1
|
Kumar V, Wimmer R, Varrone C. Efficient Bioprocess for Mixed PET Waste Depolymerization Using Crude Cutinase. Polymers (Basel) 2025; 17:763. [PMID: 40292627 PMCID: PMC11946107 DOI: 10.3390/polym17060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
In recent years, several plastic-degrading enzymes with efficient depolymerization abilities for PET have been reported. Here, we report a bioprocess for mixed PET waste depolymerization using crude extracellularly expressed enzymes in E. coli. The enzymes, namely FastPETase, LCC, and LCCICCG, were screened to depolymerize amorphous PET powder and films of different sizes and crystallinity. FastPETase, LCC, and LCCICCG achieved approximately 25, 34, and 70% depolymerization, respectively, when applied to 13 g L-1 of PET film, powder, or mixed waste in optimized enzyme conditions without any pH control. The yield of terephthalic acid in the hydrolytic process was maximum for LCCICCG followed by LCC and FastPETase. Finally, extracellular LCCICCG-producing E. coli cells were cultivated using minimal media supplemented with 0.1% ammonium chloride and 1% glycerol as nitrogen and carbon sources in a bioreactor with a final protein content and specific activity of 119 ± 5 mg L-1 and 1232 ± 18 U mg-1, respectively. Nearly complete depolymerization of 13 g L-1 PET and 23.8 g L-1 post-consumer PET was achieved in 50 h using crude LCCICCG supernatant, without enzyme purification, at 62 °C. A bioprocess was thus developed to depolymerize 100 g L-1 mixed PET trays and bottle waste (MW1 and MW2), reaching 78% and 50% yield at 62 °C with a crude enzyme loading of 2.32 mg g-1 PET in 60 h. The results demonstrate an easy PET depolymerization strategy that could be exploited in large-scale facilities for efficient plastic waste treatment.
Collapse
Affiliation(s)
| | | | - Cristiano Varrone
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark; (V.K.); (R.W.)
| |
Collapse
|
2
|
Kumar V, Pellis A, Wimmer R, Popok V, Christiansen JDC, Varrone C. Efficient Depolymerization of Poly(ethylene 2,5-furanoate) Using Polyester Hydrolases. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:9658-9668. [PMID: 38966237 PMCID: PMC11220789 DOI: 10.1021/acssuschemeng.4c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Poly(ethylene 2,5-furanoate) (PEF) is considered to be the next-generation green polyester and is hailed as a rising star among novel plastics. It is biobased, is nontoxic, and has comparable or improved properties compared to polyethylene terephthalate (PET). Biobased PEF offers lower life-cycle greenhouse gas emissions than PET. However, with its industrial production starting soon, relatively little is known about its actual recyclability. This work reports on the near complete depolymerization of PEF using two efficient PET hydrolases, FastPETase and leaf compost-cutinase (LCC), at loadings 4.5-17 times lower than previously reported. FastPETase and LCC exhibited maximum depolymerization of PEF, measured by weight loss and 2,5-furandicarboxylic acid (FDCA) production, using potassium phosphate-NaOH buffer at 50 and 65 °C, respectively. The 98% depolymerization of 13 g L-1 PEF film was achieved by three additions of the LCC in 72 h, while 78% weight loss was obtained using FastPETase in controlled conditions. Nonetheless, 92% weight loss was obtained with FastPETase when using only 6 g L-1 PEF. The main reaction products were identified as FDCA, ethylene glycol, and mono(2-hydroxyethyl)-furanoate. LCC performed better than FastPETase, in terms of both FDCA release and weight loss. The effect of crystallinity was evident on the enzymes' performance, as only 4% to 7% weight loss of crystalline PEF (32%) was recorded. Microscopy studies of the treated PEF films provided information on the surface erosion processes and revealed higher resistance of the crystalline phase, explaining the low level of depolymerization. The study presents important insights into the enzymatic hydrolysis of biobased PEF material and paves the path toward more viable applications within biopolymer waste recycling.
Collapse
Affiliation(s)
- Virender Kumar
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Alessandro Pellis
- Dipartimento
di Chimica e Chimica Industriale, Universitá
degli Studi di Genova, Via Dodecaneso 31, Genova 16146, Italy
| | - Reinhard Wimmer
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Vladimir Popok
- Department
of Materials and Production, Aalborg University, Fibigerstræde 16, 9220 Aalborg, Denmark
| | | | - Cristiano Varrone
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| |
Collapse
|
3
|
Rahmati F, Sethi D, Shu W, Asgari Lajayer B, Mosaferi M, Thomson A, Price GW. Advances in microbial exoenzymes bioengineering for improvement of bioplastics degradation. CHEMOSPHERE 2024; 355:141749. [PMID: 38521099 DOI: 10.1016/j.chemosphere.2024.141749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Plastic pollution has become a major global concern, posing numerous challenges for the environment and wildlife. Most conventional ways of plastics degradation are inefficient and cause great damage to ecosystems. The development of biodegradable plastics offers a promising solution for waste management. These plastics are designed to break down under various conditions, opening up new possibilities to mitigate the negative impact of traditional plastics. Microbes, including bacteria and fungi, play a crucial role in the degradation of bioplastics by producing and secreting extracellular enzymes, such as cutinase, lipases, and proteases. However, these microbial enzymes are sensitive to extreme environmental conditions, such as temperature and acidity, affecting their functions and stability. To address these challenges, scientists have employed protein engineering and immobilization techniques to enhance enzyme stability and predict protein structures. Strategies such as improving enzyme and substrate interaction, increasing enzyme thermostability, reinforcing the bonding between the active site of the enzyme and substrate, and refining enzyme activity are being utilized to boost enzyme immobilization and functionality. Recently, bioengineering through gene cloning and expression in potential microorganisms, has revolutionized the biodegradation of bioplastics. This review aimed to discuss the most recent protein engineering strategies for modifying bioplastic-degrading enzymes in terms of stability and functionality, including enzyme thermostability enhancement, reinforcing the substrate binding to the enzyme active site, refining with other enzymes, and improvement of enzyme surface and substrate action. Additionally, discovered bioplastic-degrading exoenzymes by metagenomics techniques were emphasized.
