1
|
Wang Z, Jian G, Chen T, Chen Y, Li J, Wang N. The Qi-Bang-Yi-Shen formula ameliorates renal dysfunction and fibrosis in rats with diabetic kidney disease <em>via</em> regulating PI3K/AKT, ERK and PPARγ signaling pathways. Eur J Histochem 2023; 67. [PMID: 36856315 DOI: 10.4081/ejh.2023.3648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) and a growing public health problem worldwide. Losartan potassium (Los), an angiotensin II receptor blocker, has been used to treat DKD clinically. Recently, multi-herbal formula has been shown to exhibit therapeutic activities in DKD in China. Thus, we aimed to explore the protective effects of combination of Los and Qi-Bang-Yi-Shen formula (QBF) on DKD rats. Streptozotocin (STZ) injection was used to establish a rat model of DKD. Next, the bloodurea nitrogen (BUN), creatinine (CRE) and uric acid (UA) levels were detected in serum samples from DKD rats. Hematoxylin and eosin (H&E), periodic Acid Schiff (PAS) and Masson staining were performed to observe glomerular injury and glomerular fibrosis in DKD rats. In this study, we found that QBF or Los treatment could decrease serum BUN, CRE, UA levels and reduce urine albumin-to-creatinine ratio (ACR) in DKD rats. Additionally, QBF or Los treatment obviously inhibited glomerular mesangial expansion and glomerular fibrosis, attenuated glomerular injury in kidney tissues of DKD rats. Moreover, QBF or Los treatment significantly reduced PI3K, AKT and ERK1/2 protein expressions, but increased PPARγ level in kidney tissues of DKD rats. As expected, combined treatment of QBF and Los could exert enhanced reno-protective effects compared with the single treatment. Collectively, combination of QBF and Los could ameliorate renal injury and fibrosis in DKD rats via regulating PI3K/AKT, ERK and PPARγ signaling pathways. These findings highlight the therapeutic potential of QBF to prevent DKD progression.
Collapse
Affiliation(s)
- Zhi Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai.
| | - Guihua Jian
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai.
| | - Teng Chen
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai.
| | - Yiping Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai.
| | - Junhui Li
- Putuo People's Hospital, Tongji University, Shanghai.
| | - Niansong Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai.
| |
Collapse
|
2
|
Hill C, Duffy S, Coulter T, Maxwell AP, McKnight AJ. Harnessing Genomic Analysis to Explore the Role of Telomeres in the Pathogenesis and Progression of Diabetic Kidney Disease. Genes (Basel) 2023; 14:609. [PMID: 36980881 PMCID: PMC10048490 DOI: 10.3390/genes14030609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of diabetes is increasing globally, and this trend is predicted to continue for future decades. Research is needed to uncover new ways to manage diabetes and its co-morbidities. A significant secondary complication of diabetes is kidney disease, which can ultimately result in the need for renal replacement therapy, via dialysis or transplantation. Diabetic kidney disease presents a substantial burden to patients, their families and global healthcare services. This review highlights studies that have harnessed genomic, epigenomic and functional prediction tools to uncover novel genes and pathways associated with DKD that are useful for the identification of therapeutic targets or novel biomarkers for risk stratification. Telomere length regulation is a specific pathway gaining attention recently because of its association with DKD. Researchers are employing both observational and genetics-based studies to identify telomere-related genes associated with kidney function decline in diabetes. Studies have also uncovered novel functions for telomere-related genes beyond the immediate regulation of telomere length, such as transcriptional regulation and inflammation. This review summarises studies that have revealed the potential to harness therapeutics that modulate telomere length, or the associated epigenetic modifications, for the treatment of DKD, to potentially slow renal function decline and reduce the global burden of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Seamus Duffy
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Tiernan Coulter
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| |
Collapse
|
3
|
Rysz J, Franczyk B, Rysz-Górzyńska M, Gluba-Brzózka A. Are Alterations in DNA Methylation Related to CKD Development? Int J Mol Sci 2022; 23:7108. [PMID: 35806113 PMCID: PMC9267048 DOI: 10.3390/ijms23137108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/29/2022] Open
Abstract
