosis where there is no atrophy on visual analysis. Nine out of 32 patients (28%) were normal on MR visual analysis; however, showed increased values on T2 relaxometry, correlating with clinical and electrophysiological diagnosis. The rest of the patients with hippocampal atrophy showed a correlation of T2 relaxometry values with the degree of atrophy. The hippocampal T2 measurement is thus more sensitive and specific. The study was clinically significant (p < .0001). There was a mild female predilection of the disease and there was no significant correlation with comorbidities. There was a strong positive correlation with patients having a history of febrile seizures in childhood. T2 relaxometry may accurately lateralize the majority of patients with persistent TLE and offers evidence of hippocampus injury in those patients who do not show evidence of atrophy on MRI and also the T2 relaxometry values correlated with the degree of atrophy. Early identification of hippocampal sclerosis is crucial for prompt management which offers better outcomes.
Collapse
Affiliation(s)
- Prasenjit Sarkar
- Department of Radiodiagnosis and Department of Neurology, All India Institute of Medical Sciences, Rishikesh, India
| | - Poonam Sherwani
- Department of Radiodiagnosis and Department of Neurology, All India Institute of Medical Sciences, Rishikesh, India
| | - Rahul Dev
- Department of Radiodiagnosis and Department of Neurology, All India Institute of Medical Sciences, Rishikesh, India
| | - Ashutosh Tiwari
- Department of Radiodiagnosis and Department of Neurology, All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
6
|
Li Y, Liu P, Lin Q, Zhou D, An D. Postoperative seizure and memory outcome of temporal lobe epilepsy with hippocampal sclerosis: A systematic review. Epilepsia 2023; 64:2845-2860. [PMID: 37611927 DOI: 10.1111/epi.17757] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
We conducted a systematic review and meta-analysis to evaluate postoperative seizure and memory outcomes of temporal lobe epilepsy with different hippocampal sclerosis (HS) subtypes classified by International League Against Epilepsy (ILAE) Consensus Guidelines in 2013. Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and MOOSE (Meta-Analysis of Observational Studies in Epidemiology) guidelines, we searched PubMed, Embase, Web of Science, and Cochrane Library from January 1, 2013 to August 6, 2023. Observational studies reporting seizure and memory outcomes among different HS subtypes were included. We used the Newcastle-Ottawa scale to assess the risk of bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to grade the quality of evidence. Seizure freedom and improved outcome (Engel 1 or ILAE class 1-2) ≥1 year after surgery were defined as the primary and secondary seizure outcome. A random-effects meta-analysis by DerSimonian and Laird method was performed to obtain pooled risk ratio (RRs) with 95% confidence interval (CIs). The memory impairment was narratively reviewed because of various evaluation tools. Fifteen cohort studies with 2485 patients were eligible for the meta-analysis of seizure outcome. Six cohorts with detailed information on postoperative memory outcome were included. The pooled RRs of seizure freedom, with moderate to substantial heterogeneity, were .98 (95% CI = .84-1.15) between HS type 2 and type 1, 1.11 (95% CI = .82-1.52) between type 3 and type 1, and .80 (95% CI = .62-1.03) between the no-HS and HS groups. No significant difference of improved outcome was found between different subtypes (p > .05). The quality of evidence was deemed to be low to very low according to GRADE. The long-term seizure outcome (≥5 years after surgery) and memory impairment remained controversial.
Collapse
Affiliation(s)
- Yuming Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Peiwen Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuxing Lin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Maher C, Tang Z, D’Souza A, Cabezas M, Cai W, Barnett M, Kavehei O, Wang C, Nikpour A. Deep learning distinguishes connectomes from focal epilepsy patients and controls: feasibility and clinical implications. Brain Commun 2023; 5:fcad294. [PMID: 38025275 PMCID: PMC10644981 DOI: 10.1093/braincomms/fcad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The application of deep learning models to evaluate connectome data is gaining interest in epilepsy research. Deep learning may be a useful initial tool to partition connectome data into network subsets for further analysis. Few prior works have used deep learning to examine structural connectomes from patients with focal epilepsy. We evaluated whether a deep learning model applied to whole-brain connectomes could classify 28 participants with focal epilepsy from 20 controls and identify nodal importance for each group. Participants with epilepsy were further grouped based on whether they had focal seizures that evolved into bilateral tonic-clonic seizures (17 with, 11 without). The trained neural network classified patients from controls with an accuracy of 72.92%, while the seizure subtype groups achieved a classification accuracy of 67.86%. In the patient subgroups, the nodes and edges deemed important for accurate classification were also clinically relevant, indicating the model's interpretability. The current work expands the evidence for the potential of deep learning to extract relevant markers from clinical datasets. Our findings offer a rationale for further research interrogating structural connectomes to obtain features that can be biomarkers and aid the diagnosis of seizure subtypes.
Collapse
Affiliation(s)
- Christina Maher
- Faculty of Engineering, School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2050, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Zihao Tang
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Engineering, School of Computer Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Arkiev D’Souza
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Mariano Cabezas
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Weidong Cai
- Faculty of Engineering, School of Computer Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Michael Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Sydney Neuroimaging Analysis Centre, Sydney, NSW 2050, Australia
| | - Omid Kavehei
- Faculty of Engineering, School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2050, Australia
| | - Chenyu Wang
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Sydney Neuroimaging Analysis Centre, Sydney, NSW 2050, Australia
| | - Armin Nikpour
- Faculty of Medicine and Health, Central Clinical School, Sydney, NSW 2050, Australia
- Comprehensive Epilepsy Service and Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| |
Collapse
|
8
|
Bershteyn M, Bröer S, Parekh M, Maury Y, Havlicek S, Kriks S, Fuentealba L, Lee S, Zhou R, Subramanyam G, Sezan M, Sevilla ES, Blankenberger W, Spatazza J, Zhou L, Nethercott H, Traver D, Hampel P, Kim H, Watson M, Salter N, Nesterova A, Au W, Kriegstein A, Alvarez-Buylla A, Rubenstein J, Banik G, Bulfone A, Priest C, Nicholas CR. Human pallial MGE-type GABAergic interneuron cell therapy for chronic focal epilepsy. Cell Stem Cell 2023; 30:1331-1350.e11. [PMID: 37802038 PMCID: PMC10993865 DOI: 10.1016/j.stem.2023.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 03/17/2023] [Accepted: 08/25/2023] [Indexed: 10/08/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy. One-third of patients have drug-refractory seizures and are left with suboptimal therapeutic options such as brain tissue-destructive surgery. Here, we report the development and characterization of a cell therapy alternative for drug-resistant MTLE, which is derived from a human embryonic stem cell line and comprises cryopreserved, post-mitotic, medial ganglionic eminence (MGE) pallial-type GABAergic interneurons. Single-dose intrahippocampal delivery of the interneurons in a mouse model of chronic MTLE resulted in consistent mesiotemporal seizure suppression, with most animals becoming seizure-free and surviving longer. The grafted interneurons dispersed locally, functionally integrated, persisted long term, and significantly reduced dentate granule cell dispersion, a pathological hallmark of MTLE. These disease-modifying effects were dose-dependent, with a broad therapeutic range. No adverse effects were observed. These findings support an ongoing phase 1/2 clinical trial (NCT05135091) for drug-resistant MTLE.
Collapse
Affiliation(s)
| | - Sonja Bröer
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Mansi Parekh
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Yves Maury
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Steven Havlicek
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Sonja Kriks
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Luis Fuentealba
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Seonok Lee
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Robin Zhou
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | | | - Meliz Sezan
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | | | | | - Julien Spatazza
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Li Zhou
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - David Traver
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Philip Hampel
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Hannah Kim
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Michael Watson
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Naomi Salter
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | | | - Wai Au
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Arnold Kriegstein
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arturo Alvarez-Buylla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John Rubenstein
- Department of Psychiatry, Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gautam Banik
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA
| | | | | | - Cory R Nicholas
- Neurona Therapeutics Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
9
|
Li W, Jiang Y, Li X, Huang H, Lei D, Li J, Zhang H, Yao D, Luo C, Gong Q, Zhou D, An D. More extensive structural damage in temporal lobe epilepsy with hippocampal sclerosis type 1. Seizure 2023; 111:130-137. [PMID: 37633152 DOI: 10.1016/j.seizure.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/28/2023] Open
Abstract
OBJECTIVE To explore clinical and structural differences between mesial temporal lobe epilepsy (mTLE) patients with different hippocampal sclerosis (HS) subtypes. METHODS High-resolution T1-weighted MRI and diffusion tensor imaging data were obtained in 41 refractory mTLE patients and 52 age- and sex-matched healthy controls. Postoperative histopathological examination confirmed HS type 1 in 30 patients and HS type 2 in eleven patients. Clinical features, postoperative seizure outcomes, hippocampal subfields volumes, fractional anisotropy (FA) values of white matter regions and graph theory parameters were explored and compared between the HS type 1 and HS type 2 groups. RESULTS No significant differences in clinical features and postsurgical seizure outcomes were found between the HS type 1 and type 2 groups. However, the HS type 1 group showed extra atrophy in ipsilateral parasubiculum than healthy controls and more severe atrophy in contralateral hippocampal fissure than the HS type 2 group. More extensive FA decrease were also observed in the HS type 1 group, involving ipsilateral optic radiation, superior fronto-occipital fasciculus, contralateral uncinate fasciculus, tapetum, bilateral hippocampal cingulum, corona radiata, etc. Furthermore, in spite of similar impairments in characteristic path length, global efficiency and local efficiency in two HS groups, the HS type 1 group showed additional decrease of clustering coefficient than healthy controls. CONCLUSIONS HS type 1 and 2 groups had similar clinical characteristics and postoperative seizure outcomes. More widespread neuronal cell loss in the HS type 1 group contributed to more extensive structural damage and connectivity abnormality. These results shed new light on the imaging correlates of different HS pathology.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Clinical Research Center for Geriatrics, Department of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiuli Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Du Lei
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinmei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Heng Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Goldman AM. Oncogenic Pathways Provide Clue to the Etiology of Human Mesial Temporal Lobe Epilepsy. JAMA Neurol 2023:2804532. [PMID: 37126324 DOI: 10.1001/jamaneurol.2023.0465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- Alica M Goldman
- Department of Neurology, Neurophysiology Section, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
11
|
Righes Marafiga J, Baraban SC. Cell therapy for neurological disorders: Progress towards an embryonic medial ganglionic eminence progenitor-based treatment. Front Neurosci 2023; 17:1177678. [PMID: 37123353 PMCID: PMC10140420 DOI: 10.3389/fnins.2023.1177678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Impairment of development, migration, or function of inhibitory interneurons are key features of numerous circuit-based neurological disorders, such as epilepsy. From a therapeutic perspective, symptomatic treatment of these disorders often relies upon drugs or deep brain stimulation approaches to provide a general enhancement of GABA-mediated inhibition. A more effective strategy to target these pathological circuits and potentially provide true disease-modifying therapy, would be to selectively add new inhibitory interneurons into these circuits. One such strategy, using embryonic medial ganglionic (MGE) progenitor cells as a source of a unique sub-population of interneurons, has already proven effective as a cell transplantation therapy in a variety of preclinical models of neurological disorders, especially in mouse models of acquired epilepsy. Here we will discuss the evolution of this interneuron-based transplantation therapy in acquired epilepsy models, with an emphasis on the recent adaptation of MGE progenitor cells for xenotransplantation into larger mammals.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Scott C. Baraban
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Helen Wills Institute for Neuroscience, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
12
|
Zhong F, Gan Y, Song J, Zhang W, Yuan S, Qin Z, Wu J, Lü Y, Yu W. The inhibition of PGAM5 suppresses seizures in a kainate-induced epilepsy model via mitophagy reduction. Front Mol Neurosci 2022; 15:1047801. [PMID: 36618822 PMCID: PMC9813404 DOI: 10.3389/fnmol.2022.1047801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background Epilepsy is a common neurological disease, and excessive mitophagy is considered as one of the major triggers of epilepsy. Mitophagy is a crucial pathway affecting reactive oxygen species. Phosphoglycerate mutase 5 (PGAM5) is a protein phosphatase present in mitochondria that regulates many biological processes including mitophagy and cell death. However, the mechanism of PGAM5 in epilepsy remains unclear. The purpose of the present study was to examine whether PGAM5 affects epilepsy through PTEN-induced putative kinase 1 (PINK1)-mediated mitophagy. Methods After the knockdown of PGAM5 expression by the adeno-associated virus, an epilepsy model was created by kainic acid. Next, the seizure activity was recorded by local field potentials before evaluating the level of mitochondrial autophagy marker proteins. Lastly, the ultrastructure of mitochondria, neuronal damage and oxidative stress levels were further observed. Results A higher PGAM5 level was found in epilepsy, and its cellular localization was in neurons. The interactions between PGAM5 and PINK1 in epilepsy were further found. After the knockdown of PGAM5, the level of PINK1 and light chain 3B was decreased and the expression of the translocase of the inner mitochondrial membrane 23 and translocase of the outer mitochondrial membrane 20 were both increased. Knockdown of PGAM5 also resulted in reduced neuronal damage, decreased malondialdehyde levels, decreased reactive oxygen species production and increased superoxide dismutase activity. In addition, the duration of spontaneous seizure-like events (SLEs), the number of SLEs and the time spent in SLEs were all reduced in the epilepsy model after inhibition of PGAM5 expression. Conclusion Inhibition of PGAM5 expression reduces seizures via inhibiting PINK1-mediated mitophagy.
