Saxena J, Ayushi KM. Evaluation of Sclerotinia sclerotiorum MTCC 8785 as a biological agent for the synthesis of silver nanoparticles and assessment of their antifungal potential against Trichoderma harzianum MTCC 801.
ENVIRONMENTAL RESEARCH 2023;
216:114752. [PMID:
36351471 DOI:
10.1016/j.envres.2022.114752]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION
Owing to loads of industrial development and advancements, there is an unmet need for green-ecosystem support as well as safe technologies. For cost-cutting and eco-friendly applications, biosynthetic pathways for nanoparticle synthesis from microbes like bacteria, and fungi have attracted the global attention of researchers.
METHODS
In the present research work, silver nanoparticles (AgNPs) from fungus (mycogenic) were extracellularly synthesized with cell-free filtrates of fungal phytopathogen Sclerotinia sclerotiorum MTCC 8785 harvested from broth culture in Potato dextrose broth (CFF-PDB) and Amylase production media (CFF-AMP). The synthesis was carried out at pH 7, 28 °C under dark conditions. The synthesized AgNPs were characterized using UV spectrophotometer and transmission electron microscopy (TEM). Furthermore, the antifungal efficacy of AgNPs was evaluated against the Trichoderma harzianum MTCC 801 strain by radial inhibition assay.
RESULTS
Primarily, the process of biosynthesis was inferred by the characteristic change of color and spectral peak at 420 nm recorded with UV spectrophotometer further approved the nano silver production in CFF-AMP which approves the role of amylases in reduction mediated capping process. TEM analysis revealed that the AgNPs synthesized using S. sclerotiorum MTCC 8785 grown in PDB were spherical with variable size ranges from 10 to 50 nm in diameter whereas, the AgNPs synthesized using S. sclerotiorum MTCC 8785 grown in APM were in the size ranges from 40 to 50 nm.
CONCLUSIONS
This is the first investigatory concern where nano-silver from fungal phytopathogen S. sclerotiorum MTCC 8785 has been prospected as new age antifungal alternatives against evolving threats from T. harzianum strain.
Collapse