1
|
Thomas CM, Salamat MKF, Almela F, Cooper JK, Ladhani K, Arnold ME, Bougard D, Andréoletti O, Houston EF. Longitudinal detection of prion infection in preclinical sheep blood samples compared using 3 assays. Blood 2024; 144:1962-1973. [PMID: 39172756 DOI: 10.1182/blood.2024024649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT Variant Creutzfeldt-Jakob disease (vCJD) is a devastating disease caused by transmission of bovine spongiform encephalopathy to humans. Although vCJD cases are now rare, evidence from appendix surveys suggests that a small proportion of the United Kingdom population may be infected without showing signs of disease. These "silent" carriers could present a risk of iatrogenic vCJD transmission through medical procedures or blood/organ donation, and currently there are no validated tests to identify infected asymptomatic individuals using easily accessible samples. To address this issue, we evaluated the performance of 3 blood-based assays in a blinded study, using longitudinal sample series from a well-established large animal model of vCJD. The assays rely on amplification of misfolded prion protein (PrPSc; a marker of prion infection) and include real-time quaking-induced conversion (RT-QuIC), and 2 versions of protein misfolding cyclic amplification (PMCA). Although diagnostic sensitivity was higher for both PMCA assays (100%) than RT-QuIC (61%), all 3 assays detected prion infection in blood samples collected 26 months before the onset of clinical signs and gave no false-positive results. Parallel estimation of blood prion infectivity titers in a sensitive transgenic mouse line showed positive correlation of infectivity with PrPSc detection by the assays, suggesting that they are suitable for detection of asymptomatic vCJD infection in the human population. This study represents, to our knowledge, the largest comparison to date of preclinical prion detection in blood samples from a relevant animal model. The outcomes will guide efforts to improve early detection of prion disease and reduce infection risks in humans.
Collapse
Affiliation(s)
- Charlotte M Thomas
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - M Khalid F Salamat
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Jillian K Cooper
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Kaetan Ladhani
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Mark E Arnold
- Animal and Plant Health Agency, New Haw, United Kingdom
| | | | - Olivier Andréoletti
- Unité Mixte de Recherche INRAe/ENVT 1225 Interactions Hôtes Agents Pathogènes, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - E Fiona Houston
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Adkin A, Andreoletti O, Griffin J, Lanfranchi B, Ortiz‐Pelaez A, Ordonez AA. BSE risk posed by ruminant collagen and gelatine derived from bones. EFSA J 2024; 22:e8883. [PMID: 39015303 PMCID: PMC11249823 DOI: 10.2903/j.efsa.2024.8883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
The European Commission requested an estimation of the BSE risk (C-, L- and H-BSE) from gelatine and collagen derived from ovine, caprine or bovine bones, and produced in accordance with Regulation (EC) No 853/2004, or Regulation (EC) No 1069/2009 and its implementing Regulation (EU) No 142/2011. A quantitative risk assessment was developed to estimate the BSE infectivity, measured in cattle oral infectious dose 50 (CoID50), in a small size batch of gelatine including one BSE-infected bovine or ovine animal at the clinical stage. The model was built on a scenario where all ruminant bones could be used for the production of gelatine and high-infectivity tissues remained attached to the skull (brain) and vertebral column (spinal cord). The risk and exposure pathways defined for humans and animals, respectively, were identified. Exposure routes other than oral via food and feed were considered and discussed but not assessed quantitatively. Other aspects were also considered as integrating evidence, like the epidemiological situation of the disease, the species barrier, the susceptibility of species to BSE and the assumption of an exponential dose-response relationship to determine the probability of BSE infection in ruminants. Exposure to infectivity in humans cannot be directly translated to risk of disease because the transmission barrier has not yet been quantified, although it is considered to be substantial, i.e. much greater amounts of infectivity would be needed to successfully infect a human and greater in the oral than in the parenteral route of exposure. The probability that no new case of BSE in the cattle or small ruminant population would be generated through oral exposure to gelatine made of ruminant bones is 99%-100% (almost certain) This conclusion is based on the current state of knowledge, the epidemiological situation of the disease and the current practices, and is also valid for collagen.
Collapse
|
3
|
Ackermann I, Ulrich R, Tauscher K, Fatola OI, Keller M, Shawulu JC, Arnold M, Czub S, Groschup MH, Balkema-Buschmann A. Prion Infectivity and PrP BSE in the Peripheral and Central Nervous System of Cattle 8 Months Post Oral BSE Challenge. Int J Mol Sci 2021; 22:ijms222111310. [PMID: 34768738 PMCID: PMC8583047 DOI: 10.3390/ijms222111310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022] Open
Abstract
After oral exposure of cattle with classical bovine spongiform encephalopathy (C-BSE), the infectious agent ascends from the gut to the central nervous system (CNS) primarily via the autonomic nervous system. However, the timeline of this progression has thus far remained widely undetermined. Previous studies were focused on later time points after oral exposure of animals that were already 4 to 6 months old when challenged. In contrast, in this present study, we have orally inoculated 4 to 6 weeks old unweaned calves with high doses of BSE to identify any possible BSE infectivity and/or PrPBSE in peripheral nervous tissues during the first eight months post-inoculation (mpi). For the detection of BSE infectivity, we used a bovine PrP transgenic mouse bioassay, while PrPBSE depositions were analyzed by immunohistochemistry (IHC) and by protein misfolding cyclic amplification (PMCA). We were able to show that as early as 8 mpi the thoracic spinal cord as well as the parasympathetic nodal ganglion of these animals contained PrPBSE and BSE infectivity. This shows that the centripetal prion spread starts early after challenge at least in this age group, which represents an essential piece of information for the risk assessments for food, feed, and pharmaceutical products produced from young calves.
Collapse
Affiliation(s)
- Ivett Ackermann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany; (I.A.); (O.I.F.); (M.K.); (J.C.S.); (M.H.G.)
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Kerstin Tauscher
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany;
| | - Olanrewaju I. Fatola
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany; (I.A.); (O.I.F.); (M.K.); (J.C.S.); (M.H.G.)
