1
|
Mamidi N, Ijadi F, Norahan MH. Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities. Biomacromolecules 2024; 25:2075-2113. [PMID: 37406611 DOI: 10.1021/acs.biomac.3c00279] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The field of bone tissue engineering has seen significant advancements in recent years. Each year, over two million bone transplants are performed globally, and conventional treatments, such as bone grafts and metallic implants, have their limitations. Tissue engineering offers a new level of treatment, allowing for the creation of living tissue within a biomaterial framework. Recent advances in biomaterials have provided innovative approaches to rebuilding bone tissue function after damage. Among them, gelatin methacryloyl (GelMA) hydrogel is emerging as a promising biomaterial for supporting cell proliferation and tissue regeneration, and GelMA has exhibited exceptional physicochemical and biological properties, making it a viable option for clinical translation. Various methods and classes of additives have been used in the application of GelMA for bone regeneration, with the incorporation of nanofillers or other polymers enhancing its resilience and functional performance. Despite promising results, the fabrication of complex structures that mimic the bone architecture and the provision of balanced physical properties for both cell and vasculature growth and proper stiffness for load bearing remain as challenges. In terms of utilizing osteogenic additives, the priority should be on versatile components that promote angiogenesis and osteogenesis while reinforcing the structure for bone tissue engineering applications. This review focuses on recent efforts and advantages of GelMA-based composite biomaterials for bone tissue engineering, covering the literature from the last five years.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Fatemeh Ijadi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| |
Collapse
|
2
|
Bauso LV, La Fauci V, Longo C, Calabrese G. Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration. BIOLOGY 2024; 13:237. [PMID: 38666849 PMCID: PMC11048357 DOI: 10.3390/biology13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Large bone defects are the leading contributor to disability worldwide, affecting approximately 1.71 billion people. Conventional bone graft treatments show several disadvantages that negatively impact their therapeutic outcomes and limit their clinical practice. Therefore, much effort has been made to devise new and more effective approaches. In this context, bone tissue engineering (BTE), involving the use of biomaterials which are able to mimic the natural architecture of bone, has emerged as a key strategy for the regeneration of large defects. However, although different types of biomaterials for bone regeneration have been developed and investigated, to date, none of them has been able to completely fulfill the requirements of an ideal implantable material. In this context, in recent years, the field of nanotechnology and the application of nanomaterials to regenerative medicine have gained significant attention from researchers. Nanotechnology has revolutionized the BTE field due to the possibility of generating nanoengineered particles that are able to overcome the current limitations in regenerative strategies, including reduced cell proliferation and differentiation, the inadequate mechanical strength of biomaterials, and poor production of extrinsic factors which are necessary for efficient osteogenesis. In this review, we report on the latest in vitro and in vivo studies on the impact of nanotechnology in the field of BTE, focusing on the effects of nanoparticles on the properties of cells and the use of biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| | | | | | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| |
Collapse
|
3
|
Patil R, Alimperti S. Graphene in 3D Bioprinting. J Funct Biomater 2024; 15:82. [PMID: 38667539 PMCID: PMC11051043 DOI: 10.3390/jfb15040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Three-dimensional (3D) bioprinting is a fast prototyping fabrication approach that allows the development of new implants for tissue restoration. Although various materials have been utilized for this process, they lack mechanical, electrical, chemical, and biological properties. To overcome those limitations, graphene-based materials demonstrate unique mechanical and electrical properties, morphology, and impermeability, making them excellent candidates for 3D bioprinting. This review summarizes the latest developments in graphene-based materials in 3D printing and their application in tissue engineering and regenerative medicine. Over the years, different 3D printing approaches have utilized graphene-based materials, such as graphene, graphene oxide (GO), reduced GO (rGO), and functional GO (fGO). This process involves controlling multiple factors, such as graphene dispersion, viscosity, and post-curing, which impact the properties of the 3D-printed graphene-based constructs. To this end, those materials combined with 3D printing approaches have demonstrated prominent regeneration potential for bone, neural, cardiac, and skin tissues. Overall, graphene in 3D bioprinting may pave the way for new regenerative strategies with translational implications in orthopedics, neurology, and cardiovascular areas.
