1
|
Tu H, Yeo XY, Zhang ZW, Zhou W, Tan JY, Chi L, Chia SY, Li Z, Sim AY, Singh BK, Ma D, Zhou Z, Bonne I, Ling SC, Ng ASL, Jung S, Tan EK, Zeng L. NOTCH2NLC GGC intermediate repeat with serine induces hypermyelination and early Parkinson's disease-like phenotypes in mice. Mol Neurodegener 2024; 19:91. [PMID: 39609868 PMCID: PMC11603791 DOI: 10.1186/s13024-024-00780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The expansion of GGC repeats (typically exceeding 60 repeats) in the 5' untranslated region (UTR) of the NOTCH2NLC gene (N2C) is linked to N2C-related repeat expansion disorders (NREDs), such as neuronal intranuclear inclusion disease (NIID), frontotemporal dementia (FTD), essential tremor (ET), and Parkinson's disease (PD). These disorders share common clinical manifestations, including parkinsonism, dementia, seizures, and muscle weakness. Intermediate repeat sizes ranging from 40 to 60 GGC repeats, particularly those with AGC-encoded serine insertions, have been reported to be associated with PD; however, the functional implications of these intermediate repeats with serine insertion remain unexplored. METHODS Here, we utilized cellular models harbouring different sizes of N2C variant 2 (N2C2) GGC repeat expansion and CRISPR-Cas9 engineered transgenic mouse models carrying N2C2 GGC intermediate repeats with and without serine insertion to elucidate the underlying pathophysiology associated with N2C intermediate repeat with serine insertion in NREDs. RESULTS Our findings revealed that the N2C2 GGC intermediate repeat with serine insertion (32G13S) led to mitochondrial dysfunction and cell death in vitro. The neurotoxicity was influenced by the length of the repeat and was exacerbated by the presence of the serine insertion. In 12-month-old transgenic mice, 32G13S intensified intranuclear aggregation and exhibited early PD-like characteristics, including the formation of α-synuclein fibers in the midbrain and the loss of tyrosine hydroxylase (TH)-positive neurons in both the cortex and striatum. Additionally, 32G13S induced neuronal hyperexcitability and caused locomotor behavioural impairments. Transcriptomic analysis of the mouse cortex indicated dysregulation in calcium signaling and MAPK signaling pathways, both of which are critical for mitochondrial function. Notably, genes associated with myelin sheath components, including MBP and MOG, were dysregulated in the 32G13S mouse. Further investigations using immunostaining and transmission electron microscopy revealed that the N2C intermediate repeat with serine induced mitochondrial dysfunction-related hypermyelination in the cortex. CONCLUSIONS Our in vitro and in vivo investigations provide the first evidence that the N2C-GGC intermediate repeat with serine promotes intranuclear aggregation of N2C, leading to mitochondrial dysfunction-associated hypermyelination and neuronal hyperexcitability. These changes contribute to motor deficits in early PD-like neurodegeneration in NREDs.
Collapse
Affiliation(s)
- Haitao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Zhi-Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Wei Zhou
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore, 169856, Singapore
| | - Jayne Yi Tan
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Li Chi
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Sook-Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Zhihong Li
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Aik Yong Sim
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549, Singapore
| | - Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Dongrui Ma
- Department of Neurology, Singapore General Hospital, Singapore, 169609, Singapore
| | - Zhidong Zhou
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore, 169856, Singapore
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Isabelle Bonne
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Shuo-Chien Ling
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, 13488, Republic of Korea
| | - Eng-King Tan
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore, 169856, Singapore.
- Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore.
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore.
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore.
- Neuroscience & Behavioural Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore.
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore, Novena Campus, 308232, Singapore.
| |
Collapse
|
2
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
3
|
Filippini A, Cannone E, Mazziotti V, Carini G, Mutti V, Ravelli C, Gennarelli M, Schiavone M, Russo I. Leucine-Rich Repeat Kinase-2 Controls the Differentiation and Maturation of Oligodendrocytes in Mice and Zebrafish. Biomolecules 2024; 14:870. [PMID: 39062584 PMCID: PMC11274935 DOI: 10.3390/biom14070870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Leucine-rich repeat kinase-2 (LRRK2), a gene mutated in familial and sporadic Parkinson's disease (PD), controls multiple cellular processes important for GLIA physiology. Interestingly, emerging studies report that LRRK2 is highly expressed in oligodendrocyte precursor cells (OPCs) compared to the pathophysiology of other brain cells and oligodendrocytes (OLs) in PD. Altogether, these observations suggest crucial function(s) of LRRK2 in OPCs/Ols, which would be interesting to explore. In this study, we investigated the role of LRRK2 in OLs. We showed that LRRK2 knock-out (KO) OPC cultures displayed defects in the transition of OPCs into OLs, suggesting a role of LRRK2 in OL differentiation. Consistently, we found an alteration of myelin basic protein (MBP) striosomes in LRRK2 KO mouse brains and reduced levels of oligodendrocyte transcription factor 2 (Olig2) and Mbp in olig2:EGFP and mbp:RFP transgenic zebrafish embryos injected with lrrk2 morpholino (MO). Moreover, lrrk2 knock-down zebrafish exhibited a lower amount of nerve growth factor (Ngf) compared to control embryos, which represents a potent regulator of oligodendrogenesis and myelination. Overall, our findings indicate that LRRK2 controls OL differentiation, affecting the number of mature OLs.