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany; (I.A.); (O.I.F.); (M.K.); (J.C.S.); (M.H.G.)
| | - James C. Shawulu
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany; (I.A.); (O.I.F.); (M.K.); (J.C.S.); (M.H.G.)
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Abuja, Abuja 900105, Nigeria
| | - Mark Arnold
- Animal and Plant Health Agency Sutton Bonington, Sutton Bonington, Leicestershire LE12 5RB, UK;
| | - Stefanie Czub
- Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, AB T1J 3Z4, Canada;
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany; (I.A.); (O.I.F.); (M.K.); (J.C.S.); (M.H.G.)
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany; (I.A.); (O.I.F.); (M.K.); (J.C.S.); (M.H.G.)
- Correspondence:
| |
Collapse
|
4
|
Douet JY, Huor A, Cassard H, Lugan S, Aron N, Mesic C, Vilette D, Barrio T, Streichenberger N, Perret-Liaudet A, Delisle MB, Péran P, Deslys JP, Comoy E, Vilotte JL, Goudarzi K, Béringue V, Barria MA, Ritchie DL, Ironside JW, Andréoletti O. Prion strains associated with iatrogenic CJD in French and UK human growth hormone recipients. Acta Neuropathol Commun 2021; 9:145. [PMID: 34454616 PMCID: PMC8403347 DOI: 10.1186/s40478-021-01247-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
Treatment with human pituitary-derived growth hormone (hGH) was responsible for a significant proportion of iatrogenic Creutzfeldt–Jakob disease (iCJD) cases. France and the UK experienced the largest case numbers of hGH-iCJD, with 122 and 81 cases respectively. Differences in the frequency of the three PRNP codon 129 polymorphisms (MM, MV and VV) and the estimated incubation periods associated with each of these genotypes in the French and the UK hGH-iCJD cohorts led to the suggestion that the prion strains responsible for these two hGH-iCJD cohorts were different. In this study, we characterized the prion strains responsible for hGH-iCJD cases originating from UK (n = 11) and France (n = 11) using human PrP expressing mouse models. The cases included PRNP MM, MV and VV genotypes from both countries. UK and French sporadic CJD (sCJD) cases were included as controls. The prion strains identified following inoculation with hGH-iCJD homogenates corresponded to the two most frequently observed sCJD prion strains (M1CJD and V2CJD). However, in clear contradiction to the initial hypothesis, the prion strains that were identified in the UK and the French hGH-iCJD cases were not radically different. In the vast majority of the cases originating from both countries, the V2CJD strain or a mixture of M1CJD + V2CJD strains were identified. These data strongly support the contention that the differences in the epidemiological and genetic profiles observed in the UK and France hGH-iCJD cohorts cannot be attributed only to the transmission of different prion strains.
Collapse
|
5
|
Douet JY, Huor A, Cassard H, Lugan S, Aron N, Arnold M, Vilette D, Torres JM, Ironside JW, Andreoletti O. Wide distribution of prion infectivity in the peripheral tissues of vCJD and sCJD patients. Acta Neuropathol 2021; 141:383-397. [PMID: 33532912 PMCID: PMC7882550 DOI: 10.1007/s00401-021-02270-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is the commonest human prion disease, occurring most likely as the consequence of spontaneous formation of abnormal prion protein in the central nervous system (CNS). Variant Creutzfeldt–Jakob disease (vCJD) is an acquired prion disease that was first identified in 1996. In marked contrast to vCJD, previous investigations in sCJD revealed either inconsistent levels or an absence of PrPSc in peripheral tissues. These findings contributed to the consensus that risks of transmitting sCJD as a consequence of non-CNS invasive clinical procedures were low. In this study, we systematically measured prion infectivity levels in CNS and peripheral tissues collected from vCJD and sCJD patients. Unexpectedly, prion infectivity was detected in a wide variety of peripheral tissues in sCJD cases. Although the sCJD infectivity levels varied unpredictably in the tissues sampled and between patients, these findings could impact on our perception of the possible transmission risks associated with sCJD.
Collapse
Affiliation(s)
- Jean-Yves Douet
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Alvina Huor
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Hervé Cassard
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Séverine Lugan
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Naima Aron
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Mark Arnold
- APHA Sutton Bonington, Loughborough, LE12 5NB, Leicestershire, UK
| | - Didier Vilette
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Juan-Maria Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Spain
| | - James W Ironside
- Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Olivier Andreoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France.
| |
Collapse
|
6
|
Koutsoumanis K, Allende A, Bolton DJ, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman LM, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Andreoletti O, Griffin J, Spiropoulos J, Ortiz‐Pelaez A, Alvarez‐Ordóñez A. Potential BSE risk posed by the use of ruminant collagen and gelatine in feed for non-ruminant farmed animals. EFSA J 2020; 18:e06267. [PMID: 33144887 PMCID: PMC7592076 DOI: 10.2903/j.efsa.2020.6267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EFSA was requested to estimate the cattle bovine spongiform encephalopathy (BSE) risk (C-, L- and H-BSE) posed by ruminant collagen and gelatine produced from raw material fit for human consumption, or from material classified as Category 3 animal by-products (ABP), to be used in feed intended for non-ruminant animals, including aquaculture animals. Three risk pathways (RP) were identified by which cattle could be exposed to ruminant feed cross-contaminated with ruminant collagen or gelatine: 1) recycled former foodstuffs produced in accordance with Regulation (EC) No 853/2004 (RP1), 2) technological or nutritional additives or 3) compound feed, produced either in accordance with Regulation (EC) No 853/2004 (RP2a) or Regulation (EU) No 142/2011 (RP2b). A probabilistic model was developed to estimate the BSE infectivity load measured in cattle oral ID 50 (CoID 50)/kg, in the gelatine produced from the bones and hide of one infected animal older than 30 months with clinical BSE (worst-case scenario). The amount of BSE infectivity (50th percentile estimate) in a member state (MS) with negligible risk status was 7.6 × 10-2 CoID 50/kg, and 3.1 × 10-4 CoID 50/kg in a MS with controlled risk status. The assessment considered the potential contamination pathways and the model results (including uncertainties) regarding the current epidemiological situation in the EU and current statutory controls. Given the estimated amount of BSE infectivity to which cattle would be exposed in a single year, and even if all the estimated undetected BSE cases in the EU were used for the production of collagen or gelatine (either using raw materials fit for human consumption or Category 3 ABP raw materials), it was concluded that the probability that no new case of BSE in the cattle population would be generated through any of the three RP is 99-100% (almost certain).
