1
|
Choi HS, Park JH, Kim SH, Shin S, Park MJ. Strong familial association of bone mineral density between parents and offspring: KNHANES 2008-2011. Osteoporos Int 2017; 28:955-964. [PMID: 27747365 DOI: 10.1007/s00198-016-3806-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/06/2016] [Indexed: 01/12/2023]
Abstract
UNLABELLED Bone mineral density (BMD) of offspring was significantly associated with their parents' BMD. Parental BMD Z-score ≤-1 was a significant predictor for BMD Z-score ≤-1 in their offspring. Peak bone mass acquisition during early adulthood is more substantially influenced by genetic factors rather than lifestyle or environmental factors. INTRODUCTION A person's BMD is affected by both genetic and environmental factors. Family history of osteoporosis or fragility fracture is a well-known risk factor for low bone mass or fracture. The purpose of the present study was to investigate the familial association of BMD between parents and offspring in Korean population. METHODS This is a cross-sectional study based on the data from the Korea National Health and Nutrition Examination Surveys (KNHANES) conducted from 2008 to 2011. A total of 5947 subjects (3135 parents and 2812 offspring) were included. RESULTS In age-adjusted partial correlation analyses, all BMD values acquired from the lumbar spine, femur neck, total hip, and whole body showed significant associations between parents and offspring. Among these associations, whole-body BMD showed the strongest relationship between offspring and parents. The narrow-sense heritability of BMD ranged from 0.203 to 0.542 in male offspring and from 0.396 to 0.689 in female offspring. Multiple linear regression analyses showed that offspring's BMD was independently associated with BMD of both parents after adjusting for covariates. Lifestyle or environmental factors including dietary calcium intake, serum 25-hydroxyvitamin D level, regular exercise, current smoking, and alcohol intake showed only moderate or no associations with BMD. In multiple logistic regression analyses in offspring aged 19-25 years, the son's risk of having BMD Z-score ≤-1 was associated with both parents' BMD Z-score ≤-1, while the daughter's risk was only associated with maternal BMD Z-score ≤-1. CONCLUSIONS Our findings confirm the strong familial association of BMD between parents and offspring in Korean population and suggest that peak bone mass acquisition during early adulthood is more substantially influenced by genetic factors rather than lifestyle or environmental factors.
Collapse
Affiliation(s)
- H S Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Koyang, Gyeonggi-do, Korea
| | - J H Park
- Department of Statistics, Dongguk University, Seoul, Korea
| | - S H Kim
- Department of Pediatrics, Sanggye Paik Hospital, Inje University College of Medicine, 761-1 Sanggye-7-dong, Nowon-gu, Seoul, 139-707, Korea
| | - S Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, 102 Daehak-ro, Jongro-gu, Seoul, 03080, Korea
- Institute of Environmental Medicine, Seoul National University Medical Research Center, 102 Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - M J Park
- Department of Pediatrics, Sanggye Paik Hospital, Inje University College of Medicine, 761-1 Sanggye-7-dong, Nowon-gu, Seoul, 139-707, Korea.
| |
Collapse
|
2
|
Hernandez-de Sosa N, Athanasiadis G, Malouf J, Laiz A, Marin A, Herrera S, Farrerons J, Soria JM, Casademont J. Genetic Contribution of Femoral Neck Bone Geometry to the Risk of Developing Osteoporosis: A Family-Based Study. PLoS One 2016; 11:e0154833. [PMID: 27163365 PMCID: PMC4862643 DOI: 10.1371/journal.pone.0154833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/20/2016] [Indexed: 11/19/2022] Open
Abstract
Femoral neck geometry parameters are believed to be as good as bone mineral density as independent factors in predicting hip fracture risk. This study was conducted to analyze the roles of genetic and environmental factors in femoral properties measured in a sample of Spanish families with osteoporotic fractures and extended genealogy. The "Genetic Analysis of Osteoporosis (GAO) Project" involved 11 extended families with a total number of 376 individuals. We studied three categorical phenotypes of particular clinical interest and we used a Hip structural analysis based on DXA to analyze 17 strength and geometrical phenotypes of the hip. All the femoral properties had highly significant heritability, ranging from 0.252 to 0.586. The most significant correlations were observed at the genetic level (ρG). Osteoporotic fracture status (Affected 2) and, particularly, low bone mass and osteoporotic condition (Affected 3) had the highest number of significant genetic correlations with diverse femoral properties. In conclusion, our findings suggest that a relatively simple and easy to use method based on DXA studies can provide useful data on properties of the Hip in clinical practice. Furthermore, our results provide a strong motivation for further studies in order to improve the understanding of the pathophysiological mechanism underlying bone architecture and the genetics of osteoporosis.