Collapse
Affiliation(s)
- Rahul Patil
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA;
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC 20057, USA
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA;
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
4
|
López-García S, Aznar-Cervantes SD, Pagán A, Llena C, Forner L, Sanz JL, García-Bernal D, Sánchez-Bautista S, Ceballos L, Fuentes V, Melo M, Rodríguez-Lozano FJ, Oñate-Sánchez RE. 3D Graphene/silk fibroin scaffolds enhance dental pulp stem cell osteo/odontogenic differentiation. Dent Mater 2024; 40:431-440. [PMID: 38114344 DOI: 10.1016/j.dental.2023.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/24/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVES The current in vitro study aims to evaluate silk fibroin with and without the addition of graphene as a potential scaffold material for regenerative endodontics. MATERIAL AND METHODS Silk fibroin (SF), Silk fibroin/graphene oxide (SF/GO) and silk fibroin coated with reduced graphene oxide (SF/rGO) scaffolds were prepared (n = 30). The microarchitectures and mechanical properties of scaffolds were evaluated using field emission scanning electron microscopy (FESEM), pore size and water uptake, attenuated total reflectance fourier transformed infrared spectroscopy (ATR-FTIR), Raman spectroscopy and mechanical compression tests. Next, the study analyzed the influence of these scaffolds on human dental pulp stem cell (hDPSC) viability, apoptosis or necrosis, cell adhesion, odontogenic differentiation marker expression and mineralized matrix deposition. The data were analyzed with ANOVA complemented with the Tukey post-hoc test (p < 0.005). RESULTS SEM analysis revealed abundant pores with a size greater than 50 nm on the surface of tested scaffolds, primarily between 50 nm and 600 µm. The average value of water uptake obtained in pure fibroin scaffolds was statistically higher than that of those containing GO or rGO (p < 0.05). ATR-FTIR evidenced that the secondary structures did not present differences between pure fibroin and fibroin coated with graphene oxide, with a similar infrared spectrum in all tested scaffolds. Raman spectroscopy showed a greater number of defects in the links in SF/rGO scaffolds due to the reduction of graphene. In addition, adequate mechanical properties were exhibited by the tested scaffolds. Regarding biological properties, hDPSCs attached to scaffolds were capable of proliferating at a rate similar to the control, without affecting their viability over time. A significant upregulation of ALP, ON and DSPP markers was observed with SF/rGO and SF/GO groups. Finally, SF/GO and SF/rGO promoted a significantly higher mineralization than the control at 21 days. SIGNIFICANCE Data obtained suggested that SF/GO and SF/rGO scaffolds promote hDPSC differentiation at a genetic level, increasing the expression of key osteo/odontogenic markers, and supports the mineralization of the extracellular matrix. However, results from this study are to be interpreted with caution, requiring further in vivo studies to confirm the potential of these scaffolds.
Collapse
Affiliation(s)
- Sergio López-García
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - Salvador D Aznar-Cervantes
- Biotechnology, Genomics and PlantBreedingDepartment, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), La Alberca 30150, Murcia, Spain
| | - Ana Pagán
- Biotechnology, Genomics and PlantBreedingDepartment, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), La Alberca 30150, Murcia, Spain
| | - Carmen Llena
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - Leopoldo Forner
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - José L Sanz
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - David García-Bernal
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Biomedical Research Institute (IMIB), Murcia 30120, Spain
| | | | - Laura Ceballos
- IDIBO Research Group, Area of Stomatology, Health Sciences Faculty, Rey Juan Carlos University, Alcorcón, Madrid, Spain
| | - Victoria Fuentes
- IDIBO Research Group, Area of Stomatology, Health Sciences Faculty, Rey Juan Carlos University, Alcorcón, Madrid, Spain
| | - María Melo
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia 46010, Spain
| | - Francisco J Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Biomedical Research Institute (IMIB), Regional Campus of International Excellence "Campus Mare Nostrum", Faculty of Medicine, University of Murcia, Murcia 30008, Spain.
| | - Ricardo E Oñate-Sánchez
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Biomedical Research Institute (IMIB), Regional Campus of International Excellence "Campus Mare Nostrum", Faculty of Medicine, University of Murcia, Murcia 30008, Spain
| |
Collapse
|
5
|
Cabral CSD, de Melo-Diogo D, Ferreira P, Moreira AF, Correia IJ. Reduced graphene oxide-reinforced tricalcium phosphate/gelatin/chitosan light-responsive scaffolds for application in bone regeneration. Int J Biol Macromol 2024; 259:129210. [PMID: 38184039 DOI: 10.1016/j.ijbiomac.2024.129210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Bone is a mineralized tissue with the intrinsic capacity for constant remodeling. Rapid prototyping techniques, using biomaterials that mimic the bone native matrix, have been used to develop osteoinductive and osteogenic personalized 3D structures, which can be further combined with drug delivery and phototherapy. Herein, a Fab@Home 3D Plotter printer was used to promote the layer-by-layer deposition of a composite mixture of gelatin, chitosan, tricalcium phosphate, and reduced graphene oxide (rGO). The phototherapeutic potential of the new NIR-responsive 3D_rGO scaffolds was assessed by comparing scaffolds with different rGO concentrations (1, 2, and 4 mg/mL). The data obtained show that the rGO incorporation confers to the scaffolds the capacity to interact with NIR light and induce a hyperthermy effect, with a maximum temperature increase of 16.7 °C after under NIR irradiation (10 min). Also, the increase in the rGO content improved the hydrophilicity and mechanical resistance of the scaffolds, particularly in the 3D_rGO4. Furthermore, the rGO could confer an NIR-triggered antibacterial effect to the 3D scaffolds, without compromising the osteoblasts' proliferation and viability. In general, the obtained data support the development of 3D_rGO for being applied as temporary scaffolds supporting the new bone tissue formation and avoiding the establishment of bacterial infections.