Collapse
|
7
|
Balkema-Buschmann A, Priemer G, Ulrich R, Strobelt R, Hills B, Groschup MH. Deciphering the BSE-type specific cell and tissue tropisms of atypical (H and L) and classical BSE. Prion 2020; 13:160-172. [PMID: 31476957 PMCID: PMC6746549 DOI: 10.1080/19336896.2019.1651180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After the discovery of two atypical bovine spongiform encephalopathy (BSE) forms in France and Italy designated H- and L-BSE, the question arose whether these new forms differed from classical BSE (C-BSE) in their pathogenesis. Samples collected from cattle in the clinical stage of BSE during an intracranial challenge study with L- and H-BSE were analysed using biochemical and histological methods as well as in a transgenic mouse bioassay. Our results generally confirmed what had been described for C-BSE to be true also for both atypical BSE forms, namely the restriction of the pathological prion protein (PrPSc) and BSE infectivity to the nervous system. However, analysis of samples collected under identical conditions from both atypical H- and L-BSE forms allowed us a more precise assessment of the grade of involvement of different tissues during the clinical end stage of disease as compared to C-BSE. One important feature is the involvement of the peripheral nervous and musculoskeletal tissues in both L-BSE and H-BSE affected cattle. We were, however, able to show that in H-BSE cases, the PrPSc depositions in the central and peripheral nervous system are dominated by a glial pattern, whereas a neuronal deposition pattern dominates in L-BSE cases, indicating differences in the cellular and topical tropism of both atypical BSE forms. As a consequence of this cell tropism, H-BSE seems to spread more rapidly from the CNS into the periphery via the glial cell system such as Schwann cells, as opposed to L-BSE which is mostly propagated via neuronal cells.
Collapse
Affiliation(s)
- Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases , Greifswald , Germany
| | - Grit Priemer
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases , Greifswald , Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut , Greifswald , Germany
| | - Romano Strobelt
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases , Greifswald , Germany
| | - Bob Hills
- Health Canada, Transmissible Spongiform Encephalopathy Secretariat , Ottawa , Ontario , Canada
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases , Greifswald , Germany
| |
Collapse
|
8
|
Chapman GE, Lockey R, Beck KE, Vickery C, Arnold M, Thorne L, Thorne JK, Walker SR, Keulen L, Casalone C, Griffiths PC, Simmons MM, Terry LA, Spiropoulos J. Inactivation of H‐type and L‐type bovine spongiform encephalopathy following recommended autoclave decontamination procedures. Transbound Emerg Dis 2020. [DOI: 10.1111/tbed.13513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - Katy E. Beck
- Animal and Plant Health Agency (APHA) Weybridge UK
| | | | - Mark Arnold
- Animal and Plant Health Agency (APHA) Weybridge UK
| | - Leigh Thorne
- Animal and Plant Health Agency (APHA) Weybridge UK
| | | | | | - Lucien Keulen
- Wageningen Bioveterinary Research Wageningen UR Lelystad The Netherlands
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta Sede Centrale di Torino Turin Italy
| | | | | | | | | |
Collapse
|
9
|
Simmons MM, Thorne L, Ortiz-Pelaez A, Spiropoulos J, Georgiadou S, Papasavva-Stylianou P, Andreoletti O, Hawkins SA, Meloni D, Cassar C. Transmissible spongiform encephalopathy in goats: is PrP rapid test sensitivity affected by genotype? J Vet Diagn Invest 2020; 32:87-93. [PMID: 31894737 PMCID: PMC7003235 DOI: 10.1177/1040638719896327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transmissible spongiform encephalopathy (TSE) surveillance in goats relies on tests initially approved for cattle, subsequently assessed for sheep, and approval extrapolated for use in "small ruminants." The current EU-approved immunodetection tests employ antibodies against various epitopes of the prion protein PrPSc, which is encoded by the host PRNP gene. The caprine PRNP gene is polymorphic, mostly at codons different from the ovine PRNP. The EU goat population is much more heterogeneous than the sheep population, with more PRNP-related polymorphisms, and with marked breed-related differences. The ability of the current tests to detect disease-specific PrPSc generated against these different genetic backgrounds is currently assumed, rather than proven. We examined whether common polymorphisms within the goat PRNP gene might have any adverse effect on the relative performance of EU-approved rapid tests. The sample panel comprised goats from the UK, Cyprus, France, and Italy, with either experimental or naturally acquired scrapie at both the preclinical and/or unknown and clinical stages of disease. Test sensitivity was significantly lower and more variable when compared using samples from animals that were preclinical or of unknown status. However, all of the rapid tests included in our study were able to correctly identify all samples from animals in the clinical stages of disease, apart from samples from animals polymorphic for serine or aspartic acid at codon 146, in which the performance of the Bio-Rad tests was profoundly affected. Our data show that some polymorphisms may adversely affect one test and not another, as well as underline the dangers of extrapolating from other species.
Collapse
Affiliation(s)
- Marion M. Simmons
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Leigh Thorne
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Angel Ortiz-Pelaez
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - John Spiropoulos
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Soteria Georgiadou
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Penelope Papasavva-Stylianou
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Olivier Andreoletti
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Stephen A.C. Hawkins
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Daniela Meloni
- APHA-Weybridge, Addlestone, Surrey, UK (Simmons, Thorne, Spiropoulos, Hawkins, Cassar)
- Unit of Biological Hazards and Contaminants (BIOCONTAM), Risk Assessment & Scientific Assistance, European Food Safety Authority (EFSA), Parma, Italy (Ortiz-Pelaez)
- Veterinary Services of Cyprus, Nicosia, Cyprus (Georgiadou, Papasavva-Stylianou)
- UMR Institut National de la Recherche Agronomique, École Nationale Vétérinaire de Toulouse, Toulouse, France (Andreoletti)
- Italian Reference Laboratory for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy (Meloni)
| | - Claire Cassar
- Claire Cassar, Department of Pathology, APHA-Weybridge, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK.