Collapse
Affiliation(s)
- Fuxin Zhong
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yunhao Gan
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaqi Song
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Wenbo Zhang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiyun Yuan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhangjin Qin
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jiani Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weihua Yu
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China,*Correspondence: Weihua Yu,
| |
Collapse
|
13
|
Genetic models to investigate chronic epileptogenic events: An open window of possibilities and perspectives. Epilepsy Behav 2022; 135:108908. [PMID: 36095875 DOI: 10.1016/j.yebeh.2022.108908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022]
|
14
|
Kovalenko AA, Zakharova MV, Schwarz AP, Dyomina AV, Zubareva OE, Zaitsev AV. Changes in Metabotropic Glutamate Receptor Gene Expression in Rat Brain in a Lithium-Pilocarpine Model of Temporal Lobe Epilepsy. Int J Mol Sci 2022; 23:ijms23052752. [PMID: 35269897 PMCID: PMC8910969 DOI: 10.3390/ijms23052752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022] Open
Abstract
Preventing epileptogenesis in people at risk is an unmet medical need. Metabotropic glutamate receptors (mGluRs) are promising targets for such therapy. However, drugs acting on mGluRs are not used in the clinic due to limited knowledge of the involvement of mGluRs in epileptogenesis. This study aimed to analyze the changes in gene expression of mGluR subtypes (1-5, 7, 8) in various rat brain regions in the latent and chronic phases of a lithium-pilocarpine model of epilepsy. For this study, multiplex test systems were selected and optimized to analyze mGluR gene expression using RT-qPCR. Region- and phase-specific changes in expression were revealed. During the latent phase, mGluR5 mRNA levels were increased in the dorsal and ventral hippocampus, and expression of group III genes was decreased in the hippocampus and temporal cortex, which could contribute to epileptogenesis. Most of the changes in expression detected in the latent stage were absent in the chronic stage, but mGluR8 mRNA production remained reduced in the hippocampus. Moreover, we found that gene expression of group II mGluRs was altered only in the chronic phase. The study deepened our understanding of the mechanisms of epileptogenesis and suggested that agonists of group III mGluRs are the most promising targets for preventing epilepsy.
Collapse
|
15
|
Abstract
Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients frequently develop cognitive deficits and emotional blunting along progression of the disease. The high incidence of refractoriness to antiepileptic drugs and a frequent lack of admissibility to surgery pose an unmet medical challenge. In the urgent quest for novel treatment strategies, neuropeptides and their receptors are interesting candidates. However, their therapeutic potential has not yet been fully exploited. This chapter focuses on the functional role of the dynorphins (Dyns) and the kappa opioid receptor (KOR) system in temporal lobe epilepsy and the hippocampus.Genetic polymorphisms in the prepro-dynorphin (pDyn) gene causing lower levels of Dyns in humans and pDyn gene knockout in mice increase the risk to develop epilepsy. This suggests a role of Dyns and KOR as modulators of neuronal excitability. Indeed, KOR agonists induce inhibition of presynaptic neurotransmitter release, as well as postsynaptic hyperpolarization in glutamatergic neurons, both producing anticonvulsant effects.The development of new approaches to modulate the complex KOR signalling cascade (e.g. biased agonism and gene therapy) opens up new exciting therapeutic opportunities with regard to seizure control and epilepsy. Potential adverse side effects of KOR agonists may be minimized through functional selectivity or locally restricted treatment. Preclinical data suggest a high potential of such approaches to control seizures.
Collapse
Affiliation(s)
- Luca Zangrandi
- Institute of Virology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
16
|
Eid T. Progressive Neuronal Loss in Epilepsy - A Long-Standing Conundrum Finally Resolved? Epilepsy Curr 2021; 21:366-368. [PMID: 34924838 PMCID: PMC8655263 DOI: 10.1177/15357597211030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Lee HM, Fadaie F, Gill R, Caldairou B, Sziklas V, Crane J, Hong SJ, Bernhardt BC, Bernasconi A, Bernasconi N. Decomposing MRI phenotypic heterogeneity in epilepsy: a step towards personalized classification. Brain 2021; 145:897-908. [PMID: 34849619 DOI: 10.1093/brain/awab425] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/14/2022] Open
Abstract
In drug-resistant temporal lobe epilepsy (TLE), precise predictions of drug response, surgical outcome, and cognitive dysfunction at an individual level remain challenging. A possible explanation may lie in the dominant "one-size-fits-all" group-level analytical approaches that does not allow parsing inter-individual variations along the disease spectrum. Conversely, analyzing inter-patient heterogeneity is increasingly recognized as a step towards person-centered care. Here, we utilized unsupervised machine learning to estimate latent relations (or disease factors) from 3 T multimodal MRI features (cortical thickness, hippocampal volume, FLAIR, T1/FLAIR, diffusion parameters) representing whole-brain patterns of structural pathology in 82 TLE patients. We assessed the specificity of our approach against age- and sex-matched healthy individuals and a cohort of frontal lobe epilepsy patients with histologically-verified focal cortical dysplasia. We identified four latent disease factors variably co-expressed within each patient and characterized by ipsilateral hippocampal microstructural alterations, loss of myelin and atrophy (Factor-1), bilateral paralimbic and hippocampal gliosis (Factor-2), bilateral neocortical atrophy (Factor-3), bilateral white matter microstructural alterations (Factor-4). Bootstrap analysis and parameter variations supported high stability and robustness of these factors. Moreover, they were not expressed in healthy controls and only negligibly in disease controls, supporting specificity. Supervised classifiers trained on latent disease factors could predict patient-specific drug-response in 76 ± 3% and postsurgical seizure outcome in 88 ± 2%, outperforming classifiers that did not operate on latent factor information. Latent factor models predicted inter-patient variability in cognitive dysfunction (verbal IQ: r = 0.40 ± 0.03; memory: r = 0.35 ± 0.03; sequential motor tapping: r = 0.36 ± 0.04), again outperforming baseline learners. Data-driven analysis of disease factors provides a novel appraisal of the continuum of interindividual variability, which is likely determined by multiple interacting pathological processes. Incorporating interindividual variability is likely to improve clinical prognostics.
Collapse
Affiliation(s)
- Hyo Min Lee
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Fatemeh Fadaie
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Ravnoor Gill
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Viviane Sziklas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Joelle Crane
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research Institute for Basic Science, Department of Biomedical Engineering, Sungkyunkwan University Suwon South Korea
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Pai A, Marcuse LV, Alper J, Delman BN, Rutland JW, Feldman RE, Hof PR, Fields M, Young J, Balchandani P. Detection of Hippocampal Subfield Asymmetry at 7T With Automated Segmentation in Epilepsy Patients With Normal Clinical Strength MRIs. Front Neurol 2021; 12:682615. [PMID: 34867703 PMCID: PMC8634833 DOI: 10.3389/fneur.2021.682615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/21/2021] [Indexed: 12/05/2022] Open
Abstract
While the etiology of hippocampal sclerosis (HS) in epilepsy patients remains unknown, distinct phenotypes of hippocampal subfield atrophy have been associated with different clinical presentations and surgical outcomes. The advent of novel techniques including ultra-high field 7T magnetic resonance imaging (MRI) and automated subfield volumetry have further enabled detection of hippocampal pathology in patients with epilepsy, however, studies combining both 7T MRI and automated segmentation in epilepsy patients with normal-appearing clinical MRI are limited. In this study, we present a novel application of the automated segmentation of hippocampal subfields (ASHS) software to determine subfield volumes of the CA1, CA2/3, CA4/DG, and the subiculum using ultra high-field 7T MRI scans, including T1-weighted MP2RAGE and T2-TSE sequences, in 27 patients with either mesial temporal lobe epilepsy (mTLE) or neocortical epilepsy (NE) compared to age and gender matched healthy controls. We found that 7T improved visualization of structural abnormalities not otherwise seen on clinical strength MRIs in patients with unilateral mTLE. Additionally, our automated segmentation algorithm was able to detect structural differences in volume and asymmetry across hippocampal subfields in unilateral mTLE patients compared to controls. Specifically, amongst unilateral mTLE patients with longer disease durations, volume loss was observed in the ipsilateral CA1 and CA2/3 subfields and contralateral CA1. There were no differences in subfield volumes in patients with NE compared to controls. We report the first application of 7T with automated segmentation to characterize the relationship between disease duration burden and asymmetry across specific hippocampal subfields in this population. Disease duration was found to have a statistically significant positive relationship with subfield asymmetry within the unilateral mTLE cohort. These findings highlight the ability of 7T MRI and automated segmentation to provide novel qualitative and quantitative information in epilepsy patients who are otherwise MRI-negative at clinical field strengths.
Collapse
Affiliation(s)
- Akila Pai
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Akila Pai
| | - Lara V. Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Judy Alper
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bradley N. Delman
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - John W. Rutland
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rebecca E. Feldman
- Department of Computer Science, Math, Physics, and Statistics, University of British Columbia, Okanagan, BC, Canada
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Madeline Fields
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - James Young
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
19
|
Twible C, Abdo R, Zhang Q. Astrocyte Role in Temporal Lobe Epilepsy and Development of Mossy Fiber Sprouting. Front Cell Neurosci 2021; 15:725693. [PMID: 34658792 PMCID: PMC8514632 DOI: 10.3389/fncel.2021.725693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy affects approximately 50 million people worldwide, with 60% of adult epilepsies presenting an onset of focal origin. The most common focal epilepsy is temporal lobe epilepsy (TLE). The role of astrocytes in the presentation and development of TLE has been increasingly studied and discussed within the literature. The most common histopathological diagnosis of TLE is hippocampal sclerosis. Hippocampal sclerosis is characterized by neuronal cell loss within the Cornu ammonis and reactive astrogliosis. In some cases, mossy fiber sprouting may be observed. Mossy fiber sprouting has been controversial in its contribution to epileptogenesis in TLE patients, and the mechanisms surrounding the phenomenon have yet to be elucidated. Several studies have reported that mossy fiber sprouting has an almost certain co-existence with reactive astrogliosis within the hippocampus under epileptic conditions. Astrocytes are known to play an important role in the survival and axonal outgrowth of central and peripheral nervous system neurons, pointing to a potential role of astrocytes in TLE and associated cellular alterations. Herein, we review the recent developments surrounding the role of astrocytes in the pathogenic process of TLE and mossy fiber sprouting, with a focus on proposed signaling pathways and cellular mechanisms, histological observations, and clinical correlations in human patients.