Collapse
Affiliation(s)
- Cátia S D Cabral
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Paula Ferreira
- Instituto Politécnico de Coimbra, Instituto de Investigação Aplicada, Coimbra, Portugal
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal; CPIRN-UDI/IPG - Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal; CIEPQPF - Departamento Engenharia Química, Universidade de Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Govindarajan D, Saravanan S, Sudhakar S, Vimalraj S. Graphene: A Multifaceted Carbon-Based Material for Bone Tissue Engineering Applications. ACS OMEGA 2024; 9:67-80. [PMID: 38222554 PMCID: PMC10785094 DOI: 10.1021/acsomega.3c07062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Tissue engineering is an emerging technological field that aims to restore and replace human tissues. A significant number of individuals require bone replacement annually as a result of skeletal abnormalities or accidents. In recent decades, notable progress has been made in the field of biomedical research, specifically in the realm of sophisticated and biocompatible materials. The purpose of these biomaterials is to facilitate bone tissue regeneration. Carbon nanomaterial-based scaffolds are particularly notable due to their accessibility, mechanical durability, and biofunctionality. The scaffolds exhibit the capacity to enhance cellular proliferation, mitigate cell damage, induce bone tissue growth, and maintain biological compatibility. Therefore, they play a crucial role in the development of the bone matrix and the necessary cellular interactions required for bone tissue restoration. The attachment, growth, and specialization of osteogenic stem cells on biomaterial scaffolds play critical roles in bone tissue engineering. The optimal biomaterial should facilitate the development of bone tissue in a manner that closely resembles that of human bone. This comprehensive review encompasses the examination of graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds, and their respective derivatives. The biomaterial frameworks possess the ability to replicate the intricate characteristics of the bone microenvironment, thereby rendering them suitable for utilization in tissue engineering endeavors.
Collapse
Affiliation(s)
- Dharunya Govindarajan
- Department
of Biotechnology, Stem Cell and Molecular Biology Laboratory, Bhupat
& Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Sekaran Saravanan
- Department
of Prosthodontics, Saveetha Dental College and Hospital, Saveetha
Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Swathi Sudhakar
- Department
of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Department
of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
7
|
Zhao Y, Zheng Z, Yu CY, Wei H. Engineered cyclodextrin-based supramolecular hydrogels for biomedical applications. J Mater Chem B 2023; 12:39-63. [PMID: 38078497 DOI: 10.1039/d3tb02101g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cyclodextrin (CD)-based supramolecular hydrogels are polymer network systems with the ability to rapidly form reversible three-dimensional porous structures through multiple cross-linking methods, offering potential applications in drug delivery. Although CD-based supramolecular hydrogels have been increasingly used in a wide range of applications in recent years, a comprehensive description of their structure, mechanical property modulation, drug loading, delivery, and applications in biomedical fields from a cross-linking perspective is lacking. To provide a comprehensive overview of CD-based supramolecular hydrogels, this review systematically describes their design, regulation of mechanical properties, modes of drug loading and release, and their roles in various biomedical fields, particularly oncology, wound dressing, bone repair, and myocardial tissue engineering. Additionally, this review provides a rational discussion on the current challenges and prospects of CD-based supramolecular hydrogels, which can provide ideas for the rapid development of CD-based hydrogels and foster their translation from the laboratory to clinical medicine.
Collapse
Affiliation(s)
- Yuqi Zhao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
8
|
Baheiraei N, Razavi M, Ghahremanzadeh R. Reduced graphene oxide coated alginate scaffolds: potential for cardiac patch application. Biomater Res 2023; 27:109. [PMID: 37924106 PMCID: PMC10625265 DOI: 10.1186/s40824-023-00449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/15/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Cardiovascular diseases, particularly myocardial infarction (MI), are the leading cause of death worldwide and a major contributor to disability. Cardiac tissue engineering is a promising approach for preventing functional damage or improving cardiac function after MI. We aimed to introduce a novel electroactive cardiac patch based on reduced graphene oxide-coated alginate scaffolds due to the promising functional behavior of electroactive biomaterials to regulate cell proliferation, biocompatibility, and signal transition. METHODS The fabrication of novel electroactive cardiac patches based on alginate (ALG) coated with different concentrations of reduced graphene oxide (rGO) using sodium hydrosulfite is described here. The prepared scaffolds were thoroughly tested for their physicochemical properties and cytocompatibility. ALG-rGO scaffolds were also tested for their antimicrobial and antioxidant properties. Subcutaneous implantation in mice was used to evaluate the scaffolds' ability to induce angiogenesis. RESULTS The Young modulus of the scaffolds was increased by increasing the rGO concentration from 92 ± 4.51 kPa for ALG to 431 ± 4.89 kPa for ALG-rGO-4 (ALG coated with 0.3% w/v rGO). The scaffolds' tensile strength trended similarly. The electrical conductivity of coated scaffolds was calculated in the semi-conductive range (~ 10-4 S/m). Furthermore, when compared to ALG scaffolds, human umbilical vein endothelial cells (HUVECs) cultured on ALG-rGO scaffolds demonstrated improved cell viability and adhesion. Upregulation of VEGFR2 expression at both the mRNA and protein levels confirmed that rGO coating significantly boosted the angiogenic capability of ALG against HUVECs. OD620 assay and FE-SEM observation demonstrated the antibacterial properties of electroactive scaffolds against Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. We also showed that the prepared samples possessed antioxidant activity using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay and UV-vis spectroscopy. Histological evaluations confirmed the enhanced vascularization properties of coated samples after subcutaneous implantation. CONCLUSION Our findings suggest that ALG-rGO is a promising scaffold for accelerating the repair of damaged heart tissue.