| |
Collapse
|
10
|
Demirtepe H, Melymuk L, Diamond ML, Bajard L, Vojta Š, Prokeš R, Sáňka O, Klánová J, Palkovičová Murínová Ľ, Richterová D, Rašplová V, Trnovec T. Linking past uses of legacy SVOCs with today's indoor levels and human exposure. ENVIRONMENT INTERNATIONAL 2019; 127:653-663. [PMID: 30991221 DOI: 10.1016/j.envint.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 05/22/2023]
Abstract
Semivolatile organic compounds (SVOCs) emitted from consumer products, building materials, and indoor and outdoor activities can be highly persistent in indoor environments. Human exposure to and environmental contamination with polychlorinated biphenyls (PCBs) was previously reported in a region near a former PCB production facility in Slovakia. However, we found that the indoor residential PCB levels did not correlate with the distance from the facility. Rather, indoor levels in this region and those reported in the literature were related to the historic PCB use on a national scale and the inferred presence of primary sources of PCBs in the homes. Other SVOCs had levels linked with either the activities in the home, e.g., polycyclic aromatic hydrocarbons (PAHs) with wood heating; or outdoor activities, e.g., organochlorine pesticides (OCPs) with agricultural land use and building age. We propose a classification framework to prioritize SVOCs for monitoring in indoor environments and to evaluate risks from indoor SVOC exposures. Application of this framework to 88 measured SVOCs identified several PCB congeners (CB-11, -28, -52), hexachlorobenzene (HCB), benzo(a)pyrene, and γ-HCH as priority compounds based on high exposure and toxicity assessed by means of toxicity reference values (TRVs). Application of the framework to many emerging compounds such as novel flame retardants was not possible because of either no or outdated TRVs. Concurrent identification of seven SVOC groups in indoor environments provided information on their comparative levels and distributions, their sources, and informed our assessment of associated risks.
Collapse
Affiliation(s)
- Hale Demirtepe
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Lisa Melymuk
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic.
| | - Miriam L Diamond
- Department of Earth Sciences, and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Lola Bajard
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Šimon Vojta
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Ondřej Sáňka
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Denisa Richterová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Vladimíra Rašplová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Tomáš Trnovec
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| |
Collapse
|
11
|
Kumagai S, Daikai T, Onodera T. Bovine Spongiform Encephalopathy
- A Review from the Perspective of Food Safety. Food Saf (Tokyo) 2019; 7:21-47. [PMID: 31998585 PMCID: PMC6978881 DOI: 10.14252/foodsafetyfscj.2018009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/01/2019] [Indexed: 12/04/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease that belongs to transmissible spongiform encephalopathy (TSE). Since the first case was identified in the UK in 1986, BSE spread to other countries including Japan. Its incidence peaked in 1992 in the UK and from 2001 to 2006 in many other countries, but a feed ban aimed at eliminating the recycling of the BSE agent and other control measures aimed at preventing food and feed contamination with the agent were highly effective at reducing the spread of BSE. In 2004, two types of atypical BSE, H-type BSE (H-BSE) and L-type BSE (L-BSE), which differ from classical BSE (C-BSE), were found in France and Italy. Atypical BSE, which is assumed to occur spontaneously, has also been detected among cattle in other countries including Japan. The BSE agent including atypical BSE agent is a unique food-safety hazard with different chemical and biological properties from the microbial pathogens and toxic chemicals that contaminate food. In this review, we summarize the reported findings on the tissue distribution of BSE prions in infected cattle and other aspects of BSE, as well as the control measures against the disease employed in Japan. Topics that require further studies are discussed based on the summarized findings from the perspective of food safety.
Collapse
Affiliation(s)
- Susumu Kumagai
- Research Center for Food Safety, The University of
Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657,
Japan
| | - Takateru Daikai
- Food Safety Commission of Japan Secretariat, Akasaka
Park Bld. 22F, Akasaka 5-2-20, Minato-ku,
Tokyo 107-6122, Japan
- Cooperative Department of Veterinary Medicine,
Graduate School of Veterinary Sciences, Iwate University, Morioka-shi,
Iwate 020-8550, Japan
| | - Takashi Onodera
- Research Center for Food Safety, The University of
Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657,
Japan
| |
Collapse
|
12
|
Favole A, Mazza M, Vallino Costassa E, D'Angelo A, Lombardi G, Marconi P, Crociara P, Berrone E, Gallo M, Palmitessa C, Orrù CD, Caughey B, Acutis PL, Caramelli M, Casalone C, Corona C. Early and Pre-Clinical Detection of Prion Seeding Activity in Cerebrospinal Fluid of Goats using Real-Time Quaking-Induced Conversion Assay. Sci Rep 2019; 9:6173. [PMID: 30992522 PMCID: PMC6467873 DOI: 10.1038/s41598-019-42449-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/27/2019] [Indexed: 12/04/2022] Open
Abstract
Since 2005, two cases of natural bovine spongiform encephalopathies (BSE) have been reported in goats. Furthermore, experimental transmissions of classical (C-BSE) and atypical (L-BSE) forms of BSE in goats were also reported. To minimize further spreading of prion diseases in small ruminants the development of a highly sensitive and specific test for ante-mortem detection of infected animals would be of great value. Recent studies reported high diagnostic value of a second generation of cerebrospinal fluid (CSF) Real-Time Quaking-Induced Conversion (RT-QuIC) assay across a wide spectrum of human prions. Here, we applied this improved QuIC (IQ-CSF) for highly efficient detection of TSEs prion protein in goat cerebrospinal fluid. IQ-CSF sensitivity and specificity were evaluated on CSF samples collected at disease endpoint from goats naturally and experimentally infected with scrapie or bovine isolates of C-BSE and L-BSE, respectively. Next, CSF samples collected from L-BSE infected goats during pre-symptomatic stage were also analysed. PrPL-BSE associated seeding activity was detected at early time points after experimental inoculation, with an average time of 439 days before clinical symptoms appeared. Taken together these data are indicative of the great potential of this in vitro prion amplification assay as ante-mortem TSE test for live and asymptomatic small ruminants.