Collapse
Affiliation(s)
- Nerea Hernandez-de Sosa
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Georgios Athanasiadis
- Department of Genomics of Complex Diseases, Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Jorge Malouf
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Laiz
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Marin
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Herrera
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Farrerons
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Manuel Soria
- Department of Genomics of Complex Diseases, Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jordi Casademont
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Park JH, Song YM, Sung J, Lee K, Kim YS, Park YS. Genetic influence on bone mineral density in Korean twins and families: the healthy twin study. Osteoporos Int 2012; 23:1343-9. [PMID: 21656262 DOI: 10.1007/s00198-011-1685-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 05/20/2011] [Indexed: 12/01/2022]
Abstract
UNLABELLED Bone mineral density (BMD), a representative marker of osteoporosis risk, is found to be highly heritable in this Korean study, which is very consistent with the findings in Western populations. This finding strongly supports that genetic factors are significant determinants of osteoporosis risk along with individual biological and behavioral factors. INTRODUCTION Although genetic factors are known to contribute significantly to variations in BMD in Western populations, such an association has not been fully evaluated in an Asian population. This study was conducted to determine the role of genetic factors on BMD in Korean population. METHODS The study participants were 2,728 men and women consisting of 497 monozygotic (MZ) twin pairs, 119 dizygotic (DZ) twin pairs, and 1,496 first-degree relatives from the Healthy Twin Study. BMD was measured using dual-energy X-ray absorptiometry. Quantitative genetic analysis based on a variance decomposition model was performed. RESULTS Age and the measured covariates accounted for 17~61% of the variation in BMD, depending on the sites of measurement. After accounting for the covariate effects, the heritability of BMD at the whole body, thoracic and lumbar spine, whole ribs, whole pelvis, whole arms, and whole legs were 0.76, 0.72, 0.73, 0.71, 0.51, and 0.75, respectively. The pair-wise correlation of BMD was the highest within MZ twin pairs, followed by DZ twin pairs, sibling pairs, and parents-child pairs. Cross-trait correlation analysis revealed a positive genetic correlation between BMDs at different sites, ranging from 0.80 (arm and leg BMD) to 0.50 (pelvis and arm BMD). CONCLUSIONS The high heritability of BMD in this Korean population similar to those found in Western populations and the significant common genetic basis between BMDs at different sites strongly supports a significant role of genetic determinants on the risk of osteoporosis.
