1
|
Li H, Lin Q, Jiang Z, Zhong G. Analyzing the non-linear relationship between fasting blood glucose levels and Gensini score in patients with STEMI. Front Cardiovasc Med 2024; 11:1427567. [PMID: 39749314 PMCID: PMC11693739 DOI: 10.3389/fcvm.2024.1427567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Background Acute myocardial infarction (AMI), particularly ST-segment elevation myocardial infarction (STEMI), significantly impacts global health, exacerbated by risk factors such as diabetes mellitus (DM). While the Gensini score effectively quantifies coronary artery lesions, its correlation with fasting blood glucose (FBG) levels, particularly in a non-linear fashion, has not been thoroughly explored in STEMI patients. Methods This study analyzed data from 464 STEMI patients treated with percutaneous coronary intervention at the First People's Hospital of Taizhou City, Zhejiang Province, China, from January 2010 to October 2014. We stratified patients into three FBG tertiles and utilized multiple statistical analyses, including least absolute shrinkage and selection operator (LASSO) regression and curve fitting, to examine the potential U-shaped relationship between FBG levels and Gensini scores. Results Our analysis revealed significant differences in Gensini scores across FBG tertiles, with both hypoglycemic and hyperglycemic extremes showing higher scores compared to the normoglycemic range. The curve fitting analysis confirmed a U-shaped relationship, suggesting a significant, non-linear association between FBG levels and coronary artery lesion severity, regardless of diabetes status. Conclusions Our findings underscore the complexity of glycemic control in STEMI management and suggest that both hypo- and hyperglycemia are significant risk factors for severe coronary lesions as quantified by the Gensini score. This study highlights the importance of comprehensive FBG monitoring and management to improve outcomes for STEMI patients.
Collapse
Affiliation(s)
- Han Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Quanzhi Lin
- Department of Cardiology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Zhiyuan Jiang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guoqiang Zhong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Yi M, Cruz Cisneros L, Cho EJ, Alexander M, Kimelman FA, Swentek L, Ferrey A, Tantisattamo E, Ichii H. Nrf2 Pathway and Oxidative Stress as a Common Target for Treatment of Diabetes and Its Comorbidities. Int J Mol Sci 2024; 25:821. [PMID: 38255895 PMCID: PMC10815857 DOI: 10.3390/ijms25020821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes is a chronic disease that induces many comorbidities, including cardiovascular disease, nephropathy, and liver damage. Many mechanisms have been suggested as to how diabetes leads to these comorbidities, of which increased oxidative stress in diabetic patients has been strongly implicated. Limited knowledge of antioxidative antidiabetic drugs and substances that can address diabetic comorbidities through the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway calls for detailed investigation. This review will describe how diabetes increases oxidative stress, the general impact of that oxidative stress, and how oxidative stress primarily contributes to diabetic comorbidities. It will also address how treatments for diabetes, especially focusing on their effects on the Nrf2 antioxidative pathway, have been shown to similarly affect the Nrf2 pathway of the heart, kidney, and liver systems. This review demonstrates that the Nrf2 pathway is a common pathogenic component of diabetes and its associated comorbidities, potentially identifying this pathway as a target to guide future treatments.
Collapse
Affiliation(s)
- Michelle Yi
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Leslie Cruz Cisneros
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Eric J. Cho
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Francesca A. Kimelman
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Lourdes Swentek
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Antoney Ferrey
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Ekamol Tantisattamo
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| |
Collapse
|
3
|
Lee WJ, Cheng H, Whitney BM, Nance RM, Britton SR, Jordahl K, Lindstrom S, Ruderman SA, Kitahata MM, Saag MS, Willig AL, Burkholder G, Eron JJ, Kovacic JC, Björkegren JLM, Mathews WC, Cachay E, Feinstein MJ, Budoff M, Hunt PW, Moore RD, Keruly J, McCaul ME, Chander G, Webel A, Mayer KH, Delaney JA, Crane PK, Martinez C, Crane HM, Hao K, Peter I. Polygenic risk scores point toward potential genetic mechanisms of type 2 myocardial infarction in people with HIV. Int J Cardiol 2023; 383:15-23. [PMID: 37149004 PMCID: PMC10247524 DOI: 10.1016/j.ijcard.2023.04.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/03/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND People with human immunodeficiency virus (HIV) infection (PWH) are at higher risk of myocardial infarction (MI) than those without HIV. About half of MIs in PWH are type 2 (T2MI), resulting from mismatch between myocardial oxygen supply and demand, in contrast to type 1 MI (T1MI), which is due to primary plaque rupture or coronary thrombosis. Despite worse survival and rising incidence in the general population, evidence-based treatment recommendations for T2MI are lacking. We used polygenic risk scores (PRS) to explore genetic mechanisms of T2MI compared to T1MI in PWH. METHODS We derived 115 PRS for MI-related traits in 9541 PWH enrolled in the Centers for AIDS Research Network of Integrated Clinical Systems cohort with adjudicated T1MI and T2MI. We applied multivariate logistic regression analyses to determine the association with T1MI and T2MI. Based on initial findings, we performed gene set enrichment analysis of the top variants composing PRS associated with T2MI. RESULTS We found that T1MI was strongly associated with PRS for cardiovascular disease, lipid profiles, and metabolic traits. In contrast, PRS for alcohol dependence and cholecystitis, significantly enriched in energy metabolism pathways, were predictive of T2MI risk. The association remained after the adjustment for actual alcohol consumption. CONCLUSIONS We demonstrate distinct genetic traits associated with T1MI and T2MI among PWH further highlighting their etiological differences and supporting the role of energy regulation in T2MI pathogenesis.