Collapse
Affiliation(s)
- Alessandra Favole
- National Reference Laboratory of TSEs (CEA), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Maria Mazza
- National Reference Laboratory of TSEs (CEA), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Elena Vallino Costassa
- National Reference Laboratory of TSEs (CEA), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Antonio D'Angelo
- Dipartimento di Scienze Veterinarie, Sezione Clinica Medica, University of Turin, Grugliasco, Turin, Italy
| | - Guerino Lombardi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Paola Marconi
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, Firenze, Italy
| | - Paola Crociara
- National Reference Laboratory of TSEs (CEA), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Elena Berrone
- National Reference Laboratory of TSEs (CEA), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Marina Gallo
- National Reference Laboratory of TSEs (CEA), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Claudia Palmitessa
- National Reference Laboratory of TSEs (CEA), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Christina D Orrù
- Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Byron Caughey
- Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Pier L Acutis
- National Reference Laboratory of TSEs (CEA), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Maria Caramelli
- National Reference Laboratory of TSEs (CEA), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Cristina Casalone
- National Reference Laboratory of TSEs (CEA), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Cristiano Corona
- National Reference Laboratory of TSEs (CEA), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy.
| |
Collapse
|
13
|
Douet JY, Lacroux C, Aron N, Head MW, Lugan S, Tillier C, Huor A, Cassard H, Arnold M, Beringue V, Ironside JW, Andréoletti O. Distribution and Quantitative Estimates of Variant Creutzfeldt-Jakob Disease Prions in Tissues of Clinical and Asymptomatic Patients. Emerg Infect Dis 2018; 23:946-956. [PMID: 28518033 PMCID: PMC5443438 DOI: 10.3201/eid2306.161734] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the United-Kingdom, ≈1 of 2,000 persons could be infected with variant Creutzfeldt-Jakob disease (vCJD). Therefore, risk of transmission of vCJD by medical procedures remains a major concern for public health authorities. In this study, we used in vitro amplification of prions by protein misfolding cyclic amplification (PMCA) to estimate distribution and level of the vCJD agent in 21 tissues from 4 patients who died of clinical vCJD and from 1 asymptomatic person with vCJD. PMCA identified major levels of vCJD prions in a range of tissues, including liver, salivary gland, kidney, lung, and bone marrow. Bioassays confirmed that the quantitative estimate of levels of vCJD prion accumulation provided by PMCA are indicative of vCJD infectivity levels in tissues. Findings provide critical data for the design of measures to minimize risk for iatrogenic transmission of vCJD.
Collapse
|
14
|
Ackermann I, Balkema-Buschmann A, Ulrich R, Tauscher K, Shawulu JC, Keller M, Fatola OI, Brown P, Groschup MH. Detection of PrP BSE and prion infectivity in the ileal Peyer's patch of young calves as early as 2 months after oral challenge with classical bovine spongiform encephalopathy. Vet Res 2017; 48:88. [PMID: 29258602 PMCID: PMC5738053 DOI: 10.1186/s13567-017-0495-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/01/2017] [Indexed: 11/28/2022] Open
Abstract
In classical bovine spongiform encephalopathy (C-BSE), an orally acquired prion disease of cattle, the ileal Peyer’s patch (IPP) represents the main entry port for the BSE agent. In earlier C-BSE pathogenesis studies, cattle at 4–6 months of age were orally challenged, while there are strong indications that the risk of infection is highest in young animals. In the present study, unweaned calves aged 4–6 weeks were orally challenged to determine the earliest time point at which newly formed PrPBSE and BSE infectivity are detectable in the IPP. For this purpose, calves were culled 1 week as well as 2, 4, 6 and 8 months post-infection (mpi) and IPPs were examined for BSE infectivity using a bovine PrP transgenic mouse bioassay, and for PrPBSE by immunohistochemistry (IHC) and protein misfolding cyclic amplification (PMCA) assays. For the first time, BSE prions were detected in the IPP as early as 2 mpi by transgenic mouse bioassay and PMCA and 4 mpi by IHC in the follicular dendritic cells (FDCs) of the IPP follicles. These data indicate that BSE prions propagate in the IPP of unweaned calves within 2 months of oral uptake of the agent.
Collapse
Affiliation(s)
- Ivett Ackermann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kerstin Tauscher
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - James C Shawulu
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Olanrewaju I Fatola
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Paul Brown
- National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
15
|
Huor A, Douet JY, Lacroux C, Lugan S, Tillier C, Aron N, Cassard H, Arnold M, Torres JM, Ironside JW, Andréoletti O. Infectivity in bone marrow from sporadic CJD patients. J Pathol 2017; 243:273-278. [PMID: 28791720 DOI: 10.1002/path.4954] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/14/2017] [Accepted: 07/31/2017] [Indexed: 11/06/2022]
Abstract
Prion infectivity was recently identified in the blood of both sporadic and variant Creutzfeldt-Jakob disease (CJD) patients. In variant CJD (vCJD), the widespread distribution of prions in peripheral tissues of both asymptomatic and symptomatic patients is likely to explain the occurrence of the observed prionaemia. However, in sporadic CJD (sCJD), prion infectivity is described to be located principally in the central nervous system. In this study, we investigated the presence of prion infectivity in bone marrow collected after death in patients affected with different sCJD agents. Bioassays in transgenic mice expressing the human prion protein revealed the presence of unexpectedly high levels of infectivity in the bone marrow from seven out of eight sCJD cases. These findings may explain the presence of blood-borne infectivity in sCJD patients. They also suggest that the distribution of prion infectivity in peripheral tissues in sCJD patients could be wider than currently believed, with potential implications for the iatrogenic transmission risk of this disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alvina Huor
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, France
| | - Jean Yves Douet
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, France
| | - Caroline Lacroux
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, France
| | - Séverine Lugan
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, France
| | - Cécile Tillier
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, France
| | - Naima Aron
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, France
| | - Hervé Cassard
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, France
| | - Mark Arnold
- Animal and Plant Health Agency, Sutton Bonington, Loughborough, UK
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA/INIA), Valdeolmos-, Madrid, Spain
| | - James W Ironside
- National Creutzfeldt-Jakob Disease Research & Surveillance Unit, University of Edinburgh, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, France
| |
Collapse
|
16
|