Collapse
Affiliation(s)
- Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division,Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran.
| | - Mehdi Razavi
- Department of Medicine, Biionix (Bionic Materials, Implants & Interfaces) Cluster, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Saberi A, Kouhjani M, Mohammadi M, Hosta-Rigau L. Novel scaffold platforms for simultaneous induction osteogenesis and angiogenesis in bone tissue engineering: a cutting-edge approach. J Nanobiotechnology 2023; 21:351. [PMID: 37770928 PMCID: PMC10536787 DOI: 10.1186/s12951-023-02115-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Despite the recent advances in the development of bone graft substitutes, treatment of critical size bone defects continues to be a significant challenge, especially in the elderly population. A current approach to overcome this challenge involves the creation of bone-mimicking scaffolds that can simultaneously promote osteogenesis and angiogenesis. In this context, incorporating multiple bioactive agents like growth factors, genes, and small molecules into these scaffolds has emerged as a promising strategy. To incorporate such agents, researchers have developed scaffolds incorporating nanoparticles, including nanoparticulate carriers, inorganic nanoparticles, and exosomes. Current paper provides a summary of the latest advancements in using various bioactive agents, drugs, and cells to synergistically promote osteogenesis and angiogenesis in bone-mimetic scaffolds. It also discusses scaffold design properties aimed at maximizing the synergistic effects of osteogenesis and angiogenesis, various innovative fabrication strategies, and ongoing clinical studies.
Collapse
Affiliation(s)
- Arezoo Saberi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Kouhjani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
10
|
Lázár I, Čelko L, Menelaou M. Aerogel-Based Materials in Bone and Cartilage Tissue Engineering-A Review with Future Implications. Gels 2023; 9:746. [PMID: 37754427 PMCID: PMC10530393 DOI: 10.3390/gels9090746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Aerogels are fascinating solid materials known for their highly porous nanostructure and exceptional physical, chemical, and mechanical properties. They show great promise in various technological and biomedical applications, including tissue engineering, and bone and cartilage substitution. To evaluate the bioactivity of bone substitutes, researchers typically conduct in vitro tests using simulated body fluids and specific cell lines, while in vivo testing involves the study of materials in different animal species. In this context, our primary focus is to investigate the applications of different types of aerogels, considering their specific materials, microstructure, and porosity in the field of bone and cartilage tissue engineering. From clinically approved materials to experimental aerogels, we present a comprehensive list and summary of various aerogel building blocks and their biological activities. Additionally, we explore how the complexity of aerogel scaffolds influences their in vivo performance, ranging from simple single-component or hybrid aerogels to more intricate and organized structures. We also discuss commonly used formulation and drying methods in aerogel chemistry, including molding, freeze casting, supercritical foaming, freeze drying, subcritical, and supercritical drying techniques. These techniques play a crucial role in shaping aerogels for specific applications. Alongside the progress made, we acknowledge the challenges ahead and assess the near and far future of aerogel-based hard tissue engineering materials, as well as their potential connection with emerging healing techniques.
Collapse
Affiliation(s)
- István Lázár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic;
| | - Melita Menelaou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Arch. Kyprianos Str., Limassol 3036, Cyprus
| |
Collapse
|
11
|
Graphene-Based Materials in Dental Applications: Antibacterial, Biocompatible, and Bone Regenerative Properties. Int J Biomater 2023; 2023:8803283. [PMID: 36819211 PMCID: PMC9929215 DOI: 10.1155/2023/8803283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Graphene-based materials have been shown to have advantageous properties in biomedical and dental applications due to their high mechanical, physiochemical, antibacterial, and stem cell differentiating properties. Although graphene-based materials have displayed appropriate biocompatible properties when used in implant materials for orthopedic applications, little research has been performed to specifically test the biocompatibility of graphene for dental applications. The oral environment, compared to the body, varies greatly and must be considered when evaluating biocompatibility requirements for dental applications. This review will discuss in vitro and in vivo studies that assess graphene's cytotoxicity, antibacterial properties, and cell differentiation ability to evaluate the overall biocompatibility of graphene-based materials for dental applications. Particle shape, size, and concentration were found to be major factors that affected overall biocompatibility of graphene.
Collapse
|
12
|
Nizami MZI, Yin IX, Lung CYK, Niu JY, Mei ML, Chu CH. In Vitro Studies of Graphene for Management of Dental Caries and Periodontal Disease: A Concise Review. Pharmaceutics 2022; 14:pharmaceutics14101997. [PMID: 36297434 PMCID: PMC9611330 DOI: 10.3390/pharmaceutics14101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Graphene is a single-layer two-dimensional carbon-based nanomaterial. It presents as a thin and strong material that has attracted many researchers’ attention. This study provides a concise review of the potential application of graphene materials in caries and periodontal disease management. Pristine or functionalized graphene and its derivatives exhibit favorable physicochemical, mechanical, and morphological properties applicable to biomedical applications. They can be activated and functionalized with metal and metal nanoparticles, polymers, and other small molecules to exhibit multi-differentiation activities, antimicrobial activities, and biocompatibility. They were investigated in preventive dentistry and regenerative dentistry. Graphene materials such as graphene oxide inhibit cariogenic microbes such as Streptococcus mutans. They also inhibit periodontal pathogens that are responsible for periodontitis and root canal infection. Graphene-fluorine promotes enamel and dentin mineralization. These materials were also broadly studied in regenerative dental research, such as dental hard and soft tissue regeneration, as well as periodontal tissue and bone regeneration. Graphene oxide-based materials, such as graphene oxide-fibroin, were reported as promising in tissue engineering for their biocompatibility, bioactivity, and ability to enhance cell proliferation properties in periodontal ligament stem cells. Laboratory research showed that graphene can be used exclusively or by incorporating it into existing dental materials. The success of laboratory studies can translate the application of graphene into clinical use.