Collapse
Affiliation(s)
- Carolyn Twible
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada
| | - Rober Abdo
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Qi Zhang
- Department of Pathology and Lab Medicine, Western University, London, ON, Canada.,Department of Pathology and Lab Medicine, London Health Sciences Centre, University Hospital, London, ON, Canada
| |
Collapse
|
20
|
Rayatpour A, Farhangi S, Verdaguer E, Olloquequi J, Ureña J, Auladell C, Javan M. The Cross Talk between Underlying Mechanisms of Multiple Sclerosis and Epilepsy May Provide New Insights for More Efficient Therapies. Pharmaceuticals (Basel) 2021; 14:ph14101031. [PMID: 34681255 PMCID: PMC8541630 DOI: 10.3390/ph14101031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the significant differences in pathological background of neurodegenerative diseases, epileptic seizures are a comorbidity in many disorders such as Huntington disease (HD), Alzheimer's disease (AD), and multiple sclerosis (MS). Regarding the last one, specifically, it has been shown that the risk of developing epilepsy is three to six times higher in patients with MS compared to the general population. In this context, understanding the pathological processes underlying this connection will allow for the targeting of the common and shared pathological pathways involved in both conditions, which may provide a new avenue in the management of neurological disorders. This review provides an outlook of what is known so far about the bidirectional association between epilepsy and MS.
Collapse
Affiliation(s)
- Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Sahar Farhangi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Biomedical Sciences Institute, Health Sciences Faculty, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Jesus Ureña
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence: (C.A.); (M.J.)
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Cell Science Research Center, Department of Brain and Cognitive Sciences, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14117-13116, Iran
- Correspondence: (C.A.); (M.J.)
| |
Collapse
|
21
|
Anwar MJ, Alenezi SK, Mahmood D, Azam F, Alharbi KS. An insight into the implications of estrogen deficiency and transforming growth factor β in antiepileptic drugs-induced bone loss. Eur J Pharmacol 2021; 907:174313. [PMID: 34245750 DOI: 10.1016/j.ejphar.2021.174313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/23/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
There have been a number of reports that chronic antiepileptic drug (AEDs) therapy is associated with abnormal bone and calcium metabolism, osteoporosis/osteomalacia, and increased risk of fractures. Bony adverse effects of long term antiepileptic drug therapy have been reported for more than four decades but the exact molecular mechanism is still lacking. Several mechanisms have been proposed regarding AEDs induced bone loss; Hypovitaminosis D, hyperparathyroidism, estrogen deficiency, calcitonin deficiency. Transforming growth factor-β (TGF- β) is abundant in bone matrix and has been shown to regulate the activity of osteoblasts and osteoclasts in vitro. All isoforms of TGF- β are expressed in bone and intricately play role in bone homeostasis by modulating estrogen level. Ovariectomised animal have shown down regulation of TGF- β in bone that could also be a probable target of AEDs therapy associated bone loss. One of the widely accepted hypotheses regarding the conventional drugs induced bone loss is hypovitaminosis D which is by virtue of their microsomal enzyme inducing effect. However, despite of the lack of enzyme inducing effect of certain newer antiepileptic drugs, reduced bone mineral density with these drugs have also been reported. Thus an understanding of bone biology, pathophysiology of AEDs induced bone loss at molecular level can aid in the better management of bone loss in patients on chronic AEDs therapy. This review focuses mainly on certain new molecular targets of AEDs induced bone loss.
Collapse
Affiliation(s)
- Md Jamir Anwar
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Al-Qassim, Saudi Arabia.
| | - Sattam K Alenezi
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Al-Qassim, Saudi Arabia
| | - Danish Mahmood
- Department of Pharmacology & Toxicology, Unaizah College of Pharmacy, Qassim University, Al-Qassim, Saudi Arabia
| | - Faizul Azam
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Al-Qassim, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| |
Collapse
|
22
|
Borger V, Hamed M, Taube J, Aydin G, Ilic I, Schneider M, Schuss P, Güresir E, Becker A, Helmstaedter C, Elger CE, Vatter H. Resective temporal lobe surgery in refractory temporal lobe epilepsy: prognostic factors of postoperative seizure outcome. J Neurosurg 2021. [DOI: 10.3171/2020.7.jns20284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Temporal lobe epilepsy (TLE) is one of the most common forms of epilepsy. In approximately 30% of patients, seizures are refractory to drug treatment. Despite the achievements of modern presurgical evaluation in recent years, the presurgical prediction of seizure outcome remains difficult. The aim of this study was to evaluate the seizure outcome in patients with drug-refractory TLE who underwent resective temporal lobe surgery (rTLS) and to determine features associated with unfavorable postsurgical seizure outcome.
METHODS
Patients with medically refractory TLE who underwent rTLS between 2012 and 2017 were reviewed from the prospectively collected epilepsy surgery database. A retrospective analysis of clinical, radiological, neuropsychological, histopathological, and perioperative findings of 161 patients was performed. The patients were divided into two groups according to seizure outcome (group I, International League Against Epilepsy [ILAE] class 1; group II, ILAE class ≥ 2). For identification of independent risk factors for unfavorable postoperative seizure outcome (ILAE class ≥ 2), a multivariate logistic regression analysis was performed.
RESULTS
Seizure freedom (ILAE class 1) was achieved in 121 patients (75.2%). The neuropsychological evaluation demonstrated that losses in cognitive performance were more pronounced in verbal memory after resections in the left temporal lobe and in nonverbal memory after right-sided resections, whereas attention improved after surgery. Overall, postoperative visual field deficits (VFDs) were common and occurred in 51% of patients. There was no statistically significant difference in the incidence of VFD in patients with selective surgical procedures compared to the patients with nonselective procedures. The lack of MRI lesions and placement of depth electrodes were preoperatively identified as predictors for unfavorable seizure outcome.
CONCLUSIONS
rTLS is an effective treatment method in patients with refractory TLE. However, patients with a lack of MRI lesions and placement of depth electrodes prior to rTLS are at higher risk for an unfavorable postsurgical seizure outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Albert Becker
- Institute of Neuropathology, University Hospital Bonn, Germany
| | | | | | | |
Collapse
|
23
|
Lévesque M, Biagini G, de Curtis M, Gnatkovsky V, Pitsch J, Wang S, Avoli M. The pilocarpine model of mesial temporal lobe epilepsy: Over one decade later, with more rodent species and new investigative approaches. Neurosci Biobehav Rev 2021; 130:274-291. [PMID: 34437936 DOI: 10.1016/j.neubiorev.2021.08.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/19/2023]
Abstract
Fundamental work on the mechanisms leading to focal epileptic discharges in mesial temporal lobe epilepsy (MTLE) often rests on the use of rodent models in which an initial status epilepticus (SE) is induced by kainic acid or pilocarpine. In 2008 we reviewed how, following systemic injection of pilocarpine, the main subsequent events are the initial SE, the latent period, and the chronic epileptic state. Up to a decade ago, rats were most often employed and they were frequently analysed only behaviorally. However, the use of transgenic mice has revealed novel information regarding this animal model. Here, we review recent findings showing the existence of specific neuronal events during both latent and chronic states, and how optogenetic activation of specific cell populations modulate spontaneous seizures. We also address neuronal damage induced by pilocarpine treatment, the role of neuroinflammation, and the influence of circadian and estrous cycles. Updating these findings leads us to propose that the rodent pilocarpine model continues to represent a valuable tool for identifying the basic pathophysiology of MTLE.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, 41100 Modena, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Vadym Gnatkovsky
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada; Departments of Physiology, McGill University, Montreal, QC, H3A 2B4, Canada; Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy.
| |
Collapse
|
24
|
Moura DMS, de Sales IRP, Brandão JA, Costa MR, Queiroz CM. Disentangling chemical and electrical effects of status epilepticus-induced dentate gyrus abnormalities. Epilepsy Behav 2021; 121:106575. [PMID: 31704249 DOI: 10.1016/j.yebeh.2019.106575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/10/2019] [Accepted: 09/14/2019] [Indexed: 01/06/2023]
Abstract
In rodents, status epilepticus (SE) triggered by chemoconvulsants can differently affect the proliferation and fate of adult-born dentate granule cells (DGCs). It is unknown whether abnormal neurogenesis results from intracellular signaling associated with drug-receptor interaction, paroxysmal activity, or both. To test the contribution of these factors, we systematically compared the effects of kainic acid (KA)- and pilocarpine (PL)-induced SE on the morphology and localization of DGCs generated before or after SE in the ipsi- and contralateral hippocampi of mice. Hippocampal insult was induced by unilateral intrahippocampal (ihpc) administration of KA or PL. We employed conditional doublecortin-dependent expression of the green fluorescent protein (GFP) to label adult-born cells committed to neuronal lineage either one month before (mature DGCs) or seven days after (immature DGCs) SE. Unilateral ihpc administration of KA and PL led to bilateral epileptiform discharges and focal and generalized behavioral seizures. However, drastic granule cell layer (GCL) dispersion occurred only in the ipsilateral side of KA injection, but not in PL-treated animals. Granule cell layer dispersion was accompanied by a significant reduction in neurogenesis after SE in the ipsilateral side of KA-treated animals, while neurogenesis increased in the contralateral side of KA-treated animals and both hippocampi of PL-treated animals. The ratio of ectopic neurons in the ipsilateral hippocampus was higher among immature as compared to mature neurons in the KA model (32.8% vs. 10.0%, respectively), while the occurrence of ectopic neurons in PL-treated animals was lower than 3% among both mature and immature DGCs. Collectively, our results suggest that KA- and PL-induced SE leads to distinct cellular alterations in mature and immature DGCs. We also show different local and secondary effects of KA or PL in the histological organization of the adult DG, suggesting that these unique epilepsy models may be complementary to our understanding of the disease. NEWroscience 2018.
Collapse
|
25
|
Salehi F, Nadeem IM, Kwan BYM, Mirsattari SM, Lee DH, Burneo JG, Steven D, Hammond R, Peters TM, Khan AR. Ultra-High Field 7-Tesla Magnetic Resonance Imaging and Electroencephalography Findings in Epilepsy. Can Assoc Radiol J 2021; 73:396-402. [PMID: 34328021 DOI: 10.1177/08465371211031802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Assessment of patients for temporal lobe epilepsy (TLE) surgery requires multimodality input, including EEG recordings to ensure optimal surgical planning. Often EEG demonstrates abnormal foci not detected on 1.5T MRI. Ultra-high field MRI at 7T provides improved resolution of the brain. We investigated the utility of 7T MRI to detect potential anatomical abnormalities associated with EEG changes. METHODS Ultra-high field data were acquired on a 7T MRI scanner for 13 patients with history of drug resistant TLE who had had EEG telemetry recordings. Qualitative evaluation of 7T imaging for presence of focal abnormalities detected on EEG was performed. Correlation of 7T MRI findings with EEG recordings of focal slowing or interictal epileptic spikes (IEDs), and seizures was performed. RESULTS Assessment of 7T MRI demonstrated concordance with TLE as determined by the multidisciplinary team in 61.5% of cases (n = 8). Among these, 3 patients exhibited supportive abnormal 7T MRI abnormalities not detected by 1.5T MRI. In patients who underwent surgery, 72.7% had concordant histopathology findings with 7T MRI findings (n = 8). However, qualitative assessment of 7T images revealed focal anatomical abnormalities to account for EEG findings in only 15.4% of patients (n = 2). Other regions that were found to have localized IEDs in addition to the lesional temporal lobe, included the contralateral temporal lobe (n = 5), frontal lobe (n = 3), and parieto-occipital lobe (n = 2). CONCLUSION Ultra-high field 7T MRI findings show concordance with clinical data. However, 7T MRI did not reveal anatomical findings to account for abnormalities detected by EEG.