Mononucleated Blood Cell Populations Display Different Abilities To Transmit Prion Disease by the Transfusion Route. J Virol 2016; 90:3439-45. [PMID: 26764000 DOI: 10.1128/jvi.02783-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/07/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Previous experiments carried out in a sheep scrapie model demonstrated that the transfusion of 200 μl of prion-infected whole blood has an apparent 100% efficacy for disease transmission. These experiments also indicated that, despite the apparent low infectious titer, the intravenous administration of white blood cells (WBC) resulted in efficient disease transmission. In the study presented here, using the same transmissible spongiform encephalopathy (TSE) animal model, our aim was to determine the minimal number of white blood cells and the specific abilities of mononucleated cell populations to transmit scrapie by the transfusion route. Our results confirmed that the transfusion of 100 μl, but not 10 μl, of fresh whole blood collected in asymptomatic scrapie-infected donor sheep can transmit the disease. The data also show that the intravenous administration of 10(5) WBCs is sufficient to cause scrapie in recipient sheep. Cell-sorted CD45R(+) (predominantly B lymphocytes), CD4(+)/CD8(+) (T lymphocytes), and CD14(+) (monocytes/macrophages) blood cell subpopulations all were shown to contain prion infectivity by bioassays in ovine PrP transgenic mice. However, while the intravenous administration of 10(6) CD45(+) or CD4(+)/8(+) living cells was able to transmit the disease, similar numbers of CD14(+) cells failed to infect the recipients. These data support the contention that mononucleated blood cell populations display different abilities to transmit TSE by the transfusion route. They also represent an important input for the risk assessment of blood-borne prion disease transmission and for refining the target performance of leukoreduction processes that currently are applied to mitigate the transmission risk in transfusion medicine. IMPORTANCE Interindividual variant Creutzfeldt-Jakob disease (vCJD) transmission through blood and blood-derived products is considered a major public health issue in transfusion medicine. Over the last decade, TSE in sheep has emerged as a relevant model for assessing the blood-borne vCJD transmission risk. In this study, using a sheep TSE model, we characterized the ability of different peripheral blood mononucleated cell populations to infect TSE-free recipients by the transfusion route. Our results indicate that as little as 10(5) WBC and 100 μl of blood collected from asymptomatic scrapie infected animals can transmit the disease. They also demonstrate unambiguously that peripheral blood mononuclear cell subpopulations display dramatically different abilities to transmit the disease. These data represent an important input for the risk assessment of blood-borne prion disease transmission and for refining the target performance of leukoreduction processes that currently are applied to mitigate the transmission risk in transfusion medicine.
Collapse
|
17
|
Andrievskaia O, Tangorra E. Detection of bovine central nervous system tissues in rendered animal by-products by one-step real-time reverse transcription PCR assay. J Food Prot 2014; 77:2088-97. [PMID: 25474055 DOI: 10.4315/0362-028x.jfp-14-223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Contamination of rendered animal byproducts with central nervous system tissues (CNST) from animals with bovine spongiform encephalopathy is considered one of the vehicles of disease transmission. Removal from the animal feed chain of CNST originated from cattle of a specified age category, species-labeling of rendered meat products, and testing of rendered products for bovine CNST are tasks associated with the epidemiological control of bovine spongiform encephalopathy. A single-step TaqMan real-time reverse transcriptase (RRT) PCR assay was developed and evaluated for specific detection of bovine glial fibrillary acidic protein (GFAP) mRNA, a biomarker of bovine CNST, in rendered animal by-products. An internal amplification control, mammalian b -actin mRNA, was coamplified in the duplex RRT-PCR assay to monitor amplification efficiency, normalize amplification signals, and avoid false-negative results. The functionality of the GFAP mRNA RRT-PCR was assessed through analysis of laboratory-generated binary mixtures of bovine central nervous system (CNS) and muscle tissues treated under various thermal settings imitating industrial conditions. The assay was able to detect as low as 0.05 % (wt/wt) bovine brain tissue in binary mixtures heat treated at 110 to 130°C for 20 to 60 min. Further evaluation of the GFAP mRNA RRT-PCR assay involved samples of industrial rendered products of various species origin and composition obtained from commercial sources and rendering plants. Low amounts of bovine GFAP mRNA were detected in several bovine-rendered products, which was in agreement with declared species composition. An accurate estimation of CNS tissue content in industrial-rendered products was complicated due to a wide range of temperature and time settings in rendering protocols. Nevertheless, the GFAP mRNA RRT-PCR assay may be considered for bovine CNS tissue detection in rendered products in combination with other available tools (for example, animal age verification) in inspection programs.
Collapse
Affiliation(s)
- Olga Andrievskaia
- Canadian Food Inspection Agency, Ottawa Laboratory (Fallowfield), 3851 Fallowfield Road, Ottawa, Ontario, Canada K2H 8P9.
| | - Erin Tangorra
- Canadian Food Inspection Agency, Ottawa Laboratory (Fallowfield), 3851 Fallowfield Road, Ottawa, Ontario, Canada K2H 8P9
| |
Collapse
|
18
|
Protocol for further laboratory investigations into the distribution of infectivity of Atypical BSE. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
19
|
Chen CC, Wang YH. Estimation of the exposure of the UK population to the bovine spongiform encephalopathy agent through dietary intake during the period 1980 to 1996. PLoS One 2014; 9:e94020. [PMID: 24736322 PMCID: PMC3988046 DOI: 10.1371/journal.pone.0094020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/11/2014] [Indexed: 11/22/2022] Open
Abstract
Although the incidence of variant Creutzfeldt-Jakob disease (vCJD) has declined to 1 since 2012 in the UK, uncertainty remains regarding possible future cases and the size of the subclinical population that may cause secondary transmission of the disease through blood transfusion. Estimating the number of individuals who were exposed to the bovine spongiform encephalopathy (BSE) infectious agent and may be susceptible to vCJD will help to clarify related public health concerns and plan strategies. In this paper, we explore this estimate by describing the probability of potential exposure due to dietary intake throughout the BSE epidemic period from 1980 to 1996 as a stochastic Poisson process. We estimate the age- and gender-specific exposure intensities in food categories of beef and beef-containing dishes, burgers and kebabs, pies, and sausages, separating the two periods of 1980-1989 and 1990-1996 due to the specified bovine offal legislation of 1989. The estimated total number of (living) exposed individuals during each period is 5,089,027 (95% confidence interval [CI] 4,514,963-6,410,317), which was obtained by multiplying the population size of different birth cohorts by the probability of exposure via dietary intake and the probability of survival until the end of 2013. The estimated number is approximately doubled, assuming a contamination rate of [Formula: see text]. Among those individuals estimated, 31,855 (95% CI 26,849-42,541) are susceptible to infection. We also examined the threshold hypothesis by fitting an extreme-value distribution to the estimated infectious dose of the exposed individuals and obtained a threshold estimate of 13.7 bID50 (95% CI 6.6-26.2 bID50) (Weibull). The results provide useful information on potential carriers of prion disease who may pose a threat of infection via blood transfusion and thus provide insight into the likelihood of new incidents of vCJD occurring in the future.