Collapse
Affiliation(s)
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
| | | | - John Yun Niu
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
| | - May Lei Mei
- Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand
| | - Chun Hung Chu
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
- Correspondence:
| |
Collapse
|
13
|
Fighting Antibiotic-Resistant Bacterial Infections by Surface Biofunctionalization of 3D-Printed Porous Titanium Implants with Reduced Graphene Oxide and Silver Nanoparticles. Int J Mol Sci 2022; 23:ijms23169204. [PMID: 36012467 PMCID: PMC9409238 DOI: 10.3390/ijms23169204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles (NPs) have high multifunctional potential to simultaneously enhance implant osseointegration and prevent infections caused by antibiotic-resistant bacteria. Here, we present the first report on using plasma electrolytic oxidation (PEO) to incorporate different combinations of reduced graphene oxide (rGO) and silver (Ag) NPs on additively manufactured geometrically ordered volume-porous titanium implants. The rGO nanosheets were mainly embedded parallel with the PEO surfaces. However, the formation of ‘nano-knife’ structures (particles embedded perpendicularly to the implant surfaces) was also found around the pores of the PEO layers. Enhanced in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus was observed for the rGO+Ag-containing surfaces compared to the PEO surfaces prepared only with AgNPs. This was caused by a significant improvement in the generation of reactive oxygen species, higher levels of Ag+ release, and the presence of rGO ‘nano-knife’ structures. In addition, the implants developed in this study stimulated the metabolic activity and osteogenic differentiation of MC3T3-E1 preosteoblast cells compared to the PEO surfaces without nanoparticles. Therefore, the PEO titanium surfaces incorporating controlled levels of rGO+Ag nanoparticles have high clinical potential as multifunctional surfaces for 3D-printed orthopaedic implants.
Collapse
|
14
|
Taghizadehjahed M, Sepahdar A, Rabiee N, Nazbar A, Farzad-Mohajeri S, Dehghan MM, Shokrgozar MA, Majidi M, Mardjanmehr SH, Aminianfar H, Akbari Javar H, Bonakdar S. Comparison of engineered cartilage based on BMSCs and chondrocytes seeded on PVA-PPU scaffold in a sheep model. J Biomed Mater Res B Appl Biomater 2022; 110:2411-2421. [PMID: 35587251 DOI: 10.1002/jbm.b.35087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/11/2022]
Abstract
In this study, polyvinyl alcohol hydrogel chains were crosslinked by polyurethane in order to synthesize a suitable substrate for cartilage lesions. The substrate was fully characterized, and in vitro and in vivo investigations were conducted based on a sheep model. In vitro tests were performed based on the chondrocyte cells with the Alcian Blue and safranin O staining in order to prove the presence of proteoglycan on the surface of the synthesized substrate, which has been secreted by cultures of chondrocytes. Furthermore, the expression of collagen type I, collagen type II, aggrecan, and Sox9 was presented in the chondrocyte cultures on the synthesized substrate through RT-PCR. In addition, the H&E analysis and other related tests demonstrated the formation of neocartilage tissue in a sheep model. The results were found to be promising for cartilage tissue engineering and verified that the isolated chondrocyte cultures on the synthesized substrate retain their original composition.
Collapse
Affiliation(s)
- Masoud Taghizadehjahed
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Asma Sepahdar
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, Iran.,National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Abolfazl Nazbar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | | | - Mohammad Majidi
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Tabatabaee S, Baheiraei N, Salehnia M. Fabrication and characterization of PHEMA–gelatin scaffold enriched with graphene oxide for bone tissue engineering. J Orthop Surg Res 2022; 17:216. [PMID: 35397609 PMCID: PMC8994334 DOI: 10.1186/s13018-022-03122-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
Growing investigations demonstrate that graphene oxide (GO) has an undeniable impact on repairing damaged bone tissue. Moreover, it has been stated in the literatures that poly(2-hydroxyethyl methacrylate) (PHEMA) and gelatin could provide a biocompatible structure.
Methods
In this research, we fabricated a scaffold using freeze-drying method comprised of PHEMA and gelatin, combined with GO. The validation of the successful fabrication of the scaffolds was performed utilizing Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction assay (XRD). The microstructure of the scaffolds was observed using scanning electron microscopy (SEM). The structural properties of the scaffolds including mechanical strength, hydrophilicity, electrical conductivity, and degradation rate were also evaluated. Human bone marrow‐derived mesenchymal stem cells (hBM-MSCs) were used to evaluate the cytotoxicity of the prepared scaffolds. The osteogenic potential of the GO-containing scaffolds was studied by measuring the alkaline phosphatase (ALP) activity after 7, 14, and 21 days cell culturing.