Collapse
Affiliation(s)
- Fateme Salehi
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, 6221Western University, London, Ontario, Canada.,Faculty of Health Sciences, Department of Radiology, 3710McMaster University, Hamilton, Ontario, Canada.,Department of Medical Imaging, 25453Juravinski Hospital, Hamilton, Ontario, Canada
| | - Ibrahim M Nadeem
- Michael G. DeGroote School of Medicine, 3710McMaster University, Hamilton, Ontario, Canada
| | - Benjamin Y M Kwan
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, 6221Western University, London, Ontario, Canada
| | - Seyed M Mirsattari
- Epilepsy Program, Department of Clinical Neurological Sciences, 70384Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Donald H Lee
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, 6221Western University, London, Ontario, Canada
| | - Jorge G Burneo
- Epilepsy Program, Department of Clinical Neurological Sciences, 70384Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David Steven
- Epilepsy Program, Department of Clinical Neurological Sciences, 70384Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert Hammond
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, 6221Western University, London, Ontario, Canada
| | - Terry M Peters
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, 6221Western University, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ali R Khan
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, 6221Western University, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
26
|
Relationship between hippocampal subfields and Verbal and Visual memory function in Mesial Temporal Lobe Epilepsy patients. Epilepsy Res 2021; 175:106700. [PMID: 34175793 DOI: 10.1016/j.eplepsyres.2021.106700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE High-resolution protocols used in magnetic resonance imaging (MRI) currently enable the detailed analysis of the hippocampus along with its subfield segmentation. The relationship between episodic memory and the hippocampus is well established, and there is growing evidence that some specific memory processing steps are associated with individual hippocampal segments, but there are inconsistencies in the literature. We focused our analysis on hippocampal subfield volumetry and neuropsychological visual and verbal memory tests in patients with temporal lobe epilepsy (TLE) presenting with unilateral hippocampal atrophy. METHODS The study involved a cohort of 62 patients with unilateral TLE, including unilateral hippocampal atrophy (29 on the left side) based on MRI and unequivocal ipsilateral ictal onsets based on surface video electroencephalography recordings. The hippocampal subfield volumes were evaluated using FreeSurfer version 7.1. We used the Rey-Auditory Verbal Learning Test to evaluate short-term (A1), learning (ΣA1-A5), immediate (A6), and delayed (A7) recall of episodic verbal memory. We used the Rey-Osterrieth Complex Figure Test to evaluate the immediate and delayed recall of visual memory. We analyzed the correlations between the asymmetry index scores for the hippocampal subfield volumes of thecornu ammonis (CA)1, CA2/3, and CA4 and memory test performance. RESULTS Moderate associations were established between the CA2/3 asymmetry index scores and visual memory in TLE (both right and left hippocampal atrophy), as well as visual memory and CA4 in the right atrophy cases. The CA1 asymmetry index scores did not correlate with any of the memory test results. We did not find any significant correlation between verbal memory tests and specific hippocampal subfields. CONCLUSIONS The use of high-resolution MRI protocols andin vivo automated segmentation processing revealed moderate associations between hippocampal subfields and memory parameters. Further investigations are needed to establish the utility of these results for clinical decisions.
Collapse
|
27
|
Xu K, Wang X, Guan Y, Zhao M, Tang C, Zhou J, Zhai F, Wang M, Duan Z, Qi X, Li T, Luan G. Prognostic value of histopathologic pattern for long-term surgical outcomes of 198 patients with confirmed mesial temporal lobe epilepsy. Hum Pathol 2021; 115:47-55. [PMID: 34119513 DOI: 10.1016/j.humpath.2021.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/06/2021] [Indexed: 11/20/2022]
Abstract
Hippocampal sclerosis (HS) is the most common neuropathologic findings in patients with intractable temporal lobe epilepsy (TLE). The international league against epilepsy has proposed a new classification of HS based on pyramidal cell loss on different subfields to facilitate the study of HS pathology in patients after anterior temporal lobectomy (ATL), and the influence of these HS patterns on the prognosis of patients with TLE is contradictory. This study aims to investigate the relationship between different HS subtypes and postoperative seizure outcomes for intractable patients with TLE. From January 2008 to December 2018, we retrospectively reviewed 198 TLE patients with ATL surgery, and all patients had a complete preoperative evaluation, a specimen of hippocampal tissue after surgery, cognitive test after surgery, and more than 2 years of postoperative follow-up. The main findings were as follows: 1) temporal neocortical gray matter heterotopia were more common in the no-HS group; 2) HS type 1 was associated with a longer duration of epilepsy; 3) history of meningitis was the independent predictor of HS type 1; 4) no-HS patients experienced worse postoperative seizure outcomes than those with HS type1 and type 2, whereas no difference in seizure outcomes was obtained between HS type 1 and type 2; 5) no-HS patients were at increased risk for verbal memory decline after left hippocampal resection. The HS subtypes were associated with the prognosis of patients with TLE, and other variables were the predictors of different HS types. `Further study was to identify the HS subtypes by noninvasive evaluation to approve better postoperative outcomes.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xiongfei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China; Beijing Key Laboratory of Epilepsy, 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Meng Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | | | - Jian Zhou
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Feng Zhai
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Mengyang Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Zejun Duan
- Department of Pathlogy, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xueling Qi
- Department of Pathlogy, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Tianfu Li
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China; Beijing Key Laboratory of Epilepsy, 100093, China
| | - Guoming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China; Beijing Key Laboratory of Epilepsy, 100093, China.
| |
Collapse
|
28
|
Cid E, Marquez-Galera A, Valero M, Gal B, Medeiros DC, Navarron CM, Ballesteros-Esteban L, Reig-Viader R, Morales AV, Fernandez-Lamo I, Gomez-Dominguez D, Sato M, Hayashi Y, Bayés À, Barco A, Lopez-Atalaya JP, de la Prida LM. Sublayer- and cell-type-specific neurodegenerative transcriptional trajectories in hippocampal sclerosis. Cell Rep 2021; 35:109229. [PMID: 34107264 DOI: 10.1016/j.celrep.2021.109229] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Hippocampal sclerosis, the major neuropathological hallmark of temporal lobe epilepsy, is characterized by different patterns of neuronal loss. The mechanisms of cell-type-specific vulnerability and their progression and histopathological classification remain controversial. Using single-cell electrophysiology in vivo and immediate-early gene expression, we reveal that superficial CA1 pyramidal neurons are overactive in epileptic rodents. Bulk tissue and single-nucleus expression profiling disclose sublayer-specific transcriptomic signatures and robust microglial pro-inflammatory responses. Transcripts regulating neuronal processes such as voltage channels, synaptic signaling, and cell adhesion are deregulated differently by epilepsy across sublayers, whereas neurodegenerative signatures primarily involve superficial cells. Pseudotime analysis of gene expression in single nuclei and in situ validation reveal separated trajectories from health to epilepsy across cell types and identify a subset of superficial cells undergoing a later stage in neurodegeneration. Our findings indicate that sublayer- and cell-type-specific changes associated with selective CA1 neuronal damage contribute to progression of hippocampal sclerosis.
Collapse
Affiliation(s)
- Elena Cid
- Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Angel Marquez-Galera
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Alicante, Spain
| | | | - Beatriz Gal
- Instituto Cajal, CSIC, 28002 Madrid, Spain; Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain
| | | | - Carmen M Navarron
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Alicante, Spain
| | | | - Rita Reig-Viader
- Institut d'Investigació Biomèdica San Pau, 08041 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | | | | | | | - Masaaki Sato
- RIKEN Brain Science Institute, Wako, 351-0198 Saitama, Japan
| | - Yasunori Hayashi
- RIKEN Brain Science Institute, Wako, 351-0198 Saitama, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, 606-8501 Kyoto, Japan
| | - Àlex Bayés
- Institut d'Investigació Biomèdica San Pau, 08041 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Alicante, Spain.
| | | |
Collapse
|
29
|
Chiprés-Tinajero GA, Núñez-Ochoa MA, Medina-Ceja L. Increased immunoreactivity of glutamate receptors, neuronal nuclear protein and glial fibrillary acidic protein in the hippocampus of epileptic rats with fast ripple activity. Exp Brain Res 2021; 239:2015-2024. [PMID: 33909110 DOI: 10.1007/s00221-021-06108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/08/2021] [Indexed: 11/28/2022]
Abstract
Epilepsy is a neurological disorder in which an imbalance between excitatory and inhibitory transmission is observed. Glutamate is the principal excitatory neurotransmitter that acts through ionic and metabotropic receptors; both types of receptors are involved in temporal lobe epilepsy (TLE). High frequency oscillations called fast ripples (FR, 250-600 Hz) have been observed, particularly in the hippocampus, and they are involved in epileptogenesis. The present study analyzed the immunoreactivity of the principal glutamate receptors associated with epilepsy in epileptic animals with FR activity. Male Swiss-Wistar rats (210-250 gr) were injected with pilocarpine (2.4 mg/2 µl) and were video monitored (24/7) until the appearance of spontaneous and recurrent seizures. Then, a deep microelectrode implantation surgery was performed in the DG, CA3 and CA1 regions, and FR activity was observed 1-, 2-, 3-, 7-, and 14-day postsurgery. The animals were sacrificed on day 15, and fluorescence immunohistochemistry was carried out in the hippocampus for the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA) and mGlu-R5 glutamate receptors as well as Neuronal Nuclear Protein (NeuN) and Glial Fibrillary Acidic Protein (GFAP). An increase in the immunoreactivity for the three receptors was found. However, the AMPA receptor showed an increase in the three regions analyzed (i.e., DG, CA1 and CA3). The findings showed a decrease of NeuN in the DG and an increase of GFAP. These results suggest an important role of glutamate receptors in the hippocampus of epileptic rats with FR activity.
Collapse
Affiliation(s)
- Gustavo A Chiprés-Tinajero
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, Jalisco, 45110, México
| | - Miguel A Núñez-Ochoa
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, Jalisco, 45110, México
| | - Laura Medina-Ceja
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, Jalisco, 45110, México.
| |
Collapse
|
30
|
Lévesque M, Macey-Dare AD, Wang S, Avoli M. Evolution of interictal spiking during the latent period in a mouse model of mesial temporal lobe epilepsy. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100008. [PMID: 36246508 PMCID: PMC9559106 DOI: 10.1016/j.crneur.2021.100008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Interictal spikes and high-frequency oscillations (HFOs, ripples: 80–200 Hz, fast ripples: 250–500 Hz) occur in epileptic patients and in animal models of mesial temporal lobe epilepsy (MTLE). In this study, we explored how type 1 and type 2 interictal spikes as well as ripples and fast ripples evolve during the latent period in the hippocampus of pilocarpine-treated mice. Depth EEG recordings were obtained from the hippocampus CA3 subfield of adult male mice (n = 5, P60–P100) starting one day before pilocarpine-induced status epilepticus up to the first spontaneous seizure, the so-called latent period. We found that rates of type 1 (n = 1 655) and type 2 (n = 2 309) interictal spikes were significantly lower during the late phase of the latent period compared to its early and mid phase (p < 0.001). However, rates of type 1 spikes associated with ripples (n = 266) or fast ripples (n = 106), as well as rates of type 2 interictal spikes associated with ripples (n = 233), were significantly higher during the late phase compared to the early and mid phases (p < 0.05). Our findings reveal that an increase of type 1 interictal spikes co-occurring with ripples or fast ripples and an increase of type 2 interictal spikes co-occurring with ripples mark the end of the latent period. We propose that changes in the occurrence of interictal spike associated with HFOs represent a biomarker of epileptogenicity in this mouse model of MTLE. We studied interictal spike types in a model of mesial temporal lobe epilepsy. Type 1 and type 2 spike rates were lower in the late phase of the latent period. Rates of type 1 spikes with ripples or fast ripples were higher in the late phase. Rates of type 2 spikes with fast ripples were also higher during the late phase. These changes in interictal spike types mark the end of the latent period.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital & Department of Neurology & Neurosurgery; McGill University, Montréal, Québec, Canada
| | - Anežka D.B. Macey-Dare
- Montreal Neurological Institute-Hospital & Department of Neurology & Neurosurgery; McGill University, Montréal, Québec, Canada
| | - Siyan Wang
- Montreal Neurological Institute-Hospital & Department of Neurology & Neurosurgery; McGill University, Montréal, Québec, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital & Department of Neurology & Neurosurgery; McGill University, Montréal, Québec, Canada
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Corresponding author. Montreal Neurological Institute, 3801 University Street, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
31
|
Gene expression in the epileptic (EL) mouse hippocampus. Neurobiol Dis 2020; 147:105152. [PMID: 33153970 DOI: 10.1016/j.nbd.2020.105152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 11/24/2022] Open
Abstract
The neuropathology of hippocampal seizure foci in human temporal lobe epilepsy (TLE) and several animal models of epilepsy reveal extensive neuronal loss along with astrocyte and microglial activation. Studies of these models have advanced hypotheses that propose both pathological changes are essential for seizure generation. However, some seizure foci in human TLE show an extreme loss of neurons in all hippocampal fields, giving weight to hypotheses that favor neuroglia as major players. The epileptic (EL) mouse is a seizure model in which there is no observable neuron loss but associated proliferation of microglia and astrocytes and provides a good model to study the role of activated neuroglia in the presence of an apparently normal population of neurons. While many studies have been carried out on the EL mouse, there is a paucity of studies on the molecular changes in the EL mouse hippocampus, which may provide insight on the role of neuroglia in epileptogenesis. In this paper we have applied high throughput gene expression analysis to identify the molecular changes in the hippocampus that may explain the pathological processes. We have observed several classes of genes whose expression levels are changed. It is hypothesized that the upregulation of heat shock proteins (HSP70, HSP72, FOSL2 (HSP40), and their molecular chaperones BAG3 and DNAJB5 along with the down regulated gene MALAT1 may contribute to the neuroprotection observed. The increased expression of BDNF along with immediate early gene expression (FosB, JunB, ERG4, NR4A1, NR4A2, FBXO3) and the down regulation of GABRD, DBP and MALAT1 it is hypothesized may contribute to the hyperexcitability of the hippocampal neurons in this model. Activated astrocytes and microglia may also contribute to excitability pathomechanisms. Activated astrocytes in the ELS mouse are deficient in glutamine synthetase and thus reduce the clearance of extracellular glutamate. Activated microglia which may be associated with C1Q and MHC class I molecules we propose may mediate a process of selective removal of defective GABAergic synapses through a process akin to trogocytosis that may reduce neuronal inhibition and favor hyperexcitability.