Collapse
Affiliation(s)
- J-H Park
- Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
4
|
Tang NLS, Liao CD, Ching JKL, Suen EWC, Chan IHS, Orwoll E, Ho SC, Chan FWK, Kwok AWL, Kwok T, Woo J, Leung PC. Sex-specific effect of Pirin gene on bone mineral density in a cohort of 4000 Chinese. Bone 2010; 46:543-50. [PMID: 19766747 DOI: 10.1016/j.bone.2009.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/22/2009] [Accepted: 09/12/2009] [Indexed: 11/30/2022]
Abstract
BACKGROUND Osteoporosis is a common condition among elderly. Genetic mapping studies repeatedly located the distal short arms of X-chromosome as the quantitative trait loci (QTL) for BMD in mice. Fine mapping of a syntenic segment on Xp22 in a Caucasian female population suggested a moderate association between lumbar spine (LS) BMD and 2 intronic SNPs in the Pirin (PIR) gene, which encodes an iron-binding nuclear protein. This study aimed to examine genetic variations in the PIR gene by a comprehensive tagging method and its sex-specific effects on BMD and osteoporotic risk. METHODS Two thousand men and 2000 women aged 65 or above were recruited from the community. BMDs at the LS, femoral neck, total hip and whole body were measured and followed up at 4-year. Genotyping was performed for tagSNPs of PIR gene including adjacent regions, and the PIR haplotypes were inferred using PHASE program. RESULTS Analysis by linear regression showed a significant association between SNP rs5935970 and LS-BMD, while haplotype T-T-A was significantly associated with BMD of all measured sites. However, none of such associations were found in men. Linear Mixed Model also confirmed the same sex-specific and site-specific effect for longitudinal BMD changes. CONCLUSION In addition to confirming the association between BMDs and the PIR gene, we also revealed that this finding is sex-specific, possibly due to an X-linked effect. This study demonstrated the importance of considering sex and genetic interactions in studies of disease predisposition and complex traits.
Collapse
Affiliation(s)
- Nelson L S Tang
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
XIAO S, HUANG Q, KUNG AW. Genetics of osteoporosis in Chinese. Int J Rheum Dis 2008. [DOI: 10.1111/j.1756-185x.2008.00401.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Abstract
Low bone mass in adults is a major risk factor for low-impact fractures and is considered of complex origin because of interaction of environmental and genetic factors, each with modest effect. The objective was to assess the relative impact of genetics and environment and quantify the risk in relatives of osteopenic individuals. We studied 440 Icelandic nuclear families with 869 first-degree relatives of both sexes. Index cases (male or female) had BMD in the lumbar spine or hip >1.5 SD less than sex-matched controls. Heritability of BMD was estimated by maximum likelihood method, and variance component analysis was used to partition the genetic and environmental effects. Relative risk of low BMD (< -1 SD) in first-degree relatives was estimated, and heritable decrement in BMD was calculated compared with controls. Heritability was estimated as 0.61-0.66. Relative risk among first-degree relatives was 2.28, and the yield of screening was as high as 36%. The genetic influence was consistent with one or a few genes with considerable effect in addition to multiple genes each with a small effect. The genetic deficit in BMD was already present before 35 yr of age and equaled bone loss during 8-30 yr after menopause. We confirmed that genetics are more important than environment to low bone mass in adults. Our results are consistent with a few underlying genes with considerable effect. The prevalence among first-degree relatives of both sexes is common, suggesting that screening them should be cost effective and informative to elucidate the underlying genetics.
Collapse
|
7
|
Stiger F, Brändström H, Gillberg P, Melhus H, Wolk A, Michaelsson K, Kindmark A. Association between repeat length of exon 1 CAG microsatellite in the androgen receptor and bone density in men is modulated by sex hormone levels. Calcif Tissue Int 2008; 82:427-35. [PMID: 18484228 DOI: 10.1007/s00223-008-9128-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 03/30/2008] [Indexed: 10/22/2022]
Abstract
In this study we examined whether the androgen receptor (AR) gene CAG repeat polymorphism and serum androgen levels are associated with bone mineral density (BMD) and changes in BMD during 2-3 years in 229 healthy men 41-76 years old. Microsatellite analysis was performed on an automated sequencer. Indices of bioavailable testosterone (free testosterone [FT] and free androgen index) were calculated. BMD was measured using both dual-energy Xray absorptiometry and quantitative ultrasound. All participants completed a questionnaire regarding major possible osteoporosis risk factors. In linear regression analysis there was a modest positive association, which was independent of age and body mass index (BMI), between AR repeat length and BMD at all sites. Although this association was significant independent of BMI, analyses in the subgroup of obese men (BMI > 30) did not reach significance, while the effect was enhanced when analyzing only nonobese men (BMI < or = 30). There was no association between the AR gene polymorphism and rate of bone loss, FT, and BMD or testosterone and bone loss. Interestingly, the association between AR and BMD was modified by total testosterone. The lowest age- and BMI-adjusted average femoral neck BMD was found among men in the lowest tertile for both AR repeat length and FT, whereas men within the higher categories of these variables displayed the highest BMD. In conclusion, there is a positive association between the AR CAG repeat polymorphism and BMD, which is modified by androgen levels in healthy men.