Collapse
Affiliation(s)
- Alice Filippini
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Elena Cannone
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Valentina Mazziotti
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| | - Giulia Carini
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Veronica Mutti
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Massimo Gennarelli
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| | - Marco Schiavone
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Isabella Russo
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| |
Collapse
|
4
|
Manchinu MF, Pala M, Palmas MF, Diana MA, Maschio A, Etzi M, Pisanu A, Diana FI, Marongiu J, Mansueto S, Carboni E, Fusco G, De Simone A, Carta AR. Region-specific changes in gene expression are associated with cognitive deficits in the alpha-synuclein-induced model of Parkinson's disease: A transcriptomic profiling study. Exp Neurol 2024; 372:114651. [PMID: 38092188 DOI: 10.1016/j.expneurol.2023.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Mild cognitive impairment (MCI) is a common trait of Parkinson's disease (PD), often associated with early motor deficits, eventually evolving to PD with dementia in later disease stages. The neuropathological substrate of MCI is poorly understood, which weakens the development and administration of proper therapies. In an α-synuclein (αSyn)-based model of PD featuring early motor and cognitive impairments, we investigated the transcriptome profile of brain regions involved in PD with cognitive deficits, via a transcriptomic analysis based on RNA sequencing (RNA-seq) technology. Rats infused in the substantia nigra with human α-synuclein oligomers (H-SynOs) developed mild cognitive deficits after three months, as measured by the two-trial recognition test in a Y-maze and the novel object recognition test. RNA-seq analysis showed that 17,436 genes were expressed in the anterior cingulate cortex (ACC) and 17,216 genes in the hippocampus (HC). In the ACC, 51 genes were differentially expressed between vehicle and H-αSynOs treated samples, which showed N= 21 upregulated and N = 30 downregulated genes. In the HC, 104 genes were differentially expressed, the majority of them not overlapping with DEGs in the ACC, with N = 41 upregulated and N = 63 downregulated in H-αSynOs-treated samples. The Gene Ontology (GO) and the Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis, followed by the protein-protein interaction (PPI) network inspection of DEGs, revealed that in the ACC most enriched terms were related with immune functions, specifically with antigen processing/presentation via the major histocompatibility complex (MHC) class II and phagocytosis via CD68, supporting a role for dysregulated immune responses in early PD cognitive dysfunction. Immunofluorescence analysis confirmed the decreased expression of CD68 within microglial cells. In contrast, the most significantly enriched terms in the HC were mainly involved in mitochondrial homeostasis, potassium voltage-gated channel, cytoskeleton and fiber organisation, suggesting that the gene expression in the neuronal population was mostly affected in this region in early disease stages. Altogether results show that H-αSynOs trigger a region-specific dysregulation of gene expression in ACC and HC, providing a pathological substrate for MCI associated with early PD.
Collapse
Affiliation(s)
| | - Mauro Pala
- National Research Council, Biomedical and Genetic Research Institute, 09040 Cagliari, Italy
| | | | - Maria Antonietta Diana
- National Research Council, Biomedical and Genetic Research Institute, 09040 Cagliari, Italy
| | - Andrea Maschio
- National Research Council, Biomedical and Genetic Research Institute, 09040 Cagliari, Italy
| | - Michela Etzi
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, 09040 Cagliari, Italy
| | | | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Silvia Mansueto
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Giuliana Fusco
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy.
| |
Collapse
|
5
|
Festa LK, Grinspan JB, Jordan-Sciutto KL. White matter injury across neurodegenerative disease. Trends Neurosci 2024; 47:47-57. [PMID: 38052682 PMCID: PMC10842057 DOI: 10.1016/j.tins.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 12/07/2023]
Abstract
Oligodendrocytes (OLs), the myelin-generating cells of the central nervous system (CNS), are active players in shaping neuronal circuitry and function. It has become increasingly apparent that injury to cells within the OL lineage plays a central role in neurodegeneration. In this review, we focus primarily on three degenerative disorders in which white matter loss is well documented: Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). We discuss clinical data implicating white matter injury as a key feature of these disorders, as well as shared and divergent phenotypes between them. We examine the cellular and molecular mechanisms underlying the alterations to OLs, including chronic neuroinflammation, aggregation of proteins, lipid dysregulation, and organellar stress. Last, we highlight prospects for therapeutic intervention targeting the OL lineage to restore function.