Collapse
|
32
|
Allebone J, Kanaan RA, Maller JJ, O'Brien T, Mullen S, Cook M, Adams S, Vogrin S, Vaughan D, Connelly A, Kwan P, Berkovic SF, D'Souza W, Jackson G, Velakoulis D, Wilson SJ. Enlarged hippocampal fissure in psychosis of epilepsy. Epilepsy Behav 2020; 111:107290. [PMID: 32759068 DOI: 10.1016/j.yebeh.2020.107290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022]
Abstract
Psychosis of epilepsy (POE) can be a devastating condition, and its neurobiological basis remains unclear. In a previous study, we identified reduced posterior hippocampal volumes in patients with POE. The hippocampus can be further subdivided into anatomically and functionally distinct subfields that, along with the hippocampal fissure, have been shown to be selectively affected in other psychotic disorders and are not captured by gross measures of hippocampal volume. Therefore, in this study, we compared the volume of selected hippocampal subfields and the hippocampal fissure in 31 patients with POE with 31 patients with epilepsy without psychosis. Cortical reconstruction, volumetric segmentation, and calculation of hippocampal subfields and the hippocampal fissure were performed using FreeSurfer. The group with POE had larger hippocampal fissures bilaterally compared with controls with epilepsy, which was significant on the right. There were no significant differences in the volumes of the hippocampal subfields between the two groups. Our findings suggest abnormal development of the hippocampus in POE. They support and expand the neurodevelopmental model of psychosis, which holds that early life stressors lead to abnormal neurodevelopmental processes, which underpin the onset of psychosis in later life. In line with this model, the findings of the present study suggest that enlarged hippocampal fissures may be a biomarker of abnormal neurodevelopment and risk for psychosis in patients with epilepsy.
Collapse
Affiliation(s)
- James Allebone
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia.
| | - Richard A Kanaan
- The Florey Institute of Neuroscience and Mental Health, Australia; Department of Psychiatry, Austin Health, University of Melbourne, Australia
| | - Jerome J Maller
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Melbourne, Australia; Centre for Research on Ageing, Health and Wellbeing, ANU College of Health and Medicine, Australian National University, Canberra, Australia
| | | | - Saul Mullen
- Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia
| | - Mark Cook
- St Vincent's Hospital Melbourne, Australia
| | | | | | - David Vaughan
- Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | - Alan Connelly
- Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | | | | | | | - Graeme Jackson
- Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | | | - Sarah J Wilson
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia; Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| |
Collapse
|
33
|
Straub J, Gawda A, Ravichandran P, McGrew B, Nylund E, Kang J, Burke C, Vitko I, Scott M, Williamson J, Joshi S, Kapur J, Perez-Reyes E. Characterization of kindled VGAT-Cre mice as a new animal model of temporal lobe epilepsy. Epilepsia 2020; 61:2277-2288. [PMID: 32954490 DOI: 10.1111/epi.16651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Development of novel therapies for temporal lobe epilepsy is hindered by a lack of models suitable for drug screening. While testing the hypothesis that "inhibiting inhibitory neurons" was sufficient to induce seizures, it was discovered that a mild electrical kindling protocol of VGAT-Cre mice led to spontaneous motor and electrographic seizures. This study characterizes these seizures and investigates the mechanism. METHODS Mice were implanted with electroencephalographic (EEG) headsets that included a stimulating electrode in the hippocampus before being electrically kindled. Seizures were evaluated by review of EEG recordings and behavior. γ-Aminobutyric acidergic (GABAergic) neurotransmission was evaluated by quantitative polymerase chain reaction, immunocytochemistry, Western blot, and electrophysiology. RESULTS Electrical kindling of VGAT-Cre mice induces spontaneous recurring seizures after a short latency (6 days). Seizures occur 1-2 times per day in both male and female mice, with only minimal neuronal death. These mice express Cre recombinase under the control of the vesicular GABA transporter (VGAT), a gene that is specifically expressed in GABAergic inhibitory neurons. The insertion of Cre disrupts the expression of VGAT mRNA and protein, and impairs GABAergic synaptic transmission in the hippocampus. SIGNIFICANCE Kindled VGAT-Cre mice can be used to study the mechanisms involved in epileptogenesis and may be useful for screening novel therapeutics.
Collapse
Affiliation(s)
- Justyna Straub
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Agnieszka Gawda
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Pranav Ravichandran
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Bailey McGrew
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Elsa Nylund
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Julianna Kang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Cassidy Burke
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Michael Scott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA.,UVA Brain Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,UVA Brain Institute, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
34
|
Ábrahám H, Molnár JE, Sóki N, Gyimesi C, Horváth Z, Janszky J, Dóczi T, Seress L. Etiology-related Degree of Sprouting of Parvalbumin-immunoreactive Axons in the Human Dentate Gyrus in Temporal Lobe Epilepsy. Neuroscience 2020; 448:55-70. [PMID: 32931846 DOI: 10.1016/j.neuroscience.2020.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/22/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022]
Abstract
In the present study, we examined parvalbumin-immunoreactive cells and axons in the dentate gyrus of surgically resected tissues of therapy-resistant temporal lobe epilepsy (TLE) patients with different etiologies. Based on MRI results, five groups of patients were formed: (1) hippocampal sclerosis (HS), (2) malformation of cortical development, (3) malformation of cortical development + HS, (4) tumor-induced TLE, (5) patients with negative MRI result. Four control samples were also included in the study. Parvalbumin-immunoreactive cells were observed mostly in subgranular location in the dentate hilus in controls, in tumor-induced TLE, in malformation of cortical development and in MR-negative cases. In patients with HS, significant decrease in the number of hilar parvalbumin-immunoreactive cells and large numbers of ectopic parvalbumin-containing neurons were detected in the dentate gyrus' molecular layer. The ratio of ectopic/normally-located cells was significantly higher in HS than in other TLE groups. In patients with HS, robust sprouting of parvalbumin-immunoreactive axons were frequently visible in the molecular layer. The extent of sprouting was significantly higher in TLE patients with HS than in other groups. Strong sprouting of parvalbumin-immunoreactive axons were frequently observed in patients who had childhood febrile seizure. Significant correlation was found between the level of sprouting of axons and the ratio of ectopic/normally-located parvalbumin-containing cells. Electron microscopy demonstrated that sprouted parvalbumin-immunoreactive axons terminate on proximal and distal dendritic shafts as well as on dendritic spines of granule cells. Our results indicate alteration of target profile of parvalbumin-immunoreactive neurons in HS that contributes to the known synaptic remodeling in TLE.
Collapse
Affiliation(s)
- Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary.
| | - Judit E Molnár
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| | - Noémi Sóki
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| | - Csilla Gyimesi
- Department of Neurology, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - Zsolt Horváth
- Department of Neurosurgery, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - József Janszky
- Department of Neurology, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - Tamás Dóczi
- Department of Neurosurgery, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - László Seress
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| |
Collapse
|
35
|
Masaki H, Watanabe K, Kakeda S, Ide S, Sugimoto K, Ueda I, Hamamura T, Hisanaga S, Toyota T, Akamatsu N, Shimajiri S, Yamamoto J, Nishizawa S, Adachi H, Korogi Y. Hippocampal sclerosis without visually detectable hippocampal MRI abnormalities: automated subfield volumetric analysis. Jpn J Radiol 2020; 38:1020-1027. [PMID: 32653988 DOI: 10.1007/s11604-020-01019-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/19/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE This study aims to investigate hippocampal subfield volumes in patients with hippocampal sclerosis (HS) without visually detectable MRI abnormalities and to determine the diagnostic accuracy using hippocampal subfield volumes. MATERIALS AND METHODS We examined 46 patients with unilateral HS who had a histopathological diagnosis, and 54 controls. The patients were divided into two groups; visually detectable HS (n = 26) and undetectable HS (n = 20) on MRI. The volumes of hippocampal subfield using FreeSurfer were compared among the three groups. Diagnostic accuracy was calculated as the AUC of ROC using cutoff values for each individual subfield. RESULTS Compared with the controls, visually detectable HS showed significantly reduced volumes of all the hippocampal subfields and entire hippocampus, whereas visually undetectable HS showed significant atrophy only in the CA3 and hippocampus-amygdala-transition-area. To diagnose visually undetectable HS, the CA3 volumes had AUC of 0.719, which was higher than AUC of 0.614 based on the entire hippocampal volumes. CONCLUSION Visually undetectable HS demonstrated volume reductions in the CA3. Further, the CA3 volumes was more useful to diagnose visually undetectable HS compared with the entire hippocampal volumes.
Collapse
Affiliation(s)
- Hiromi Masaki
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Keita Watanabe
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan. .,Open Innovation Institute, Kyoto University, Kyoto, Japan.
| | - Shingo Kakeda
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.,Department of Diagnostic Radiology, Hirosaki University Graduate School of Medicine Radiology, Aomori, Japan
| | - Satoru Ide
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kohichiro Sugimoto
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Issei Ueda
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Toshihiko Hamamura
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Sachi Hisanaga
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tomoko Toyota
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Naoki Akamatsu
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan.,Department of Neurology, School of Medicine, International University of Health and Welfare, Otawara, Japan
| | - Shohei Shimajiri
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shigeru Nishizawa
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Yukunori Korogi
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
36
|
Somani A, Perry C, Patodia S, Michalak Z, Ellis M, Sisodiya SM, Thom M. Neuropeptide depletion in the amygdala in sudden unexpected death in epilepsy: A postmortem study. Epilepsia 2020; 61:310-318. [PMID: 31958887 DOI: 10.1111/epi.16425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is typically unwitnessed but can be preceded by seizures in the period prior to death. Peri-ictal respiratory dysfunction is a likely mechanism for some SUDEP, and central apnea has been shown following amygdala stimulation. The amygdala is enriched in neuropeptides that modulate neuronal activity and can be transiently depleted following seizures. In a postmortem SUDEP series, we sought to investigate alterations of neuropeptidergic networks in the amygdala, including cases with recent poor seizure control. METHODS In 15 SUDEP cases, 12 epilepsy controls, and 10 nonepilepsy controls, we quantified the labeling index (LI) for galanin, neuropeptide Y (NPY), and somatostatin (SST) in the lateral, basal, and accessory basal nuclei and periamygdala cortex with whole slide scanning image analysis. Within the SUDEP group, seven had recent generalized seizures with recovery 24 hours prior to death (SUDEP-R). RESULTS Galanin, NPY, and SST LIs were significantly lower in all amygdala regions in SUDEP cases compared to epilepsy controls (P < .05 to P < .0005), and galanin LI was lower in the lateral nucleus compared to nonepilepsy controls (P < .05). There was no difference in the LI in the SUDEP-R group compared to other SUDEP. Higher LI was noted in epilepsy controls than nonepilepsy controls; this was significant for NPY in lateral and basal nuclei (P < .005 and P < .05). SIGNIFICANCE A reduction in galanin in the lateral nucleus in SUDEP could represent acute depletion, relevant to postictal amygdala dysfunction. In addition, increased amygdala neuropeptides in epilepsy controls support their seizure-induced modulation, which is relatively deficient in SUDEP; this could represent a vulnerability factor for amygdala dysfunction in the postictal period.