Results
SEM assay showed a porous interconnected scaffold with approximate pore size of 50–300 μm, appropriate for bone regeneration. The increase in GO concentration from 0.25 to 0.75% w/v exhibited a significant improvement in scaffolds compressive modulus from 9.03 ± 0.36 to 42.82 ± 1.63 MPa. Conventional four-probe analysis confirmed the electrical conductivity of the scaffolds in the semiconductor range. The degradation rate of the samples appeared to be in compliance with bone healing process. The scaffolds exhibited no cytotoxicity using MTT assay against hBM-MSCs. ALP analysis indicated that the PHEMA–Gel–GO scaffolds could efficiently cause the differentiation of hBM-MSCs into osteoblasts after 21 days, even without the addition of the osteogenic differentiation medium.
Conclusion
Based on the results of this research, it can be stated that the PHEMA–Gel–GO composition is a promising platform for bone tissue engineering.
Collapse
|
16
|
Li X, Liang X, Wang Y, Wang D, Teng M, Xu H, Zhao B, Han L. Graphene-Based Nanomaterials for Dental Applications: Principles, Current Advances, and Future Outlook. Front Bioeng Biotechnol 2022; 10:804201. [PMID: 35360406 PMCID: PMC8961302 DOI: 10.3389/fbioe.2022.804201] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
With the development of nanotechnology, nanomaterials have been used in dental fields over the past years. Among them, graphene and its derivatives have attracted great attentions, owing to their excellent physicochemical property, morphology, biocompatibility, multi-differentiation activity, and antimicrobial activity. In our review, we summarized the recent progress about their applications on the dentistry. The synthesis methods, structures, and properties of graphene-based materials are discussed. Then, the dental applications of graphene-based materials are emphatically collected and described. Finally, the challenges and outlooks of graphene-based nanomaterials on the dental applications are discussed in this paper, aiming at inspiring more excellent studies.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Liang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yanhui Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dashan Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Minhua Teng
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Xu
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baodong Zhao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Baodong Zhao, ; Lei Han,
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Baodong Zhao, ; Lei Han,
| |
Collapse
|
17
|
Pan X, Cheng D, Ruan C, Hong Y, Lin C. Development of Graphene-Based Materials in Bone Tissue Engineaering. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100107. [PMID: 35140982 PMCID: PMC8812920 DOI: 10.1002/gch2.202100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/31/2021] [Indexed: 06/14/2023]
Abstract
Bone regeneration-related graphene-based materials (bGBMs) are increasingly attracting attention in tissue engineering due to their special physical and chemical properties. The purpose of this review is to quantitatively analyze mass academic literature in the field of bGBMs through scientometrics software CiteSpace, to demonstrate the rules and trends of bGBMs, thus to analyze and summarize the mechanisms behind the rules, and to provide clues for future research. First, the research status, hotspots, and frontiers of bGBMs are analyzed in an intuitively and vividly visualized way. Next, the extracted important subjects such as fabrication techniques, cytotoxicity, biodegradability, and osteoinductivity of bGBMs are presented, and the different mechanisms, in turn, are also discussed. Finally, photothermal therapy, which is considered an emerging area of application of bGBMs, is also presented. Based on this approach, this work finds that different studies report differing opinions on the biological properties of bGBMS due to the lack of consistency of GBMs preparation. Therefore, it is necessary to establish more standards in fabrication, characterization, and testing for bGBMs to further promote scientific progress and clinical translation.
Collapse
Affiliation(s)
- Xiaoling Pan
- College of StomatologyXinjiang Medical UniversityUrumqiXinjiang830011P. R. China
- Department of Oral Maxillofacial SurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| | - Delin Cheng
- Research Center for Human Tissue and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Yonglong Hong
- Department of Oral Maxillofacial SurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| | - Cheng Lin
- Department of Oral Maxillofacial SurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| |
Collapse
|
18
|
Ali A, Hasan A, Negi YS. Effect of carbon based fillers on xylan/chitosan/nano-HAp composite matrix for bone tissue engineering application. Int J Biol Macromol 2022; 197:1-11. [PMID: 34914910 DOI: 10.1016/j.ijbiomac.2021.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 01/31/2023]
Abstract
The objective of our present work is to analyze the effect of carbon derived fillers (GO/RGO) on microstructural, mechanical and osteoinductive potential of xylan/chitosan/HAp composite matrix for bone tissue engineering application. The composites were characterized by FTIR, XRD and SEM to evaluate the composition and morphological parameters. Change in microstructural and mechanical properties of scaffold was observed on tuning filler type (GO/RGO) and concentration. Composites with GO and RGO content demonstrated significant mineralization potential with dense apatite growth. A comparative evaluation of cell viability using MG-63 cell line revealed improved cell response in samples incorporated with carbon fillers than their native parent matrix. MTT Assay revealed highest cell viability in composite with 0.75% RGO content. Cell attachment was observed in all the scaffold samples cultured for 72 h. The filler incorporated X/C/HAp matrix demonstrated increase in ALP activity over a period of 7 and 14 days. Synergistic effect of these fillers in enhancing in vitro mineralization tendency and osteogenic differentiation capability make the composites a potential candidate for bone tissue engineering construct.