Collapse
Affiliation(s)
- Farzad Rahmati
- Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University (IAU), Qom 37185364, Iran
| | - Debadatta Sethi
- Sugarcane Research Station, Odisha University of Agriculture and Technology, Nayagarh, India
| | - Weixi Shu
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | | | - Mohammad Mosaferi
- Health and Environment Research Center, Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Allan Thomson
- Perennia Food and Agriculture Corporation., 173 Dr. Bernie MacDonald Dr., Bible Hill, Truro, NS, B6L 2H5, Canada
| | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
4
|
Amalia L, Chang CY, Wang SSS, Yeh YC, Tsai SL. Recent advances in the biological depolymerization and upcycling of polyethylene terephthalate. Curr Opin Biotechnol 2024; 85:103053. [PMID: 38128200 DOI: 10.1016/j.copbio.2023.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Polyethylene terephthalate (PET) is favored for its exceptional properties and widespread daily use. This review highlights recent advancements that enable the development of biological tools for PET decomposition, transforming PET into valuable platform chemicals and materials in upcycling processes. Enhancing PET hydrolases' catalytic activity and efficiency through protein engineering strategies is a priority, facilitating more effective PET waste management. Efforts to create novel PET hydrolases for large-scale PET depolymerization continue, but cost-effectiveness remains challenging. Hydrolyzed monomers must add additional value to make PET recycling economically attractive. Valorization of hydrolysis products through the upcycling process is expected to produce new compounds with different values and qualities from the initial polymer, making the decomposed monomers more appealing. Advances in synthetic biology and enzyme engineering hold promise for PET upcycling. While biological depolymerization offers environmental benefits, further research is needed to make PET upcycling sustainable and economically feasible.
Collapse
Affiliation(s)
- Lita Amalia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chia-Yu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
5
|
Soong YHV, Abid U, Chang AC, Ayafor C, Patel A, Qin J, Xu J, Lawton C, Wong HW, Sobkowicz MJ, Xie D. Enzyme selection, optimization, and production toward biodegradation of post-consumer poly(ethylene terephthalate) at scale. Biotechnol J 2023; 18:e2300119. [PMID: 37594123 DOI: 10.1002/biot.202300119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Poly(ethylene terephthalate) (PET) is one of the world's most widely used polyester plastics. Due to its chemical stability, PET is extremely difficult to hydrolyze in a natural environment. Recent discoveries in new polyester hydrolases and breakthroughs in enzyme engineering strategies have inspired enormous research on biorecycling of PET. This study summarizes our research efforts toward large-scale, efficient, and economical biodegradation of post-consumer waste PET, including PET hydrolase selection and optimization, high-yield enzyme production, and high-capacity enzymatic degradation of post-consumer waste PET. First, genes encoding PETase and MHETase from Ideonella sakaiensis and the ICCG variant of leaf-branch compost cutinase (LCCICCG ) were codon-optimized and expressed in Escherichia coli BL21(DE3) for high-yield production. To further lower the enzyme production cost, a pelB leader sequence was fused to LCCICCG so that the enzyme can be secreted into the medium to facilitate recovery. To help bind the enzyme on the hydrophobic surface of PET, a substrate-binding module in a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis (PBM) was fused to the C-terminus of LCCICCG . The resulting four different LCCICCG variants (LCC, PelB-LCC, LCC-PBM, and PelB-LCC-PBM), together with PETase and MHETase, were compared for PET degradation efficiency. A fed-batch fermentation process was developed to produce the target enzymes up to 1.2 g L-1 . Finally, the best enzyme, PelB-LCC, was selected and used for the efficient degradation of 200 g L-1 recycled PET in a well-controlled, stirred-tank reactor. The results will help develop an economical and scalable biorecycling process toward a circular PET economy.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Umer Abid
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Allen C Chang
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Christian Ayafor
- Energy Engineering Program, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Akanksha Patel
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Jin Xu
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Carl Lawton
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Hsi-Wu Wong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Margaret J Sobkowicz
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
6
|
Tiong E, Koo YS, Bi J, Koduru L, Koh W, Lim YH, Wong FT. Expression and engineering of PET-degrading enzymes from Microbispora, Nonomuraea, and Micromonospora. Appl Environ Microbiol 2023; 89:e0063223. [PMID: 37943056 PMCID: PMC10686063 DOI: 10.1128/aem.00632-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE Mismanagement of PET plastic waste significantly threatens human and environmental health. Together with the relentless increase in plastic production, plastic pollution is an issue of rising concern. In response to this challenge, scientists are investigating eco-friendly approaches, such as bioprocessing and microbial factories, to sustainably manage the growing quantity of plastic waste in our ecosystem. Industrial applicability of enzymes capable of degrading PET is limited by numerous factors, including their scarcity in nature. The objective of this study is to enhance our understanding of this group of enzymes by identifying and characterizing novel enzymes that can facilitate the breakdown of PET waste. This data will expand the enzymatic repertoire and provide valuable insights into the prerequisites for successful PET degradation.