Collapse
Affiliation(s)
- Fredrik Stiger
- Department of Medical Sciences, University Hospital, MMS Ing 40 by, Uppsala SE-75185, Sweden
| | | | | | | | | | | | | |
Collapse
|
8
|
Hong X, Niu T, Chen C, Wang B, Venners SA, Fang Z, Xu X. Familial aggregation of forearm bone mineral density in Chinese. Eur J Epidemiol 2007; 22:335-41. [PMID: 17484033 DOI: 10.1007/s10654-007-9117-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Osteoporosis is a major public health concern and its prevalence can be predicted based on forearm bone mineral density (BMD). This study is to investigate the familial aggregation of forearm BMD in a population-based, cross-sectional study in Anhui, China. Information on sociodemographic and environmental variables was obtained from 1,636 subjects from 409 nuclear families (including mother, father, and their first two children) by a standardized questionnaire. The forearm BMD was measured by peripheral dual-energy X-ray absorptiometry (pDXA). Using generalized additive models with a sequential adjustment for covariates, it was clearly indicated that the forearm BMD of the mother, the father, and the first sibling each had a significant and independent relation to the forearm BMD of the second sibling. Furthermore, using multiple logistic regression, the second sibling had an odds ratio (OR) of 5.3 (95%CI: 2.0-14.5) of having an extremely low (bottom 10th percentile) proximal forearm BMD and an OR of 4.3 (95%CI: 1.6-12.0) of having an extremely low distal forearm BMD when the parental mean forearm BMD was low and the first sibling's forearm BMD was low. Our findings showing strong familial aggregation of both proximal and distal forearm BMD values suggest that genetic factors play a significant role in determining both traits.
Collapse
Affiliation(s)
- Xiumei Hong
- Center for Population Genetics, Division of Epidemiology and Biostatistics, School of Public Health M/C 923, University of Illinois at Chicago, 1603 W Taylor, Rm 978B, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Pelat C, Van Pottelbergh I, Cohen-Solal M, Ostertag A, Kaufman JM, Martinez M, de Vernejoul MC. Complex segregation analysis accounting for GxE of bone mineral density in European pedigrees selected through a male proband with low BMD. Ann Hum Genet 2007; 71:29-42. [PMID: 17227475 DOI: 10.1111/j.1469-1809.2006.00295.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Osteoporosis is a common multifactorial disorder characterized by low bone mass (BMD) and high susceptibility to low-trauma fractures. Family and twin studies have found a strong genetic component in the determination of BMD, but the mode of inheritance of this trait is not yet fully understood. BMD is a complex trait whose expression is confounded by environmental influences and polygenic inheritance. Detection of potential gene-environment interactions is of great interest in the determination of bone health status. Here we have conducted segregation analyses, using the regressive class D models, in a sample of 100 European pedigrees (NEMO) with 713 subjects (524 measured for phenotypes) identified via a male with low BMD values at either the Lumbar Spine or the Femoral Neck. Segregation analyses were conducted on the residuals of LS-BMD and FN-BMD adjusted for gender, age and BMI. We tested for gene-covariate (GxE) interactions, and investigated the impact of significant GxE interactions on segregation results. Without GxE a major effect was found to be marginally significant in LS-BMD and highly significant in FN-BMD. For both traits the Mendelian hypothesis was rejected. Significant Age x gene and BMI x gene interactions were revealed. Accounting for GxE increased statistical evidence for a major factor in LS-BMD, and improved the fit of the data to the Mendelian transmission model for both traits. The best fitting models suggested a codominant major gene accounting for 45% (LS-BMD) and 44% (FN-BMD) of the adjusted BMDs. However, substantial residual correlations were also found, and these remained highly significant after accounting for the major gene.