Collapse
Affiliation(s)
- Lindsay K Festa
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Judith B Grinspan
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Ferreira-Peralta P, França B, Murtinheira F, Rodrigues MS, Herrera F. Is spastic ataxia 8 a protein misfolding disorder? Biochim Biophys Acta Mol Basis Dis 2024; 1870:166882. [PMID: 37696463 DOI: 10.1016/j.bbadis.2023.166882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Affiliation(s)
- Pedro Ferreira-Peralta
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Brenda França
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Fernanda Murtinheira
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal; MOSTMICRO Research Unit, Instituto de Tecnologia Química e Biológica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mario S Rodrigues
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Federico Herrera
- BioISI - Instituto de Biosistemas e Ciências integrativas, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal.
| |
Collapse
|
7
|
Yang K, Wu Z, Long J, Li W, Wang X, Hu N, Zhao X, Sun T. White matter changes in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:150. [PMID: 37907554 PMCID: PMC10618166 DOI: 10.1038/s41531-023-00592-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). It is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and the formation of Lewy bodies (LBs). Although PD is primarily considered a gray matter (GM) disease, alterations in white matter (WM) have gained increasing attention in PD research recently. Here we review evidence collected by magnetic resonance imaging (MRI) techniques which indicate WM abnormalities in PD, and discuss the correlations between WM changes and specific PD symptoms. Then we summarize transcriptome and genome studies showing the changes of oligodendrocyte (OLs)/myelin in PD. We conclude that WM abnormalities caused by the changes of myelin/OLs might be important for PD pathology, which could be potential targets for PD treatment.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China.
| | - Zhengqi Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Jie Long
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Wenxin Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Xi Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Ning Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
8
|
Oizumi H, Miyamoto Y, Seiwa C, Yamamoto M, Yoshioka N, Iizuka S, Torii T, Ohbuchi K, Mizoguchi K, Yamauchi J, Asou H. Lethal adulthood myelin breakdown by oligodendrocyte-specific Ddx54 knockout. iScience 2023; 26:107448. [PMID: 37720086 PMCID: PMC10502337 DOI: 10.1016/j.isci.2023.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis (MS) is a leading disease that causes disability in young adults. We have previously shown that a DEAD-box RNA helicase Ddx54 binds to mRNA and protein isoforms of myelin basic protein (MBP) and that Ddx54 siRNA blocking abrogates oligodendrocyte migration and myelination. Herein, we show that MBP-driven Ddx54 knockout mice (Ddx54 fl/fl;MBP-Cre), after the completion of normal postnatal myelination, gradually develop abnormalities in behavioral profiles and learning ability, inner myelin sheath breakdown, loss of myelinated axons, apoptosis of oligodendrocytes, astrocyte and microglia activation, and they die within 7 months but show minimal peripheral immune cell infiltration. Myelin in Ddx54fl/fl;MBP-Cre is highly vulnerable to the neurotoxicant cuprizone and Ddx54 knockdown greatly impairs myelination in vitro. Ddx54 expression in oligodendrocyte-lineage cells decreased in corpus callosum of MS patients. Our results demonstrate that Ddx54 is indispensable for myelin homeostasis, and they provide a demyelinating disease model based on intrinsic disintegration of adult myelin.