Collapse
Affiliation(s)
- Asif Ali
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, U.P., India
| | - Abshar Hasan
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Yuvraj Singh Negi
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, U.P., India.
| |
Collapse
|
19
|
Wu M, Zou L, Jiang L, Zhao Z, Liu J. Osteoinductive and antimicrobial mechanisms of graphene-based materials for enhancing bone tissue engineering. J Tissue Eng Regen Med 2021; 15:915-935. [PMID: 34469046 DOI: 10.1002/term.3239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023]
Abstract
Graphene-based materials (GMs) have great application prospects in bone tissue engineering due to their osteoinductive ability and antimicrobial activity. GMs induce osteogenic differentiation through several mechanisms and pathways in bone tissue engineering. First of all, the surface and high hardness of the porous folds of graphene or graphene oxide (GO) can generate mechanical stimulation to initiate a cascade of reactions that promote osteogenic differentiation without any chemical inducers. In addition, change of the extracellular matrix (ECM), regulation of macrophage polarization, the oncostatin M (OSM) signaling pathway, the MAPK signaling pathway, the BMP signaling pathway, the Wnt/β-catenin signaling pathway, and other pathways are involved in GMs' regulation of osteogenesis. In bone tissue engineering, GMs prevent the formation of microbial biofilms mainly through preventing microbial adhesion and killing them. The former is mainly achieved by reducing surface free energy (SFE) and increasing hydrophobicity. The latter mainly includes oxidative stress and photothermal/photodynamic effects. Graphene and its derivatives (GDs) are mainly combined with bioactive ceramic materials, metal materials and macromolecular polymers to play an antimicrobial effect in bone tissue engineering. Concentration, number of layers, and type of GDs often affect the antimicrobial activity of GMs. In this paper, we reviewed relevant osteoinductive and antimicrobial mechanisms of GMs and their applications in bone tissue engineering.
Collapse
Affiliation(s)
- Mengsong Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linli Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Rahimnejad M, Nasrollahi Boroujeni N, Jahangiri S, Rabiee N, Rabiee M, Makvandi P, Akhavan O, Varma RS. Prevascularized Micro-/Nano-Sized Spheroid/Bead Aggregates for Vascular Tissue Engineering. NANO-MICRO LETTERS 2021; 13:182. [PMID: 34409511 PMCID: PMC8374027 DOI: 10.1007/s40820-021-00697-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/13/2021] [Indexed: 05/02/2023]
Abstract
Efficient strategies to promote microvascularization in vascular tissue engineering, a central priority in regenerative medicine, are still scarce; nano- and micro-sized aggregates and spheres or beads harboring primitive microvascular beds are promising methods in vascular tissue engineering. Capillaries are the smallest type and in numerous blood vessels, which are distributed densely in cardiovascular system. To mimic this microvascular network, specific cell components and proangiogenic factors are required. Herein, advanced biofabrication methods in microvascular engineering, including extrusion-based and droplet-based bioprinting, Kenzan, and biogripper approaches, are deliberated with emphasis on the newest works in prevascular nano- and micro-sized aggregates and microspheres/microbeads.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montreal, Canada
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montreal, Canada
| | | | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montreal, Canada
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano Di Tecnologia, viale Rinaldo Piaggio 34, 56 025, Pontedera, Pisa, Italy
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
21
|
Saeb MR, Rabiee N, Seidi F, Farasati Far B, Bagherzadeh M, Lima EC, Rabiee M. Green CoNi2S4/porphyrin decorated carbon-based nanocomposites for genetic materials detection. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
22
|
Chlanda A, Walejewska E, Kowiorski K, Heljak M, Swieszkowski W, Lipińska L. Investigation into morphological and electromechanical surface properties of reduced-graphene-oxide-loaded composite fibers for bone tissue engineering applications: A comprehensive nanoscale study using atomic force microscopy approach. Micron 2021; 146:103072. [PMID: 33895487 DOI: 10.1016/j.micron.2021.103072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
We decided to implement an extensive atomic force microscopy study in order to get deeper understanding of surface-related nanoscale properties of 3D printed pristine polycaprolactone and its reduced-graphene-oxide-loaded composites. The study included surface visualization and roughness quantification, elastic modulus and adhesion force assessment with force spectroscopy, along with kelvin probe force microscopy evaluation of local changes of surface potential. Atomic force microscopy examination was followed by scanning electron microscopy visualization and wettability assessment. Moreover, systematic examination of reduced graphene oxide flakes fabricated exclusively for this study was performed, including: scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and combustion elemental analysis. The addition of reduced graphene oxide resulted in thickening of the composite fibers and surface roughness enhancement. In addition, elastic modulus of composite fibers was higher and at the same time adhesion forces between scanning probe and tested surface was lower than for pristine polymeric ones. Lastly, we recorded local (nanoscale) alterations of surface potential of fibers with addition of graphene-derivative. The results clearly suggest graphene derivative's dose-dependent alteration of elastic modulus and adhesion force recorded with atomic force microscope. Moreover, changes of the material's surface properties were followed by changes of its electrical properties.