The modifications in genomic DNA methylation are involved in the regulation of normal and pathological cellular processes. The epigenetic regulation stimulates biological plasticity as an adaptive response to variations in environmental factors. The role of epigenetic changes is vital for the development of some diseases, including atherogenesis, cancers, and chronic kidney disease (CKD). The results of studies presented in this review have suggested that altered DNA methylation can modulate the expression of pro-inflammatory and pro-fibrotic genes, as well those essential for kidney development and function, thus stimulating renal disease progression. Abnormally increased homocysteine, hypoxia, and inflammation have been suggested to alter epigenetic regulation of gene expression in CKD. Studies of renal samples have demonstrated the relationship between variations in DNA methylation and fibrosis and variations in estimated glomerular filtration rate (eGFR) in human CKD. The unravelling of the genetic-epigenetic profile would enhance our understanding of processes underlying the development of CKD. The understanding of multifaceted relationship between DNA methylation, genes expression, and disease development and progression could improve the ability to identify individuals at risk of CKD and enable the choice of appropriate disease management.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Magdalena Rysz-Górzyńska
- Department of Otolaryngology, Laryngological Oncology, Audiology and Phoniatrics, Medical Univesity of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| |
Collapse
|
4
|
Lu HC, Dai WN, He LY. Epigenetic Histone Modifications in the Pathogenesis of Diabetic Kidney Disease. Diabetes Metab Syndr Obes 2021; 14:329-344. [PMID: 33519221 PMCID: PMC7837569 DOI: 10.2147/dmso.s288500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD), as the main complication of diabetes mellitus, is the primary cause of the end-stage renal disease (ESRD) and the most common chronic kidney disease. Overall, 30-40% of patients with type 1 and type 2 diabetes eventually develop DKD. Although some diabetes patients have intensified glycemic control, they still develop diabetic kidney disease. Current treatment methods can alleviate but do not markedly halt disease development, resulting in renal failure and severe complications, even contributing to elevated morbidity and mortality rates. DKD is a disease with interactions of genes and the environment. Emerging evidence indicates that DKD-associated key genes are also regulated by the epigenetic mechanism. Recently, increasing researches involving cells and experimental animals demonstrated that histone post-translational modifications can mediate gene expression, which correlated with diabetic kidney disease. Novel therapeutic strategies for epigenetic events could be beneficial for the early detection and treatment of DKD to prevent it from developing into end-stage renal disease (ESRD). In this review, we discuss prior findings in the field of histone modifications in DKD, especially histone acetylation and histone methylation. We then focus on recent developments in histone acetylation and methylation involved in the pathogenesis of DKD.
Collapse
Affiliation(s)
- Heng-Cheng Lu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, People’s Republic of China
| | - Wen-Ni Dai
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, People’s Republic of China
| | - Li-Yu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, People’s Republic of China
- Correspondence: Li-Yu He Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, 139 Renmin Road, Changsha, Hunan, People’s Republic of ChinaTel +8673185292064Fax +8673185295843 Email
| |
Collapse
|
5
|
Zhou Y, Shen L, Dong B, Liu C, Lv W, Chi J, Che K, Gao Y, Wang Y, Wang Y. Elevated circulating luteinizing hormone levels are associated with diabetic macroalbuminuria in Chinese men and postmenopausal women: A cross-sectional study. J Diabetes 2020; 12:819-833. [PMID: 32475064 DOI: 10.1111/1753-0407.13073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Associations between sex hormones and diabetic vascular complications have recently been studied, but the role luteinizing hormone (LH) plays in diabetic kidney disease (DKD) remains uncertain. We aimed to investigate the relationship of LH and DKD in Chinese men and postmenopausal women with type 2 diabetes mellitus (T2DM). METHODS Data were collected from 1775 T2DM men and postmenopausal women in hospital. The odds ratios (OR) and corresponding 95% confidence intervals (CI) in relation to LH quartiles were obtained by multiple logistic regression analysis. RESULTS LH levels were significantly higher in patients with macroalbuminuria than in those with microalbuminuria, but were not higher in patients with microalbuminuria than in those with normoalbuminuria. Consistently, LH in those with an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73m2 were significantly higher than in those with eGFR≥60 mL/min/1.73m2 . The prevalence