Collapse
Affiliation(s)
- Alyma Somani
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Charlotte Perry
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Smriti Patodia
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Zuzanna Michalak
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Matthew Ellis
- Neuropathology Division, National Hospital for Neurology and Neurosurgery, London, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Neuropathology Division, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
37
|
Steve TA, Gargula J, Misaghi E, Nowacki TA, Schmitt LM, Wheatley BM, Gross DW. Hippocampal subfield measurement and ILAE hippocampal sclerosis subtype classification with in vivo 4.7 tesla MRI. Epilepsy Res 2020; 161:106279. [PMID: 32105992 DOI: 10.1016/j.eplepsyres.2020.106279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Neuropathological studies indicate that hippocampal sclerosis (HS) consists of three subtypes (ILAE types 1-3 HS). However, HS subtypes currently can only be diagnosed by pathological analysis of hippocampal tissue resected during epilepsy surgery or at autopsy. In vivo diagnosis of HS subtypes holds potential to improve our understanding of these variants in the ipsilateral as well as contralateral hippocampus. In this study, we aimed to: i) evaluate the reliability of our histology-derived segmentation protocol when applied to in vivo MRI; and ii) characterize variability of HS subtypes along the hippocampal long axis in patients with epilepsy. METHODS Eleven subjects with unilateral HS were compared with ten healthy controls. We used 4.7 T MRI to acquire high resolution MR Images of the hippocampus in each subject. In vivo MRI-based diagnoses of HS subtypes were then determined in each patient by two methods: i) hippocampal subfield volumetry of the entire hippocampal body; and ii) subfield area analysis at multiple thin slices throughout the hippocampal body. RESULTS Hippocampal body subfield segmentation demonstrated excellent reliability and volumetry of the symptomatic hippocampus revealed abnormalities in all eleven patients. Six subjects demonstrated findings consistent with type 1 HS while five subjects had volumetry-defined atypical HS (two with type 2 HS & three with type 3 HS) in the symptomatic hippocampus, while five subjects were found to have type 3 HS in the contralateral hippocampus. Subfield area analyses demonstrated remarkable variability of HS subtypes along the hippocampal long axis, both ipsilateral and contralateral to the seizure focus. SIGNIFICANCE Our results provide preliminary evidence that determining HS Subtype using in vivo MRI may allow preoperative diagnosis of ILAE HS subtypes. Further studies are essential to determine the pathological correlates of these neuroimaging findings. The heterogeneity of abnormalities observed along the long axis of the hippocampus is consistent with previous autopsy studies and highlights the necessity of studying the entire hippocampus both ipsilateral and contralateral to the seizure focus in these future studies.
Collapse
Affiliation(s)
- Trevor A Steve
- Division of Neurology, Department of Medicine, University of Alberta, 11350 83 Ave NW, Edmonton, AB, T6G 2G3, Canada.
| | - Justine Gargula
- Division of Neurology, Department of Medicine, University of Alberta, 11350 83 Ave NW, Edmonton, AB, T6G 2G3, Canada
| | - Ehsan Misaghi
- Division of Neurology, Department of Medicine, University of Alberta, 11350 83 Ave NW, Edmonton, AB, T6G 2G3, Canada
| | - Tomasz A Nowacki
- Division of Neurology, Department of Medicine, University of Alberta, 11350 83 Ave NW, Edmonton, AB, T6G 2G3, Canada
| | - Laura M Schmitt
- Department of Laboratory Medicine & Pathology, University of Alberta, Canada
| | - B Matt Wheatley
- Division of Neurosurgery, Department of Surgery, University of Alberta, Canada
| | - Donald W Gross
- Division of Neurology, Department of Medicine, University of Alberta, 11350 83 Ave NW, Edmonton, AB, T6G 2G3, Canada
| |
Collapse
|
38
|
Berger TC, Vigeland MD, Hjorthaug HS, Etholm L, Nome CG, Taubøll E, Heuser K, Selmer KK. Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis. PLoS One 2019; 14:e0226575. [PMID: 31887157 PMCID: PMC6936816 DOI: 10.1371/journal.pone.0226575] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIMS Mesial Temporal Lobe Epilepsy is characterized by progressive changes of both neurons and glia, also referred to as epileptogenesis. No curative treatment options, apart from surgery, are available. DNA methylation (DNAm) is a potential upstream mechanism in epileptogenesis and may serve as a novel therapeutic target. To our knowledge, this is the first study to investigate epilepsy-related DNAm, gene expression (GE) and their relationship, in neurons and glia. METHODS We used the intracortical kainic acid injection model to elicit status epilepticus. At 24 hours post injection, hippocampi from eight kainic acid- (KA) and eight saline-injected (SH) mice were extracted and shock frozen. Separation into neurons and glial nuclei was performed by flow cytometry. Changes in DNAm and gene expression were measured with reduced representation bisulfite sequencing (RRBS) and mRNA-sequencing (mRNAseq). Statistical analyses were performed in R with the edgeR package. RESULTS We observed fulminant DNAm- and GE changes in both neurons and glia at 24 hours after initiation of status epilepticus. The vast majority of these changes were specific for either neurons or glia. At several epilepsy-related genes, like HDAC11, SPP1, GAL, DRD1 and SV2C, significant differential methylation and differential gene expression coincided. CONCLUSION We found neuron- and glia-specific changes in DNAm and gene expression in early epileptogenesis. We detected single genetic loci in several epilepsy-related genes, where DNAm and GE changes coincide, worth further investigation. Further, our results may serve as an information source for neuronal and glial alterations in both DNAm and GE in early epileptogenesis.
Collapse
Affiliation(s)
- Toni C. Berger
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
- * E-mail:
| | - Magnus D. Vigeland
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hanne S. Hjorthaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Lars Etholm
- National Center for Epilepsy, Oslo University Hospital, Sandvika, Norway
- Department of Neurology, Section for Neurophysiology, Oslo University Hospital, Oslo, Norway
| | | | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Kjell Heuser
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Kaja K. Selmer
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- National Center for Epilepsy, Oslo University Hospital, Sandvika, Norway
- Division of Clinical Neuroscience, Department of Research and Development, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
39
|
Valmiki RR, Venkatesalu S, Chacko AG, Prabhu K, Thomas MM, Mathew V, Yoganathan S, Muthusamy K, Chacko G, Vanjare HA, Krothapalli SB. Phosphoproteomic analysis reveals Akt isoform-specific regulation of cytoskeleton proteins in human temporal lobe epilepsy with hippocampal sclerosis. Neurochem Int 2019; 134:104654. [PMID: 31884041 DOI: 10.1016/j.neuint.2019.104654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 01/04/2023]
Abstract
Akt is one of the most important downstream effectors of phosphatidylinositol 3-kinase/mTOR pathway. Hyperactivation and expression of this pathway are seen in a variety of neurological disorders including human temporal lobe epilepsy with hippocampal sclerosis (TLE-HS). Nevertheless, the expression and activation profiles of the Akt isoforms, Akt1, Akt2, and Akt3 and their functional roles in human TLE-HS have not been studied. We examined the protein expression and activation (phosphorylation) patterns of Akt and its isoforms in human hippocampal tissue from TLE and non-TLE patients. A phosphoproteomic approach followed by interactome analysis of each Akt isoform was used to understand protein-protein interactions and their role in TLE-HS pathology. Our results demonstrated activation of the Akt/mTOR pathway as well as activation of Akt downstream substrates like GSK3β, mTOR, and S6 in TLE-HS samples. Akt1 isoform levels were significantly increased in the TLE-HS samples as compared to the non-TLE samples. Most importantly, different isoforms were activated in different TLE-HS samples, Akt2 was activated in three samples, Akt2 and Akt1 were simultaneously activated in one sample and Akt3 was activated in two samples. Our phosphoproteomic screen across six TLE-HS samples identified 183 proteins phosphorylated by Akt isoforms, 29 of these proteins belong to cytoskeletal modification. Also, we were able to identify proteins of several other classes involved in glycolysis, neuronal development, protein folding and excitatory amino acid transport functions as Akt substrates. Taken together, our data offer clues to understand the role of Akt and its isoforms in underlying the pathology of TLE-HS and further, modulation of Akt/mTOR pathway using Akt isoforms specific inhibitors may offer a new therapeutic window for treatment of human TLE-HS.
Collapse
Affiliation(s)
- Rajesh Ramanna Valmiki
- Neurophysiology Laboratory, Department of Neurological Sciences, Christian Medical College, Vellore, 632004, Tamilnadu, India.
| | - Subhashini Venkatesalu
- Neurophysiology Laboratory, Department of Neurological Sciences, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | - Ari George Chacko
- Neurosurgery, Department of Neurological Sciences, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | - Krishna Prabhu
- Neurosurgery, Department of Neurological Sciences, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | - Maya Mary Thomas
- Department of Pediatric Neurology, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | - Vivek Mathew
- Neurology, Department of Neurological Sciences, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | - Sangeetha Yoganathan
- Department of Pediatric Neurology, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | - Karthik Muthusamy
- Department of Pediatric Neurology, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | - Geeta Chacko
- Neuropathology, Department of General Pathology, Christian Medical College, Vellore, 632004, Tamilnadu, India
| | | | - Srinivasa Babu Krothapalli
- Neurophysiology Laboratory, Department of Neurological Sciences, Christian Medical College, Vellore, 632004, Tamilnadu, India
| |
Collapse
|
40
|
Atalar AÇ, Vanlı-Yavuz EN, Yılmaz E, Bebek N, Baykan B. Reflex epileptic features in patients with focal epilepsy of unknown cause. Clin Neurol Neurosurg 2019; 190:105633. [PMID: 31865219 DOI: 10.1016/j.clineuro.2019.105633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVES There is a gap of knowledge regarding reflex seizures in patients with focal epilepsy of unknown cause (FEUC). We aimed to evaluate the prevalence, demographic and clinical characteristics of reflex seizures in patients with FEUC to provide an insight to the underlying ictogenic mechanisms and to draw attention to this important but under-investigated topic. PATIENTS AND METHODS After carefully questioning for reflex triggers, 186 patients diagnosed according to ILAE criteria and followed-up for a minimum of 5 years were included. The demographic and clinical properties as well as electrophysiological and neuroimaging data of these patients were reevaluated and compared to the patients without reflex seizures. RESULTS The reflex seizure rate was 6.5 % in patients with FEUC. Patients with reflex features had lower monotherapy rates (p = 0.005) and higher major depression rates (p = 0.001) than patients without reflex features. The distribution of the patients according to their reflex triggers were as follows: hot-water induced (n = 3, 25 %), photosensitive (n = 2, 16.7 %), eating- induced (n = 2, 16.7 %), musicogenic (n = 2, 16.7 %), startle induced (n = 2, 16.7 %) and both musicogenic and startle type (n = 1, 8.3 %) respectively. The drug resistance rate of patients with reflex seizures was 25 % (n = 3). One patient with drug resistant reflex seizures showed benefit from epilepsy surgery and became seizure-free during last 3 years of follow-up. CONCLUSION A careful and thoroughly history taking specifically questioning and focusing on seizure inducing factors in patients with FEUC is needed to confirm the presence of reflex seizures in patients with FEUC, who had higher rates of polytherapy and major depression. Elaborative evaluation of reflex features in FEUC might contribute to effective seizure control, ensure new therapeutic approaches, enlighten the obscurity and the resulting anxiety of having a diagnosis of FEUC in epilepsy patients.