Collapse
Affiliation(s)
- C Pelat
- INSERM EMI00-06, Evry, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Ng MYM, Sham PC, Paterson AD, Chan V, Kung AWC. Effect of environmental factors and gender on the heritability of bone mineral density and bone size. Ann Hum Genet 2006; 70:428-38. [PMID: 16759177 DOI: 10.1111/j.1469-1809.2005.00242.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bone mineral density (BMD), a risk factor for osteoporosis, is believed to be under genetic control. The effect of environmental factors and gender on the heritability of BMD and bone size is ill-defined. In this study, heritability estimates (h2) were determined in 3,320 southern Chinese subjects from 1,019 families using the variance components model. The h2 for age, weight and height-adjusted BMD was 0.63-0.71 for females, and 0.74-0.79 for males; and for bone size, 0.44-0.64 for females and 0.32-0.86 for males. Adjustment for lifestyle factors including calcium and phytoestrogen intake, exercise, smoking and alcohol consumption altered the h2 differently in males and females. The proportion of variance in BMD and bone size explained by all covariates varied between skeletal sites, but was consistently greater in females than males. A significant gender difference was observed in the genetic variance of BMD and bone size at the hip but not the spine. In conclusion, a gender difference was observed in the degree of heritability of BMD and bone size at specific skeletal sites. Environmental influences contributed variably at different sites in the two sexes.
Collapse
Affiliation(s)
- M Y M Ng
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | | | | | | |
Collapse
|
11
|
Wang YB, Lei SF, Dvornyk V, Sun X, Jiang DK, Li MX, Deng HW. The genetic, environmental and phenotypic correlations of bone phenotypes at the spine and hip in Chinese. Ann Hum Biol 2006; 33:500-509. [PMID: 17060072 DOI: 10.1080/03014460600814135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Bone mineral density (BMD), bone mineral content (BMC), and bone size have been widely studied individually as important risk factors for osteoporotic fracture, but little is known about the correlation and the degree of sharing genetic and environmental factors between the pairs of the three phenotypes. AIM The study investigated genetic correlation (rhoG), environmental correlation (rhoE) and phenotypic correlation (rhoP) between BMD, BMC and bone size. SUBJECTS AND METHODS Bivariate variance decomposition analyses were performed in 904 subjects from 287 Chinese nuclear families. RESULTS Significant rhoE, rhoG and rhoP were detected between BMD, BMC and bone size, except for rhoE between BMD and bone size at the hip (rhoE = 0.121, p = 0.361). Common shared genetic factors explained 86.1% and 60% of BMD and BMC genetic variations at the spine and hip, respectively. However, the genetic and environmental correlations between BMD and bone size were limited. rhoE and rhoG at the spine were 0.392 and 0.381, and at the hip were 0.121 and -0.205, respectively. Only 14.5% and 4.2% of variations between BMD and bone size at the spine and hip may be due to the shared genetic factors. CONCLUSION The obtained results suggested that bone size may be used as another surrogate phenotype independently of BMD for eventual elucidation of the pathogenesis of osteoporosis because of the limited correlations between BMD and bone size.