Collapse
Grants
- C211917006 Agency for Science, Technology, and Research (A*STAR)
- C211917006 Agency for Science, Technology, and Research (A*STAR)
- C211917003 Agency for Science, Technology, and Research (A*STAR)
- A*STAR Graduate Academy Agency for Science, Technology, and Research (A*STAR)
- C233017006 Agency for Science, Technology, and Research (A*STAR)
- C233017004 Agency for Science, Technology, and Research (A*STAR)
Collapse
Affiliation(s)
- Elaine Tiong
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore
| | - Ying Sin Koo
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy, and Environment (ISCE), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Jiawu Bi
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore
| | - Lokanand Koduru
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore
| | - Winston Koh
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy, and Environment (ISCE), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Yee Hwee Lim
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy, and Environment (ISCE), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fong Tian Wong
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy, and Environment (ISCE), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
7
|
Zurier HS, Goddard JM. A high-throughput expression and screening platform for applications-driven PETase engineering. Biotechnol Bioeng 2023; 120:1000-1014. [PMID: 36575047 DOI: 10.1002/bit.28319] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
The environmental consequences of plastic waste have impacted all kingdoms of life in terrestrial and aquatic ecosystems. However, as the burden of plastic pollution has increased, microbes have evolved to utilize anthropogenic polymers as nutrient sources. Of depolymerase enzymes, the best characterized is PETase, which hydrolyzes aromatic polyesters. PETase engineering has made impressive progress in recent years; however, further optimization of engineered PETase toward industrial application has been limited by lower throughput techniques used in protein purification and activity detection. Here, we address these deficiencies through development of a higher-throughput PETase engineering platform. Secretory expression via YebF tagging eliminates lysis and purification steps, facilitating production of large mutant libraries. Fluorescent detection of degradation products permits rapid screening of depolymerase activity in microplates as opposed to serial chromatographic methods. This approach enabled development of more stable PETase, semi-rational (SR) PETase variant containing previously unpublished mutations. SR-PETase releases 1.9-fold more degradation products and has up to 7.4-fold higher activity than wild-type PETase over 10 days at 40°C. These methods can be adapted to a variety of chemical environments, enabling screening of PETase mutants in applications-relevant conditions. Overall, this work promises to facilitate advancements in PETase engineering toward industrial depolymerization of plastic waste.
Collapse
Affiliation(s)
- Hannah S Zurier
- Department of Food Science and Technology, Cornell University, Ithaca, New York, USA
| | - Julie M Goddard
- Department of Food Science and Technology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Orlando M, Molla G, Castellani P, Pirillo V, Torretta V, Ferronato N. Microbial Enzyme Biotechnology to Reach Plastic Waste Circularity: Current Status, Problems and Perspectives. Int J Mol Sci 2023; 24:3877. [PMID: 36835289 PMCID: PMC9967032 DOI: 10.3390/ijms24043877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The accumulation of synthetic plastic waste in the environment has become a global concern. Microbial enzymes (purified or as whole-cell biocatalysts) represent emerging biotechnological tools for waste circularity; they can depolymerize materials into reusable building blocks, but their contribution must be considered within the context of present waste management practices. This review reports on the prospective of biotechnological tools for plastic bio-recycling within the framework of plastic waste management in Europe. Available biotechnology tools can support polyethylene terephthalate (PET) recycling. However, PET represents only ≈7% of unrecycled plastic waste. Polyurethanes, the principal unrecycled waste fraction, together with other thermosets and more recalcitrant thermoplastics (e.g., polyolefins) are the next plausible target for enzyme-based depolymerization, even if this process is currently effective only on ideal polyester-based polymers. To extend the contribution of biotechnology to plastic circularity, optimization of collection and sorting systems should be considered to feed chemoenzymatic technologies for the treatment of more recalcitrant and mixed polymers. In addition, new bio-based technologies with a lower environmental impact in comparison with the present approaches should be developed to depolymerize (available or new) plastic materials, that should be designed for the required durability and for being susceptible to the action of enzymes.
Collapse
Affiliation(s)
- Marco Orlando
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Pietro Castellani
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| | - Valentina Pirillo
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| | - Navarro Ferronato
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| |
Collapse
|