Collapse
Affiliation(s)
- Won Jun Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Bridget M Whitney
- Department of Medicine, University of Washington School of Public Health, Seattle, WA, USA
| | - Robin M Nance
- Department of Medicine, University of Washington School of Public Health, Seattle, WA, USA
| | - Sierra R Britton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, New York, USA; Department of Population Health Sciences, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Kristina Jordahl
- Department of Epidemiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Sara Lindstrom
- Department of Epidemiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephanie A Ruderman
- Department of Epidemiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Mari M Kitahata
- Department of Medicine, University of Washington School of Public Health, Seattle, WA, USA
| | - Michael S Saag
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amanda L Willig
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Greer Burkholder
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joseph J Eron
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, NY, New York, USA; Victor Chang Cardiac Research Institute, Darlinghurst, Australia; St Vincent's Clinical School, University of NSW, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, New York, USA; Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | | | - Edward Cachay
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Matthew J Feinstein
- Department of Medicine, Northwestern University Feinberg School of Medicine, Evanston, IL, USA
| | - Mathew Budoff
- Deparment of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Peter W Hunt
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Richard D Moore
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jeanne Keruly
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Mary E McCaul
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Geetanjali Chander
- Department of Medicine, University of Washington School of Public Health, Seattle, WA, USA; Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Allison Webel
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA; School of Nursing, University of Washington, Seattle, WA, USA
| | | | - Joseph A Delaney
- Department of Medicine, University of Washington School of Public Health, Seattle, WA, USA; College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - Paul K Crane
- Department of Medicine, University of Washington School of Public Health, Seattle, WA, USA
| | - Claudia Martinez
- Department of Medicine, Division of Cardiology, University of Miami Miller School of Medicine, Florida, USA
| | - Heidi M Crane
- Department of Medicine, University of Washington School of Public Health, Seattle, WA, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, New York, USA.
| |
Collapse
|
4
|
Sun M, Wang R, Xia R, Xia Z, Wu Z, Wang T. Amelioration of myocardial ischemia/reperfusion injury in diabetes: A narrative review of the mechanisms and clinical applications of dexmedetomidine. Front Pharmacol 2022; 13:949754. [PMID: 36120296 PMCID: PMC9470922 DOI: 10.3389/fphar.2022.949754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms contributing to the pathogenesis of myocardial ischemia-reperfusion (I/R) injury are complex and multifactorial. Many strategies have been developed to ameliorate myocardial I/R injuries based on these mechanisms. However, the cardioprotective effects of these strategies appear to diminish in diabetic states. Diabetes weakens myocardial responses to therapies by disrupting intracellular signaling pathways which may be responsible for enhancing cellular resistance to damage. Intriguingly, it was found that Dexmedetomidine (DEX), a potent and selective α2-adrenergic agonist, appears to have the property to reverse diabetes-related inhibition of most intervention-mediated myocardial protection and exert a protective effect. Several mechanisms were revealed to be involved in DEX’s protection in diabetic rodent myocardial I/R models, including PI3K/Akt and associated GSK-3β pathway stimulation, endoplasmic reticulum stress (ERS) alleviation, and apoptosis inhibition. In addition, DEX could attenuate diabetic myocardial I/R injury by up-regulating autophagy, reducing ROS production, and inhibiting the inflammatory response through HMGB1 pathways. The regulation of autonomic nervous function also appeared to be involved in the protective mechanisms of DEX. In the present review, the evidence and underlying mechanisms of DEX in ameliorating myocardial I/R injury in diabetes are summarized, and the potential of DEX for the treatment/prevention of myocardial I/R injury in diabetic patients is discussed.