Collapse
Affiliation(s)
- Yan-Bo Wang
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, PR China
| | | | | | | | | | | | | |
Collapse
|
12
|
Chen XD, Shen H, Lei SF, Li MX, Yang YJ, Deng HW. Exclusion mapping of chromosomes 1, 4, 6 and 14 with bone mineral density in 79 Caucasian pedigrees. Bone 2006; 38:450-5. [PMID: 16249131 DOI: 10.1016/j.bone.2005.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 09/12/2005] [Accepted: 09/14/2005] [Indexed: 01/14/2023]
Abstract
Low bone mineral density (BMD) is a major determinant of osteoporosis and is under strong genetic control. A large number of linkage and association studies for BMD variation have been conducted, with the results being largely inconsistent. Linkage exclusion analysis is a useful tool for gene mapping but has never been used on BMD. In the present study, we conducted a linkage exclusion mapping for BMD variation on chromosomes 1, 4, 6 and 17 in 79 Caucasian pedigrees. For hip BMD variation, several genomic regions were excluded for effect sizes of 10% or greater, including regions of 61-77 cM at 1p35-p34, 167-196 cM at 1q21-q23 and 261-291 cM at 1q42-q44; 85-112 cM at 4q21-q25 and 146-150 cM at 4q31; and 77-85 cM at 6p12-q13. For spine BMD, we were able to exclude the regions of 168-189 cM at 1q21-q23, 92-94 cM at 4q21 and 106-107 cM at 4q24 and 56-103 cM at 17q12-q25, as having effect sizes of 10% or greater. These results suggest that a number of candidate genes located in the excluded regions, such as interleukin 6 receptor (IL6R) gene, type I collagen alpha 1 (COL1A1) gene and bone morphogenetic protein-3 (BMP3) gene are unlikely to have a substantial effect on BMD variation in this Caucasian population. Along with previous studies searching for genes underlying BMD variation, the current study has further delineated the genetic basis of BMD variation and provided valuable information for future genetic studies.
Collapse
Affiliation(s)
- Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, PR China
| | | | | | | | | | | |
Collapse
|
13
|
Blain H, Vuillemin A, Jeandel C, Jouanny P, Guillemin F, Le Bihan E. Lean mass plays a gender-specific role in familial resemblance for femoral neck bone mineral density in adult subjects. Osteoporos Int 2006; 17:897-907. [PMID: 16555018 DOI: 10.1007/s00198-005-0062-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 12/22/2005] [Indexed: 11/27/2022]
Abstract
Whether the femoral neck bone mineral density (FN BMD) of children may be better predicted from that of their parents when taking into account the anthropometry of the children was assessed in a healthy adult sample consisting of 86 mother-daughter, 32 mother-son, 32 father-daughter, and 23 father-son pairs from 128 families. Heritability for FN BMD, which is considered to be a measurement of general resemblance, was defined as the regression coefficient of the mean of the parents' BMD. Among the anthropometric factors, lean mass was the most strongly associated with FN BMD following the adjustment for age in women (r=0.52, p<0.0001) and men (r=0.25, p=0.02). After adjustment for age, calcium intake, physical activity, and menopause and hormonal replacement therapy if relevant, heritability estimates (h2) for FN BMD were 0.68+/-0.23 [95% credible interval (CI): 0.15-0.99] in father-daughter pairs, 0.40+/-0.17 (95% CI: 0.08-0.74) in mother-daughter pairs, and 0.19+/-0.15 (95% CI: 0.01-0.57) in father-son pairs. Adjustment for lean mass of children increased the h2 for FN BMD in mother-son pairs [from 0.24+/-0.17 (95% CI: 0.01-0.57) to 0.66+/-0.18 (95% CI: 0.26-0.95)]. The present results show that FN BMD is heritable in adult father-daughter pairs (7.2% of a daughter's FN BMD variance was explained by the father's FN BMD) and that taking into account the lean mass of sons might improve the prediction of their FN BMD based on that of their mother's (reduction of sons' FN BMD residual variance by 5.1%). Taking the lean mass of children into account might improve the prediction of their FN BMD by 9.1% in daughters and by 18.1% in sons, irrespective of their parent's FN BMD. These results, obtained using a Bayesian regression model, have to be confirmed in further studies involving a greater number of adult parent-offspring pairs of both genders before extrapolation to clinical practice.