Collapse
Affiliation(s)
- Arife Çimen Atalar
- Istanbul University, Istanbul Faculty of Medicine, Departments of Neurology and Clinical Neurophysiology Unit, Istanbul, Turkey; Istanbul Education and Research Hospital, Istanbul, Turkey.
| | - Ebru Nur Vanlı-Yavuz
- Istanbul University, Istanbul Faculty of Medicine, Departments of Neurology and Clinical Neurophysiology Unit, Istanbul, Turkey; Koc University Hospital, Department of Neurology, Istanbul, Turkey
| | - Ebru Yılmaz
- Istanbul University, Istanbul Faculty of Medicine, Department of Nuclear Medicine, Istanbul Turkey
| | - Nerses Bebek
- Istanbul University, Istanbul Faculty of Medicine, Departments of Neurology and Clinical Neurophysiology Unit, Istanbul, Turkey
| | - Betül Baykan
- Istanbul University, Istanbul Faculty of Medicine, Departments of Neurology and Clinical Neurophysiology Unit, Istanbul, Turkey
| |
Collapse
|
41
|
Eid T, Lee TSW, Patrylo P, Zaveri HP. Astrocytes and Glutamine Synthetase in Epileptogenesis. J Neurosci Res 2019; 97:1345-1362. [PMID: 30022509 PMCID: PMC6338538 DOI: 10.1002/jnr.24267] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/15/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Abstract
The cellular, molecular, and metabolic mechanisms that underlie the development of mesial temporal lobe epilepsy are incompletely understood. Here we review the role of astrocytes in epilepsy development (a.k.a. epileptogenesis), particularly astrocyte pathologies related to: aquaporin 4, the inwardly rectifying potassium channel Kir4.1, monocarboxylate transporters MCT1 and MCT2, excitatory amino acid transporters EAAT1 and EAAT2, and glutamine synthetase. We propose that inhibition, dysfunction or loss of astrocytic glutamine synthetase is an important causative factor for some epilepsies, particularly mesial temporal lobe epilepsy and glioblastoma-associated epilepsy. We postulate that the regulatory mechanisms of glutamine synthetase as well as the downstream effects of glutamine synthetase dysfunction, represent attractive, new targets for antiepileptogenic interventions. Currently, no antiepileptogenic therapies are available for human use. The discovery of such interventions is important as it will fundamentally change the way we approach epilepsy by preventing the disease from ever becoming manifest after an epileptogenic insult to the brain.
Collapse
Affiliation(s)
- Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine
- Department of Molecular Medicine, University of Oslo
| | | | - Peter Patrylo
- Department of Physiology, Southern Illinois University School of Medicine
| | | |
Collapse
|
42
|
Aoki Y, Hanai S, Sukigara S, Otsuki T, Saito T, Nakagawa E, Kaido T, Kaneko Y, Takahashi A, Ikegaya N, Iwasaki M, Sugai K, Sasaki M, Goto Y, Oka A, Itoh M. Altered Expression of Astrocyte-Related Receptors and Channels Correlates With Epileptogenesis in Hippocampal Sclerosis. Pediatr Dev Pathol 2019; 22:532-539. [PMID: 31166880 DOI: 10.1177/1093526619855488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Hippocampal sclerosis (HS) is one of the major causes of intractable epilepsy. Astrogliosis in epileptic brain is a peculiar condition showing epileptogenesis and is thought to be different from the other pathological conditions. The aim of this study is to investigate the altered expression of astrocytic receptors, which contribute to neurotransmission in the synapse, and channels in HS lesions. METHODS We performed immunohistochemical and immunoblotting analyses of the P2RY1, P2RY2, P2RY4, Kir4.1, Kv4.2, mGluR1, and mGluR5 receptors and channels with the brain samples of 20 HS patients and 4 controls and evaluated the ratio of immunopositive cells and those expression levels. RESULTS The ratio of each immunopositive cell per glial fibrillary acidic protein-positive astrocytes and the expression levels of all 7 astrocytic receptors and channels in HS lesions were significantly increased. We previously described unique astrogliosis in epileptic lesions similar to what was observed in this study. CONCLUSION This phenomenon is considered to trigger activation of the related signaling pathways and then contribute to epileptogenesis. Thus, astrocytes in epileptic lesion may show self-hyperexcitability and contribute to epileptogenesis through the endogenous astrocytic receptors and channels. These findings may suggest novel astrocytic receptor-related targets for the pharmacological treatment of epilepsy.
Collapse
Affiliation(s)
- Yoshinori Aoki
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Sae Hanai
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Sayuri Sukigara
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Taisuke Otsuki
- Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Takashi Saito
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Eiji Nakagawa
- Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Takanobu Kaido
- Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yuu Kaneko
- Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Akio Takahashi
- Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Naoki Ikegaya
- Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Masaki Iwasaki
- Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kenji Sugai
- Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Masayuki Sasaki
- Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yuichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Akira Oka
- Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
43
|
Carver CM, Hastings SD, Cook ME, Shapiro MS. Functional responses of the hippocampus to hyperexcitability depend on directed, neuron-specific KCNQ2 K + channel plasticity. Hippocampus 2019; 30:435-455. [PMID: 31621989 DOI: 10.1002/hipo.23163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/24/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
M-type (KCNQ2/3) K+ channels play dominant roles in regulation of active and passive neuronal discharge properties such as resting membrane potential, spike-frequency adaptation, and hyper-excitatory states. However, plasticity of M-channel expression and function in nongenetic forms of epileptogenesis are still not well understood. Using transgenic mice with an EGFP reporter to detect expression maps of KCNQ2 mRNA, we assayed hyperexcitability-induced alterations in KCNQ2 transcription across subregions of the hippocampus. Pilocarpine and pentylenetetrazol chemoconvulsant models of seizure induction were used, and brain tissue examined 48 hr later. We observed increases in KCNQ2 mRNA in CA1 and CA3 pyramidal neurons after chemoconvulsant-induced hyperexcitability at 48 hr, but no significant change was observed in dentate gyrus (DG) granule cells. Using chromogenic in situ hybridization assays, changes to KCNQ3 transcription were not detected after hyper-excitation challenge, but the results for KCNQ2 paralleled those using the KCNQ2-mRNA reporter mice. In mice 7 days after pilocarpine challenge, levels of KCNQ2 mRNA were similar in all regions to those from control mice. In brain-slice electrophysiology recordings, CA1 pyramidal neurons demonstrated increased M-current amplitudes 48 hr after hyperexcitability; however, there were no significant changes to DG granule cell M-current amplitude. Traumatic brain injury induced significantly greater KCNQ2 expression in the hippocampal hemisphere that was ipsilateral to the trauma. In vivo, after a secondary challenge with subconvulsant dose of pentylenetetrazole, control mice were susceptible to tonic-clonic seizures, whereas mice administered the M-channel opener retigabine were protected from such seizures. This study demonstrates that increased excitatory activity promotes KCNQ2 upregulation in the hippocampus in a cell-type specific manner. Such novel ion channel expressional plasticity may serve as a compensatory mechanism after a hyperexcitable event, at least in the short term. The upregulation described could be potentially leveraged in anticonvulsant enhancement of KCNQ2 channels as therapeutic target for preventing onset of epileptogenic seizures.
Collapse
Affiliation(s)
- Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Shayne D Hastings
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Mileah E Cook
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
44
|
van der Lee SJ, Knol MJ, Chauhan G, Satizabal CL, Smith AV, Hofer E, Bis JC, Hibar DP, Hilal S, van den Akker EB, Arfanakis K, Bernard M, Yanek LR, Amin N, Crivello F, Cheung JW, Harris TB, Saba Y, Lopez OL, Li S, van der Grond J, Yu L, Paus T, Roshchupkin GV, Amouyel P, Jahanshad N, Taylor KD, Yang Q, Mathias RA, Boehringer S, Mazoyer B, Rice K, Cheng CY, Maillard P, van Heemst D, Wong TY, Niessen WJ, Beiser AS, Beekman M, Zhao W, Nyquist PA, Chen C, Launer LJ, Psaty BM, Ikram MK, Vernooij MW, Schmidt H, Pausova Z, Becker DM, De Jager PL, Thompson PM, van Duijn CM, Bennett DA, Slagboom PE, Schmidt R, Longstreth WT, Ikram MA, Seshadri S, Debette S, Gudnason V, Adams HHH, DeCarli C. A genome-wide association study identifies genetic loci associated with specific lobar brain volumes. Commun Biol 2019; 2:285. [PMID: 31396565 PMCID: PMC6677735 DOI: 10.1038/s42003-019-0537-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Brain lobar volumes are heritable but genetic studies are limited. We performed genome-wide association studies of frontal, occipital, parietal and temporal lobe volumes in 16,016 individuals, and replicated our findings in 8,789 individuals. We identified six genetic loci associated with specific lobar volumes independent of intracranial volume. Two loci, associated with occipital (6q22.32) and temporal lobe volume (12q14.3), were previously reported to associate with intracranial and hippocampal volume, respectively. We identified four loci previously unknown to affect brain volumes: 3q24 for parietal lobe volume, and 1q22, 4p16.3 and 14q23.1 for occipital lobe volume. The associated variants were located in regions enriched for histone modifications (DAAM1 and THBS3), or close to genes causing Mendelian brain-related diseases (ZIC4 and FGFRL1). No genetic overlap between lobar volumes and neurological or psychiatric diseases was observed. Our findings reveal part of the complex genetics underlying brain development and suggest a role for regulatory regions in determining brain volumes.