Collapse
Affiliation(s)
- Meng Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhilin Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| | - Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| |
Collapse
|
5
|
Mandal P, Shah S, Chamlagain R, Rawal L, Gami R, Kartikey A, Singh AK, Sah SK, Joshi A, Acharya S. Late onset ST-elevation myocardial infarction (STEMI) in patient with COVID-19: A case report from Nepal. Ann Med Surg (Lond) 2022; 78:103764. [PMID: 35573472 PMCID: PMC9090976 DOI: 10.1016/j.amsu.2022.103764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Although pulmonary consequences are less common in COVID-19 than cardiac issues, it is critical to understand the cause of probable cardiac complications and put the patient on constant watch, especially if they have risk factors such as diabetes mellitus. Case presentation Here, we report a case of 82-years old male with ST-segment elevated myocardial infarction (STEMI) that was developed as a complication of COVID-19. Discussion COVID-19 is now known to cause cardiovascular issues such as myocardial damage, heart failure, arrhythmia, and venous thromboembolism. With the involvement of COVID-19, the prevalence of cardiovascular manifestation has increased. The precise processes of extrapulmonary and systemic manifestations following COVID-19 are unknown. There is an elevated risk of cardiovascular harm, notably myocardial infraction followed by acute infection. Conclusion It is essential to understand the mechanism of potential cardiac complications and to keep the patient on close watch, especially if the patient has risk factors such as diabetes mellitus. SARS-CoV-2 causes cardiovascular complication by binding to the angiotensin-converting enzyme-2 receptor. ACE-2 receptor are present on the endothelial surface of alveolar and cardiac cells. It is important to keep the patient on a close follow-up with risk factors like diabetes mellitus.
Collapse
Affiliation(s)
- Prince Mandal
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Maharajgunj, 44600, Nepal
| | - Sangam Shah
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Maharajgunj, 44600, Nepal
| | - Rajan Chamlagain
- Tribhuvan University Teaching Hospital, Maharajgunj, 44600, Nepal
| | - Laba Rawal
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Maharajgunj, 44600, Nepal
| | - Roshan Gami
- Tribhuvan University Teaching Hospital, Maharajgunj, 44600, Nepal
| | - Abeer Kartikey
- Department of Internal Medicine, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Maharajgunj, 44600, Nepal
| | - Aanand Kumar Singh
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Maharajgunj, 44600, Nepal
| | - Sanjit Kumar Sah
- Tribhuvan University Teaching Hospital, Maharajgunj, 44600, Nepal
| | - Amir Joshi
- Tribhuvan University Teaching Hospital, Maharajgunj, 44600, Nepal
| | | |
Collapse
|
6
|
Bouraoui H, Trimeche B, Ernez-Hajri S, Mahdhaoui A, Zaaraoui J, Gasmi A, Jeridi G, Ammar H. [Impact of diabetes on mortality after myocardial infarction]. Ann Cardiol Angeiol (Paris) 2005; 54:55-9. [PMID: 15828458 DOI: 10.1016/j.ancard.2004.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
UNLABELLED Myocardial infarction is a common cause of mortality in people with diabetes. The aim of this study was to determine early and mid-term mortality in diabetic patients with myocardial infarction and to determine if hyperglycemia was predictor of mortality. We conducted a retrospective study of 100 diabetic patients compared with 100 non diabetic patients who were hospitalised in our institution between 1999 and 2003 for myocardial infarction. RESULTS Hospital and one year mortality were highest among diabetic patients compared with non diabetic patients. Multivariate analysis showed that admission plasma glucose was a consistent predictor factor of in hospital mortality RR 1.2 (IC 1.02-1.47). Admission plasma glucose was significantly higher in nonsurvivors diabetic patients than in survivors (22.7 vs 16 mmol/l P = 0.04). The predictor factors of one year mortality was age, female sex and no beta blocker at discharge RR5.3 (1.9-14.3). CONCLUSION Diabetic patients with myocardial infarction have poor prognosis and hyperglycemia was associated with in hospital mortality.
Collapse
Affiliation(s)
- H Bouraoui
- Service de cardiologie, hôpital Farhat-Hached, 4000 Sousse, Tunisie.
| | | | | | | | | | | | | | | |
Collapse
|