Collapse
Affiliation(s)
- H Blain
- Service de Médecine Interne-Gériatrie, Centre de Prévention et de traitement des maladies du Vieillissement, 39, avenue Charles Flahault, 34295, Montpellier, Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
14
|
Feng Y, Hsu YH, Terwedow H, Chen CZ, Xu X, Niu T, Zang T, Wu D, Tang G, Li Z, Hong X, Wang B, Brain JD, Cummings SR, Rosen C, Bouxsein ML, Xu X. Familial aggregation of bone mineral density and bone mineral content in a Chinese population. Osteoporos Int 2005; 16:1917-23. [PMID: 16163441 DOI: 10.1007/s00198-005-1962-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 05/24/2005] [Indexed: 11/29/2022]
Abstract
Familial aggregation of bone mineral density (BMD) and bone mineral content (BMC) has been shown in twin and familial studies, but most sample sizes were small. We here report a large familial aggregation study in a Chinese population. A total of 13,973 siblings aged 25-64 years from 3,882 families were enrolled from Anhui, China. We assessed the whole-body, hip and lumbar spine BMD and BMC by dual-energy X-ray absorptiometry (DXA). Intra-class correlation coefficients of BMD and BMC between siblings varied among different skeletal sites and between different age groups of male sib-pairs and premenopausal and postmenopausal female sib-pairs, with a range of 0.228 to 0.397. The sibling recurrence risk ratio (lambdas) of osteoporosis was 2.6 in our population. We also evaluated the joint association of the BMD values of the first siblings and the second siblings with the risk of low BMD (defined as less than the 10th percentile of the same group population) of their younger siblings. If both the first and second siblings' BMDs were in the lowest tertile, the odd ratios (ORs) of low BMD in their subsequent siblings were 8.32 [95% confidence interval (CI) 5.59-12.39)], 8.71 (95% CI 5.74-13.22) and 5.90 (95% CI 3.57-9.76) for total body, total hip and lumbar spine, respectively. This study demonstrates a significant familial aggregation of BMD and BMC in a large sample of rural Chinese adults.
Collapse
Affiliation(s)
- Yan Feng
- Program for Population Genetics, Harvard School of Public Health, Boston, Massachusetts, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ng MYM, Sham PC, Paterson AD, Chan V, Kung AWC. Effect of Environmental Factors and Gender on the Heritability of Bone Mineral Density and Bone Size. Ann Hum Genet 2005. [DOI: 10.1111/j.1529-8817.2005.00242.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Qin YJ, Shen H, Huang QR, Zhao LJ, Zhou Q, Li MX, He JW, Mo XY, Lu JH, Recker RR, Deng HW. Estrogen receptor alpha gene polymorphisms and peak bone density in Chinese nuclear families. J Bone Miner Res 2003; 18:1028-35. [PMID: 12817755 DOI: 10.1359/jbmr.2003.18.6.1028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PBD is an important determinant of osteoporotic fractures. Few studies were performed to search for genes underlying PBD variation in Chinese populations. We tested linkage and/or association of the estrogen receptor alpha gene polymorphism with PBD in 401 Chinese nuclear families. This study suggests the ER-alpha gene may have some minor effects on PBM variation in the Chinese population. Low peak bone density (PBD) in adulthood is an important determinant of osteoporotic fractures in the elderly. PBD variation is mainly regulated by genetic factors. Extensive molecular genetics studies have been performed to search for genes underlying PBD variation, largely in whites. Few studies were performed in Chinese populations. In this study, we simultaneously test linkage and/or association of the estrogen receptor alpha (ER-alpha) gene polymorphism with PBD in 401 Chinese nuclear families (both parents plus their female children) of 1260 subjects, with the 458 children generally between 20 and 40 years of age. All the subjects were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) at polymorphic PvuII and XbaI sites inside the ER-alpha gene. Bone mineral density was measured at the lumbar spine (L1-L4) and hip (femoral neck, trochanter, and intertrochanteric region). Raw bone mineral density values were adjusted by age, height, and weight as covariates. We detected marginally significant results for within-family association (transmission disequilibrium; p = 0.054) between the spine bone mineral density variation and the ER-alpha XbaI genotypes. For the hip bone mineral density variation, significant (p < 0.05) linkage results were generally found for the two intragenic markers. Analyses of the haplotypes defined by the two markers confer further evidence for linkage of the ER-alpha with the hip PBD variation. In conclusion, this study suggests that the ER-alpha gene may have minor effects on PBD variation in our Chinese population.
Collapse
Affiliation(s)
- Yue-Juan Qin
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Hunan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|