of macroalbuminuria was obviously increased for subjects of the fourth quartile of LH vs the first to third quartile (20.4% vs 6.2%, 8.0%, 12.2% in men; 25.3% vs 5.5%, 3.8%, 9.3% in postmenopausal women). Multivariate logistic regression demonstrated that subjects within the highest quartile of LH had higher odds of macroalbuminuria than those within the lowest quartile (OR 4.00, 95% CI, 1.87-8.55 for men; OR 9.62, 95% CI, 3.42-27.08 for postmenopausal women), independent of age, diabetes duration, or other metabolic factors. The area under the curve for detecting macroalbuminuria based on LH was 0.662 for men, and 0.767 for postmenopausal women. CONCLUSION High LH levels are positively associated with established DKD among Chinese men and postmenopausal women. Elevated LH may be a promising clinical factor for identifying established DKD.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Liyan Shen
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Bingzi Dong
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Chuanfeng Liu
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Wenshan Lv
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Jingwei Chi
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Kui Che
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Yanyan Gao
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Yunyang Wang
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Danta CC, Boa AN, Bhandari S, Sathyapalan T, Xu SZ. Recent advances in drug discovery for diabetic kidney disease. Expert Opin Drug Discov 2020; 16:447-461. [PMID: 33003971 DOI: 10.1080/17460441.2021.1832077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD), and 40% of patients with diabetes develop DKD. Although some pathophysiological mechanisms and drug targets of DKD have been described, the effectiveness or clinical usefulness of such treatment has not been well validated. Therefore, searching for new targets and potential therapeutic candidates has become an emerging research area. AREAS COVERED The pathophysiological mechanisms, new drug targets and potential therapeutic compounds for DKD are addressed in this review. EXPERT OPINION Although preclinical and clinical evidence has shown some positive results for controlling DKD progression, treatment regimens have not been well developed to reduce the mortality in patients with DKD globally. Therefore, the discovery of new therapeutic targets and effective target-based drugs to achieve better and safe treatment are urgently required. Preclinical screening and clinical trials for such drugs are needed.
Collapse
Affiliation(s)
- Chhanda Charan Danta
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Andrew N Boa
- Department of Chemistry, University of Hull, Hull, UK
| | - Sunil Bhandari
- Department of Renal Medicine and Hull York Medical School, Hull Royal Infirmary, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Shang-Zhong Xu
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK.,Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| |
Collapse
|
7
|
Barrera-Chimal J, Jaisser F. Pathophysiologic mechanisms in diabetic kidney disease: A focus on current and future therapeutic targets. Diabetes Obes Metab 2020; 22 Suppl 1:16-31. [PMID: 32267077 DOI: 10.1111/dom.13969] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney disease around the globe and is one of the main complications in patients with type 1 and 2 diabetes. The standard treatment for DKD is drugs controlling hyperglycemia and high blood pressure. Renin angiotensin aldosterone system blockade and sodium glucose cotransporter 2 (SGLT2) inhibition have yielded promising results in DKD, but many diabetic patients on such treatments nevertheless continue to develop DKD, leading to kidney failure and cardiovascular comorbidities. New therapeutic options are urgently required. We review here the promising therapeutic avenues based on insights into the mechanisms of DKD that have recently emerged, including mineralocorticoid receptor antagonists, SGLT2 inhibitors, glucagon-like peptide-1 receptor agonist, endothelin receptor A inhibition, anti-inflammatory agents, autophagy activators and epigenetic remodelling. The involvement of several molecular mechanisms in DKD pathogenesis, together with the genetic and epigenetic variability of this condition, makes it difficult to target this heterogeneous patient population with a single drug. Personalized medicine, taking into account the genetic and mechanistic variability, may therefore improve renal and cardiovascular protection in diabetic patients with DKD.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación en Medicina Traslacional, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Frédéric Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne University, Paris Descartes University, Paris, France