Collapse
Affiliation(s)
- Sven J. van der Lee
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Maria J. Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Ganesh Chauhan
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, 33000 Bordeaux, France
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012 India
| | - Claudia L. Satizabal
- The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229 USA
- Boston University School of Medicine and the Framingham Heart Study, Boston, MA 02118 USA
| | - Albert Vernon Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, 8036 Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, 8036 Austria
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101 USA
| | - Derrek P. Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Saima Hilal
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Pharmacology, National University of Singapore, Singapore, 117600 Singapore
- Memory, Aging and Cognition Center, National University Health System, Singapore, 119228 Singapore
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Erik B. van den Akker
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, 2628XE the Netherlands
- Department of Biomedical Data Sciences, Statistical Genetics, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - Manon Bernard
- The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8 ON Canada
| | - Lisa R. Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Fabrice Crivello
- Neurofunctional Imaging Group - Neurodegenerative Diseases Institute, UMR 5293, Team 5 - CEA - CNRS - Bordeaux University, Bordeaux, 33076 France
| | - Josh W. Cheung
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yasaman Saba
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118 USA
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, M4G 1R8 Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, M5S 1A1 Canada
| | - Gennady V. Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Medical Informatics, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Philippe Amouyel
- Univ. Lille, Inserm, Centre Hosp. Univ Lille, Institut Pasteur de Lille, LabEx DISTALZ-UMR1167 - RID-AGE - Risk factors and molecular determinants of aging-related, 59000 Lille, France
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics at LABioMed-Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Qiong Yang
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118 USA
| | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Stefan Boehringer
- Department of Biomedical Data Sciences, Statistical Genetics, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Bernard Mazoyer
- Neurofunctional Imaging Group - Neurodegenerative Diseases Institute, UMR 5293, Team 5 - CEA - CNRS - Bordeaux University, Bordeaux, 33076 France
| | - Ken Rice
- Department of Biostatistics, University of Washington, Seattle, WA 98195 USA
| | - Ching Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, 169857 Singapore
| | - Pauline Maillard
- Imaging of Dementia and Aging (IDeA) Laboratory, University of California-Davis, Davis, CA 95817 USA
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, 169857 Singapore
| | - Wiro J. Niessen
- Department of Medical Informatics, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Faculty of Applied Sciences, Delft University of Technology, Delft, 2629HZ the Netherlands
| | - Alexa S. Beiser
- Boston University School of Medicine and the Framingham Heart Study, Boston, MA 02118 USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118 USA
| | - Marian Beekman
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Wanting Zhao
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, 169857 Singapore
| | - Paul A. Nyquist
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Christopher Chen
- Department of Pharmacology, National University of Singapore, Singapore, 117600 Singapore
- Memory, Aging and Cognition Center, National University Health System, Singapore, 119228 Singapore
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892 USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101 USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195 USA
- Department of Health Services, University of Washington, Seattle, WA 98195 USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101 USA
| | - M. Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Meike W. Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Helena Schmidt
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8 ON Canada
- Departments of Physiology and Nutritional Sciences, The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8 Canada
| | - Diane M. Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY 10032 USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - P. Eline Slagboom
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, 8036 Austria
| | - W. T. Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA 98195 USA
- Department of Neurology, University of Washington, Seattle, WA 98195 USA
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Sudha Seshadri
- The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229 USA
- Boston University School of Medicine and the Framingham Heart Study, Boston, MA 02118 USA
| | - Stéphanie Debette
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, 33000 Bordeaux, France
- Department of Neurology, University Hospital of Bordeaux, Bordeaux, 33000 France
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Hieab H. H. Adams
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Davis, CA 95817 USA
| |
Collapse
|
45
|
Xue-Ping W, Hai-Jiao W, Li-Na Z, Xu D, Ling L. Risk factors for drug-resistant epilepsy: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e16402. [PMID: 31348240 PMCID: PMC6708813 DOI: 10.1097/md.0000000000016402] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Drug resistant epilepsy (DRE) is very common among children and adults and studies had found some related risk factors for DRE, while the results were not consistent. The aim of this study was to identify risk factors for drug-resistant epilepsy. METHODS Three electronic databases (Medline, Embase and Cochrane library) were searched to identify studies with a cohort design reporting on epidemiologic evidence regarding risk factors for DRE. RESULTS The pooled prevalence of DRE in newly diagnosed epilepsy patients was 25% (95% CI 17-32%). Abnormal electroencephalography (EEG) (both slow wave and epileptiform discharges) (RR 2.80; 95% CI 1.95-4.0), status epilepticus (SE) (RR 11.60; 95% CI 7.39-18.22), symptomatic etiology (RR 3.36; 95% CI 2.53-4.46), multiple seizure types (RR 3.66; 95% CI 2.37-5.64) and febrile seizures (RR 3.43; 95% CI 1.95-6.02) were identified as strong risk factors for DRE. In addition, firm conclusions cannot be drawn for poor short-term outcomes of therapy, neurodevelopment delay and high initial seizure frequency for the heterogeneity of study results. The predictive effect of focus onset seizure was not stable after removing one study and switching the effect model. Age of onset was not risk factors for DRE. CONCLUSIONS The current meta-analysis identified potential risk factors for DRE. The results may contribute to better prevention strategies and treatments for DRE.
Collapse
|
46
|
Effects of Branched-Chain Amino Acid Supplementation on Spontaneous Seizures and Neuronal Viability in a Model of Mesial Temporal Lobe Epilepsy. J Neurosurg Anesthesiol 2019; 31:247-256. [PMID: 29620688 DOI: 10.1097/ana.0000000000000499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The essential branched-chain amino acids (BCAAs) leucine, isoleucine, and valine have recently emerged as a potential novel treatment for medically refractory epilepsy. Blood-derived BCAAs can readily enter the brain, where they contribute to glutamate biosynthesis and may either suppress or trigger acute seizures. However, the effects of BCAAs on chronic (ie, spontaneous recurrent) seizures and epilepsy-associated neuron loss are incompletely understood. MATERIALS AND METHODS Sixteen rats with mesial temporal lobe epilepsy were randomized into 2 groups that could drink, ad libitum, either a 4% solution of BCAAs in water (n=8) or pure water (n=8). The frequency and relative percent of convulsive and nonconvulsive spontaneous seizures were monitored for a period of 21 days, and the brains were then harvested for immunohistochemical analysis. RESULTS Although the frequency of convulsive and nonconvulsive spontaneous recurrent seizures over a 3-week drinking/monitoring period were not different between the groups, there were differences in the relative percent of convulsive seizures in the first and third week of treatment. Moreover, the BCAA-treated rats had over 25% fewer neurons in the dentate hilus of the hippocampus compared with water-treated controls. CONCLUSIONS Acute BCAA supplementation reduces seizure propagation, whereas chronic oral supplementation with BCAAs worsens seizure propagation and causes neuron loss in rodents with mesial temporal lobe epilepsy. These findings raise the question of whether such supplementation has a similar effect in humans.
Collapse
|
47
|
Cameron S, Lopez A, Glabman R, Abrams E, Johnson S, Field C, Gulland FMD, Buckmaster PS. Proportional loss of parvalbumin-immunoreactive synaptic boutons and granule cells from the hippocampus of sea lions with temporal lobe epilepsy. J Comp Neurol 2019; 527:2341-2355. [PMID: 30861128 DOI: 10.1002/cne.24680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/18/2019] [Accepted: 03/02/2019] [Indexed: 01/10/2023]
Abstract
One in 26 people develop epilepsy and in these temporal lobe epilepsy (TLE) is common. Many patients display a pattern of neuron loss called hippocampal sclerosis. Seizures usually start in the hippocampus but underlying mechanisms remain unclear. One possibility is insufficient inhibition of dentate granule cells. Normally parvalbumin-immunoreactive (PV) interneurons strongly inhibit granule cells. Humans with TLE display loss of PV interneurons in the dentate gyrus but questions persist. To address this, we evaluated PV interneuron and bouton numbers in California sea lions (Zalophus californianus) that naturally develop TLE after exposure to domoic acid, a neurotoxin that enters the marine food chain during harmful algal blooms. Sclerotic hippocampi were identified by the loss of Nissl-stained hilar neurons. Stereological methods were used to estimate the number of granule cells and PV interneurons per dentate gyrus. Sclerotic hippocampi contained fewer granule cells, fewer PV interneurons, and fewer PV synaptic boutons, and the ratio of granule cells to PV interneurons was higher than in controls. To test whether fewer boutons was attributable to loss versus reduced immunoreactivity, expression of synaptotagmin-2 (syt2) was evaluated. Syt2 is also expressed in boutons of PV interneurons. Sclerotic hippocampi displayed proportional losses of syt2-immunoreactive boutons, PV boutons, and granule cells. There was no significant difference in the average numbers of PV- or syt2-positive boutons per granule cell between control and sclerotic hippocampi. These findings do not address functionality of surviving synapses but suggest reduced granule cell inhibition in TLE is not attributable to anatomical loss of PV boutons.
Collapse
Affiliation(s)
- Starr Cameron
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Ariana Lopez
- Department of Comparative Medicine, Stanford University, Stanford, California.,College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Raisa Glabman
- Department of Comparative Medicine, Stanford University, Stanford, California.,School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emily Abrams
- Department of Comparative Medicine, Stanford University, Stanford, California
| | | | - Cara Field
- The Marine Mammal Center, Sausalito, California
| | | | - Paul S Buckmaster
- Department of Comparative Medicine, Stanford University, Stanford, California.,Department of Neurology & Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
48
|
Mehvari Habibabadi J, Badihian S, Tabrizi N, Manouchehri N, Zare M, Basiratnia R, Barekatain M, Moein H, Mehvari Habibabadi A, Moein P, Gookizadeh P. Evaluation of dual pathology among drug-resistant epileptic patients with hippocampal sclerosis. Neurol Sci 2018; 40:495-502. [PMID: 30539344 DOI: 10.1007/s10072-018-3677-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/04/2018] [Indexed: 01/16/2023]
Abstract
PURPOSE Dual pathology (DP) is defined as simultaneous presence of hippocampal sclerosis (HS) and any other pathology in the brain. Since this is a less probed concept, we aimed to evaluate the frequency and characteristics of DP among drug-resistant epileptic patients with HS. METHODS This is a cross-sectional study conducted during 2007-2016 in Kashani Comprehensive Epilepsy Center, Isfahan, Iran. Patients with diagnosis of drug-resistant epilepsy and HS were enrolled in the study, and demographic data, seizure semiology, EEG findings, and MRI findings were collected. We compared these variables between three groups of DP, unilateral HS, and bilateral HS. RESULTS Of the 200 enrolled cases, 29 patients (14.5%) had DP and 21 patients (10.5%) had bilateral HS; the remaining patients had unilateral HS. The average age of patients with DP was 30.03, and 65.5% of them were male. Patients with DP had more EEG discharges from regional and multi-focal sites compared to unilateral HS (P value < 0.001). Also, complex partial seizure (CPS) was more commonly presented in patients with unilateral HS (96.8%). Comparison of disease characteristics between DP and bilateral HS showed no difference in most categories (P > 0.05). CONCLUSIONS We found DP among 14.5% of our drug-resistant epileptic patients with HS. DP patients mostly presented with CPS and had high proportion of ictal and interictal EEG discharges from regional and multi-focal areas. Gliosis and focal cortical dysplasia were the most common pathologies among DP patients. Patients with DP showed a similar behavior to bilateral HS in many features.
Collapse
Affiliation(s)
| | - Shervin Badihian
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Students' Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Tabrizi
- Neurology Department, Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Navid Manouchehri
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Students' Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Zare
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Basiratnia
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Barekatain
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Houshang Moein
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Payam Moein
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Peyman Gookizadeh
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran. .,Students' Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. .,, Isfahan, Iran.
| |
Collapse
|
49
|
Cavarsan CF, Malheiros J, Hamani C, Najm I, Covolan L. Is Mossy Fiber Sprouting a Potential Therapeutic Target for Epilepsy? Front Neurol 2018; 9:1023. [PMID: 30555406 PMCID: PMC6284045 DOI: 10.3389/fneur.2018.01023] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) caused by hippocampal sclerosis is one of the most frequent focal epilepsies in adults. It is characterized by focal seizures that begin in the hippocampus, sometimes spread to the insulo-perisylvian regions and may progress to secondary generalized seizures. Morphological alterations in hippocampal sclerosis are well defined. Among them, hippocampal sclerosis is characterized by prominent cell loss in the hilus and CA1, and abnormal mossy fiber sprouting (granular cell axons) into the dentate gyrus inner molecular layer. In this review, we highlight the role of mossy fiber sprouting in seizure generation and hippocampal excitability and discuss the response of alternative treatment strategies in terms of MFS and spontaneous recurrent seizures in models of TLE (temporal lobe epilepsy).
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jackeline Malheiros
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clement Hamani
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Imad Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Luciene Covolan
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
50
|
Lam PM, González MI. Calpain activation and neuronal death during early epileptogenesis. Neurobiol Dis 2018; 124:141-151. [PMID: 30423475 DOI: 10.1016/j.nbd.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is a brain disorder characterized by a predisposition to suffer epileptic seizures. Acquired epilepsy might be the result of brain insults like head trauma, stroke, brain infection, or status epilepticus (SE) when one of these triggering injuries starts a transformative process known as epileptogenesis. There is some data to suggest that, during epileptogenesis, seizures themselves damage the brain but there is no conclusive evidence to demonstrate that spontaneous recurrent seizures themselves injure the brain. Our recent evidence indicates that calpain overactivation might be relevant for epileptogenesis. Here, we investigated if spontaneous recurrent seizures that occur during an early period of epileptogenesis show any correlation with the levels of calpain activation and/or expression. In addition, we also investigated a possible association between the occurrence of spontaneous seizures and increased levels of cell death, gliosis and inflammation (typical markers associated with epileptogenesis). We found that the number of spontaneous seizures detected prior to sample collection was correlated with altered calpain activity and expression. Moreover, the levels of hippocampal neurodegeneration were also correlated with seizure occurrence. Our findings suggest that, at least during early epileptogenesis, there is a correlation between seizure occurrence, calpain activity and neurodegeneration. Thus, this study opens the possibility that aberrant calpain reactivation by spontaneous seizures might contribute to the manifestation of future spontaneous seizures.
Collapse
Affiliation(s)
- Philip M Lam
- Department of Pediatrics, Division of Neurology and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Marco I González
- Department of Pediatrics, Division of Neurology and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|