Collapse
Affiliation(s)
- Chu-Chih Chen
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Yin-Han Wang
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
20
|
|
21
|
Consideration of Risk Variations in Japan Derived from the Proposed Revisions of the Current Countermeasures against BSE. Food Saf (Tokyo) 2014. [DOI: 10.14252/foodsafetyfscj.2014019f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Affiliation(s)
- V. Beringue
- UR892 Virologie et Immunologie Moléculaires Centre de Recherche de Jouy-en-Josas F-78352 Jouy-en-Josas, France
| | - O. Andreoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles 31076 Toulouse, France
| |
Collapse
|
23
|
Chen CC, Wang YH, Wu KY. Consumption of bovine spongiform encephalopathy (BSE) contaminated beef and the risk of variant Creutzfeldt-Jakob disease. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2013; 33:1958-1968. [PMID: 23755826 DOI: 10.1111/risa.12079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To date, the variant Creutzfeldt-Jakob disease (vCJD) risk assessments that have been performed have primarily focused on predicting future vCJD cases in the United Kingdom, which underwent a bovine spongiform encephalopathy (BSE) epidemic between 1980 and 1996. Surveillance of potential BSE cases was also used to assess vCJD risk, especially in other BSE-prevalent EU countries. However, little is known about the vCJD risk for uninfected individuals who accidentally consume BSE-contaminated meat products in or imported from a country with prevalent BSE. In this article, taking into account the biological mechanism of abnormal prion PrP(res) aggregation in the brain, the probability of exposure, and the expected amount of ingested infectivity, we establish a stochastic mean exponential growth model of lifetime exposure through dietary intake. Given the findings that BSE agents behave similarly in humans and macaques, we obtained parameter estimates from experimental macaque data. We then estimated the accumulation of abnormal prions to assess lifetime risk of developing clinical signs of vCJD. Based on the observed number of vCJD cases and the estimated number of exposed individuals during the BSE epidemic period from 1980 to 1996 in the United Kingdom, an exposure threshold hypothesis is proposed. Given the age-specific risk of infection, the hypothesis explains the observations very well from an extreme-value distribution fitting of the estimated BSE infectivity exposure. The current BSE statistics in the United Kingdom are provided as an example.
Collapse
Affiliation(s)
- Chu-Chih Chen
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | | | | |
Collapse
|
24
|
Adkin A, Donaldson N, Kelly L. A quantitative assessment of the amount of prion diverted to Category 1 materials and wastewater during processing. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2013; 33:1197-1211. [PMID: 23278804 DOI: 10.1111/j.1539-6924.2012.01922.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this article the development and parameterization of a quantitative assessment is described that estimates the amount of TSE infectivity that is present in a whole animal carcass (bovine spongiform encephalopathy [BSE] for cattle and classical/atypical scrapie for sheep and lambs) and the amounts that subsequently fall to the floor during processing at facilities that handle specified risk material (SRM). BSE in cattle was found to contain the most oral doses, with a mean of 9864 BO ID50 s (310, 38840) in a whole carcass compared to a mean of 1851 OO ID50 s (600, 4070) and 614 OO ID50 s (155, 1509) for a sheep infected with classical and atypical scrapie, respectively. Lambs contained the least infectivity with a mean of 251 OO ID50 s (83, 548) for classical scrapie and 1 OO ID50 s (0.2, 2) for atypical scrapie. The highest amounts of infectivity falling to the floor and entering the drains from slaughtering a whole carcass at SRM facilities were found to be from cattle infected with BSE at rendering and large incineration facilities with 7.4 BO ID50 s (0.1, 29), intermediate plants and small incinerators with a mean of 4.5 BO ID50 s (0.1, 18), and collection centers, 3.6 BO ID50 s (0.1, 14). The lowest amounts entering drains are from lambs infected with classical and atypical scrapie at intermediate plants and atypical scrapie at collection centers with a mean of 3 × 10(-7) OO ID50 s (2 × 10(-8) , 1 × 10(-6) ) per carcass. The results of this model provide key inputs for the model in the companion paper published here.
Collapse
Affiliation(s)
- Amie Adkin
- Epidemiology, Surveillance and Risk Group, Animal Health and Veterinary Laboratories Agency, Woodham Lane, Weybridge, KT15 3NB, UK.
| | | | | |
Collapse
|
25
|
Barnes R, Lehman C. Modeling of bovine spongiform encephalopathy in a two-species feedback loop. Epidemics 2013; 5:85-91. [PMID: 23746801 DOI: 10.1016/j.epidem.2013.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/18/2013] [Accepted: 04/01/2013] [Indexed: 11/18/2022] Open
Abstract
Bovine spongiform encephalopathy, otherwise known as mad cow disease, can spread when an individual cow consumes feed containing the infected tissues of another individual, forming a one-species feedback loop. Such feedback is the primary means of transmission for BSE during epidemic conditions. Following outbreaks in the European Union and elsewhere, many governments enacted legislation designed to limit the spread of such diseases via elimination or reduction of one-species feedback loops in agricultural systems. However, two-species feedback loops-those in which infectious material from one-species is consumed by a secondary species whose tissue is then consumed by the first species-were not universally prohibited and have not been studied before. Here we present a basic ecological disease model which examines the rôle feedback loops may play in the spread of BSE and related diseases. Our model shows that there are critical thresholds between the infection's expansion and decrease related to the lifespan of the hosts, the growth rate of the prions, and the amount of prions circulating between hosts. The ecological disease dynamics can be intrinsically oscillatory, having outbreaks as well as refractory periods which can make it appear that the disease is under control while it is still increasing. We show that non-susceptible species that have been intentionally inserted into a feedback loop to stop the spread of disease do not, strictly by themselves, guarantee its control, though they may give that appearance by increasing the refractory period of an epidemic's oscillations. We suggest ways in which age-related dynamics and cross-species coupling should be considered in continuing evaluations aimed at maintaining a safe food supply.