Collapse
Affiliation(s)
- Hiroaki Oizumi
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chika Seiwa
- Glovia Myelin Research Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Masahiro Yamamoto
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Katsuya Ohbuchi
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | | | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroaki Asou
- Glovia Myelin Research Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| |
Collapse
|
9
|
Benson KL, Winkelman JW, Gönenç A. Disrupted white matter integrity in primary insomnia and major depressive disorder: relationships to sleep quality and depression severity. J Sleep Res 2023; 32:e13913. [PMID: 37138521 DOI: 10.1111/jsr.13913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023]
Abstract
This study examined the integrity of white matter tracts in 25 participants with primary insomnia (PI), 50 participants with major depressive disorder (MDD), and 25 healthy controls. Seven white matter tracts, selected based on prior research, were quantified by fractional anisotropy (FA) as well as by related measures of diffusivity using diffusion tensor imaging (DTI) on a 3-T scanner. All 100 participants were free of significant medical, psychiatric (excluding the MDD group) and sleep disorders (excluding the PI group), were free of central nervous system medications, and completed an extensive clinical assessment. Subjective and objective sleep measures revealed significant sleep disruption in both the PI and MDD groups. Relative to the controls, both the PI and MDD groups demonstrated impaired integrity in three of the seven white matter tracts: the genu of the corpus callosum (GenuCC), the superior longitudinal fasciculus (SLF), and the inferior longitudinal fasciculus (ILF). We demonstrated reduced FA in the GenuCC, reduced FA and reduced axial diffusivity (AD) in the SLF, as well as reduced AD and radial diffusivity in the ILF. Finally, in an exploratory analysis of the combined cohorts, FA in the GenuCC and FA in the SLF were negatively correlated with depression severity and positively correlated with total sleep time. Abnormalities documented in the GenuCC, SLF and ILF, and present in both the PI and MDD groups may suggest some shared neurobiology.
Collapse
Affiliation(s)
- Kathleen L Benson
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - John W Winkelman
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Atilla Gönenç
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Ozkizilcik A, Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Wiklund L, Sharma HS. Nanowired delivery of antibodies to tau and neuronal nitric oxide synthase together with cerebrolysin attenuates traumatic brain injury induced exacerbation of brain pathology in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:83-121. [PMID: 37783564 DOI: 10.1016/bs.irn.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Concussive head injury (CHI) is one of the major risk factors for developing Parkinson's disease in later life of military personnel affecting lifetime functional and cognitive disturbances. Till date no suitable therapies are available to attenuate CHI or PD induced brain pathology. Thus, further exploration of novel therapeutic agents are highly warranted using nanomedicine in enhancing the quality of life of veterans or service members of US military. Since PD or CHI induces oxidative stress and perturbs neurotrophic factors regulation associated with phosphorylated tau (p-tau) deposition, a possibility exists that nanodelivery of agents that could enhance neurotrophic factors balance and attenuate oxidative stress could be neuroprotective in nature. In this review, nanowired delivery of cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments together with monoclonal antibodies to neuronal nitric oxide synthase (nNOS) with p-tau antibodies was examined in PD following CHI in model experiments. Our results suggest that combined administration of nanowired antibodies to nNOS and p-tau together with cerebrolysin significantly attenuated CHI induced exacerbation of PD brain pathology. This combined treatment also has beneficial effects in CHI or PD alone, not reported earlier.
Collapse
Affiliation(s)
- Asya Ozkizilcik
- Dept. Biomedical Engineering, University of Arkansas, Fayetteville, AR, United Staes
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, United States
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm (Vienna) 2022; 129:977-999. [PMID: 35726096 DOI: 10.1007/s00702-022-02522-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cognitive impairment is one of the most salient non-motor symptoms of Parkinson disease (PD) that poses a significant burden on the patients and carers as well as being a risk factor for early mortality. People with PD show a wide spectrum of cognitive dysfunctions ranging from subjective cognitive decline and mild cognitive impairment (MCI) to frank dementia. The mean frequency of PD with MCI (PD-MCI) is 25.8% and the pooled dementia frequency is 26.3% increasing up to 83% 20 years after diagnosis. A better understanding of the underlying pathological processes will aid in directing disease-specific treatment. Modern neuroimaging studies revealed considerable changes in gray and white matter in PD patients with cognitive impairment, cortical atrophy, hypometabolism, dopamine/cholinergic or other neurotransmitter dysfunction and increased amyloid burden, but multiple mechanism are likely involved. Combined analysis of imaging and fluid markers is the most promising method for identifying PD-MCI and Parkinson disease dementia (PDD). Morphological substrates are a combination of Lewy- and Alzheimer-associated and other concomitant pathologies with aggregation of α-synuclein, amyloid, tau and other pathological proteins in cortical and subcortical regions causing destruction of essential neuronal networks. Significant pathological heterogeneity within PD-MCI reflects deficits in various cognitive domains. This review highlights the essential neuroimaging data and neuropathological changes in PD with cognitive impairment, the amount and topographical distribution of pathological protein aggregates and their pathophysiological relevance. Large-scale clinicopathological correlative studies are warranted to further elucidate the exact neuropathological correlates of cognitive impairment in PD and related synucleinopathies as a basis for early diagnosis and future disease-modifying therapies.
Collapse
|