Collapse
Affiliation(s)
- Adrian Chlanda
- Łukasiewicz Research Network, Institute of Microelectronics and Photonics, Department of Chemical Synthesis and Flake Graphene, Aleja Lotników 32/46, 02-668, Warsaw, Poland.
| | - Ewa Walejewska
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Biomaterials Group, Wołoska 141, 02-507, Warsaw, Poland
| | - Krystian Kowiorski
- Łukasiewicz Research Network, Institute of Microelectronics and Photonics, Department of Chemical Synthesis and Flake Graphene, Aleja Lotników 32/46, 02-668, Warsaw, Poland
| | - Marcin Heljak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Biomaterials Group, Wołoska 141, 02-507, Warsaw, Poland
| | - Wojciech Swieszkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Biomaterials Group, Wołoska 141, 02-507, Warsaw, Poland
| | - Ludwika Lipińska
- Łukasiewicz Research Network, Institute of Microelectronics and Photonics, Department of Chemical Synthesis and Flake Graphene, Aleja Lotników 32/46, 02-668, Warsaw, Poland
| |
Collapse
|
23
|
Gelatin reduced Graphene Oxide Nanosheets as Kartogenin Nanocarrier Induces Rat ADSCs Chondrogenic Differentiation Combining with Autophagy Modification. MATERIALS 2021; 14:ma14051053. [PMID: 33668133 PMCID: PMC7956601 DOI: 10.3390/ma14051053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Biocompatible reduced graphene oxide (rGO) could deliver drugs for synergistically stimulating stem cells directed differentiation with influences on specific cellular activities. Here, we prepared a biodegradable gelatin reduced graphene oxide (rGO@Ge) to evaluate its functions in promoting rat adipose derived mesenchymal stem cells (ADSCs) chondrogenic differentiation through delivering kartogenin (KGN) into the stem cell efficiently. The optimum KGN concentration (approximately 1 μM) that promoted the proliferation and chondrogenic differentiation of ADSCs was clarified by a series of experiments, including immunofluorescent (IF) staining (Sox-9, Col II), alcian blue (Ab) staining, toluidine blue (Tb) staining and real-time quantitative PCR analysis of the chondrogenic markers. Meanwhile, the biocompatibility of rGO@Ge was evaluated to clearly define the nonhazardous concentration range, and the drug loading and releasing properties of rGO@Ge were tested with KGN for its further application in inducing ADSCs chondrogenic differentiation. Furthermore, the mechanism of rGO@Ge entering ADSCs was investigated by the different inhibitors that are involved in the endocytosis of the nanocarrier, and the degradation of the rGO@Ge in ADSCs was observed by transmission electron microscopy (TEM). The synergistic promoting effect of rGO@Ge nanocarrier on ADSCs chondrogenesis with KGN was also studied by the IF, Ab, Tb stainings and PCR analysis of the chondrogenic markers. Finally, the intracellular Reactive Oxygen Species (ROS) and autophagy induced by KGN/rGO@Ge complex composites were tested in details for clarification on the correlation between the autophagy and chondrogenesis in ADSCs induced by rGO@Ge. All the results show that rGO@Ge as a biocompatible nanocarrier can deliver KGN into ADSCs for exerting a pro-chondrogenic effect and assist the drug to promote ADSCs chondrogenesis synergistically through modification of the autophagy in vitro, which promised its further application in repairing cartilage defect in vivo.
Collapse
|
24
|
Kiani M, Rabiee N, Bagherzadeh M, Ghadiri AM, Fatahi Y, Dinarvand R, Webster TJ. Improved green biosynthesis of chitosan decorated Ag- and Co 3O 4-nanoparticles: A relationship between surface morphology, photocatalytic and biomedical applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102331. [PMID: 33181272 DOI: 10.1016/j.nano.2020.102331] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
AgNPs@Chitosan and Co3O4-NPs@Chitosan were fabricated with Salvia hispanica. Results showed MZI values of 5 and 30 mm for Co3O4-NPs- and AgNPs@Chitosan against S. aureus, and 15 and 21 mm for Co3O4-NPs- and AgNPs@Chitosan against E. coli (24 h, 20 μg/mL), respectively. MTT assays showed up to 80% and 90%, 71% and 75%, and 91% and 94% mammalian cell viability for the green synthesized, chemically synthesized AgNPs and green synthesized AgNPs@Chitosan for HEK-293 and PC12 cells, respectively, and 70% and 71%, 59% and 62%, and 88% and 73% for the related Co3O4-NPs (24 h, 20 μg/mL). The photocatalytic activities showed dye degradation after 135 and 105 min for AgNPs@Chitosan and Co3O4-NPs@Chitosan, respectively. FESEM results showed differences in particle sizes (32 ± 3.0 nm for the AgNPs and 41 ± 3.0 nm for the Co3O4NPs) but AFM results showed lower roughness of the AgNPs@Chitosan (7.639 ± 0.85 nm) compared to Co3O4NPs@Chitosan (9.218 ± 0.93 nm), which resulted in potential biomedical applications.
Collapse
Affiliation(s)
- Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|