Collapse
Affiliation(s)
- Richard Barnes
- Ecology, Evolution, & Behavior, University of Minnesota, USA.
| | | |
Collapse
|
26
|
Bovine Spongiform Encephalopathy: A Tipping Point in One Health and Food Safety. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45791-7_264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Stack MJ, Moore SJ, Vidal-Diez A, Arnold ME, Jones EM, Spencer YI, Webb P, Spiropoulos J, Powell L, Bellerby P, Thurston L, Cooper J, Chaplin MJ, Davis LA, Everitt S, Focosi-Snyman R, Hawkins SAC, Simmons MM, Wells GAH. Experimental bovine spongiform encephalopathy: detection of PrP(Sc) in the small intestine relative to exposure dose and age. J Comp Pathol 2011; 145:289-301. [PMID: 21388635 DOI: 10.1016/j.jcpa.2011.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/18/2010] [Accepted: 01/13/2011] [Indexed: 11/25/2022]
Abstract
European regulations for the control of bovine spongiform encephalopathy (BSE) decree destruction of the intestines from slaughtered cattle, therefore producers have been obliged to import beef casings from countries with a negligible BSE risk. This study applies immunohistochemical and biochemical approaches to investigate the occurrence and distribution of disease-associated prion protein (PrP(Sc)) in the duodenum, jejunum and ileum of cattle orally exposed to a 1 g or 100 g dose of a titrated BSE brainstem homogenate. Samples were derived from animals at various times post exposure. Lymphoid follicles were counted and the frequency of affected follicles recorded. No PrP(Sc) was detected in the duodenum or jejunum of animals exposed to a 1 g dose or in the duodenum of animals receiving a 100 g dose. PrP(Sc) was detected in the lymphoid tissue of the ileum of 1/98 (1.0%) animals receiving the 1 g dose and in the jejunum and ileum of 8/58 (13.8%) and 45/99 (45.5%), respectively, of animals receiving the 100 g dose. The frequency of PrP(Sc)- positive follicles was less than 1.5% per case and biochemical tests appeared less sensitive than immunohistochemistry. The probability of detecting lymphoid follicles in the ileum declined with age and for the 100 g exposure the proportion of positive follicles increased, while the proportion of positive animals decreased with age. Detection of PrP(Sc) in intestinal neural tissue was rare. The results suggest that the jejunum and duodenum of BSE-infected cattle contain considerably less BSE infectivity than the ileum, irrespective of exposure dose. In animals receiving the low exposure dose, as in most natural cases of BSE, the rarity of PrP(Sc) detection compared with high-dose exposure, suggests a very low BSE risk from food products containing the jejunum and duodenum of cattle slaughtered for human consumption.
Collapse
Affiliation(s)
- M J Stack
- Molecular Pathogenesis and Genetics Department, Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Scientific Opinion on a review of the BSE‐related risk in bovine intestines. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Scientific Opinion on the revision of the quantitative risk assessment (QRA) of the BSE risk posed by processed animal proteins (PAPs). EFSA J 2011. [DOI: 10.2903/j.efsa.2011.1947] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
30
|
Simmons MM, Spiropoulos J, Webb PR, Spencer YI, Czub S, Mueller R, Davis A, Arnold ME, Marsh S, Hawkins SAC, Cooper JA, Konold T, Wells GAH. Experimental classical bovine spongiform encephalopathy: definition and progression of neural PrP immunolabeling in relation to diagnosis and disease controls. Vet Pathol 2010; 48:948-63. [PMID: 21078883 DOI: 10.1177/0300985810387072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tissues from sequential-kill time course studies of bovine spongiform encephalopathy (BSE) were examined to define PrP immunohistochemical labeling forms and map disease-specific labeling over the disease course after oral exposure to the BSE agent at two dose levels. Study was confined to brainstem, spinal cord, and certain peripheral nervous system ganglia-tissues implicated in pathogenesis and diagnosis or disease control strategies. Disease-specific labeling in the brainstem in 39 of 220 test animals showed the forms and patterns observed in natural disease and invariably preceded spongiform changes. A precise temporal pattern of increase in labeling was not apparent, but labeling was generally most widespread in clinical cases, and it always involved neuroanatomic locations in the medulla oblongata. In two cases, sparse labeling was confined to one or more neuroanatomic nuclei of the medulla oblongata. When involved, the spinal cord was affected at all levels, providing no indication of temporal spread within the cord axis or relative to the brainstem. Where minimal PrP labeling occurred in the thoracic spinal cord, it was consistent with initial involvement of general visceral efferent neurons. Labeling of ganglia involved only sensory ganglia and only when PrP was present in the brainstem and spinal cord. These experimental transmissions mimicked the neuropathologic findings in BSE-C field cases, independent of dose of agent or stage of disease. The model supports current diagnostic sampling approaches and control measures for the removal and destruction of nervous system tissues in slaughtered cattle.
Collapse
Affiliation(s)
- M M Simmons
- Department of Pathology, Veterinary Laboratories Agency, Addlestone, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Adkin A, Webster V, Arnold M, Wells G, Matthews D. Estimating the impact on the food chain of changing bovine spongiform encephalopathy (BSE) control measures: The BSE Control Model. Prev Vet Med 2010; 93:170-82. [DOI: 10.1016/j.prevetmed.2009.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 08/27/2009] [Accepted: 09/14/2009] [Indexed: 11/29/2022]
|
32
|
|