- INSERM U1116, Clinical Investigation Centre, Lorraine University, Vandoeuvre-lès-Nancy, France
- INI-CRCT (Cardiovascular and Renal Clinical Trialists) F-CRIN Network, Nancy, France
| |
Collapse
|
8
|
Fu H, Liu S, Bastacky SI, Wang X, Tian XJ, Zhou D. Diabetic kidney diseases revisited: A new perspective for a new era. Mol Metab 2019; 30:250-263. [PMID: 31767176 PMCID: PMC6838932 DOI: 10.1016/j.molmet.2019.10.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/13/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Globally, diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. As the most common microvascular complication of diabetes, DKD is a thorny, clinical problem in terms of its diagnosis and management. Intensive glucose control in DKD could slow down but not significantly halt disease progression. Revisiting the tremendous advances that have occurred in the field would enhance recognition of DKD pathogenesis as well as improve our understanding of translational science in DKD in this new era. SCOPE OF REVIEW In this review, we summarize advances in the understanding of the local microenvironmental changes in diabetic kidneys and discuss the involvement of genetic and epigenetic factors in the pathogenesis of DKD. We also review DKD prevalence changes and analyze the challenges in optimizing the diagnostic approaches and management strategies for DKD in the clinic. As we enter the era of 'big data', we also explore the possibility of linking systems biology with translational medicine in DKD in the current healthcare system. MAJOR CONCLUSION Newer understanding of the structural changes of diabetic kidneys and mechanisms of DKD pathogenesis, as well as emergent research technologies will shed light on new methods of dealing with the existing clinical challenges of DKD.
Collapse
Affiliation(s)
- Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaojie Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Li M, Pezzolesi MG. Advances in understanding the genetic basis of diabetic kidney disease. Acta Diabetol 2018; 55:1093-1104. [PMID: 30083980 DOI: 10.1007/s00592-018-1193-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
Diabetic kidney disease (DKD) is a devastating complication of Type 1 and Type 2 diabetes and leads to increased morbidity and mortality. Earlier work in families has provided strong evidence that heredity is a major determinant of DKD. Previous linkage analyses and candidate gene studies have identified potential DKD genes; however, such approaches have largely been unsuccessful. Genome-wide association studies (GWAS) have made significant contribution in identifying SNPs associated with common complex diseases. Thanks to advanced technology, new analytical approaches, and international research collaborations, many DKD GWASs have reported unique genes, highlighted novel biological pathways and suggested new disease mechanisms. This review summarizes the current state of GWAS technology; findings from GWASs of DKD and its related traits conducted over the past 15 years and discuss the future of this field.
Collapse
Affiliation(s)
- Man Li
- Division of Nephrology and Hypertension, Department of Internal Medicine,, University of Utah School of Medicine, Salt Lake City, UT, 84105, USA
- VA Boston Healthcare System, VA Cooperative Studies Program, Boston, MA, USA
| | - Marcus G Pezzolesi
- Division of Nephrology and Hypertension, Department of Internal Medicine,, University of Utah School of Medicine, Salt Lake City, UT, 84105, USA.
- Diabetes and Metabolism Center, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Smyth LJ, Maxwell AP, Benson KA, Kilner J, McKay GJ, McKnight AJ. Validation of differentially methylated microRNAs identified from an epigenome-wide association study; Sanger and next generation sequencing approaches. BMC Res Notes 2018; 11:767. [PMID: 30373632 PMCID: PMC6206874 DOI: 10.1186/s13104-018-3872-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Objectives Altered DNA methylation and microRNA profiles are associated with diabetic kidney disease. This study compared different sequencing approaches to define the genetic and epigenetic architecture of sequences surrounding microRNAs associated with diabetic kidney disease. Results We compared Sanger and next generation sequencing to validate microRNAs associated with diabetic kidney disease identified from an epigenome-wide association study (EWAS). These microRNAs demonstrated differential methylation levels in cases with diabetic kidney disease compared to controls with long duration of type 1 diabetes and no evidence of kidney disease (Padjusted < 10−5). Targeted next generation sequencing analysis of genomic DNA and matched cell-line transformed DNA samples identified four genomic variants within the microRNAs, two within miR-329-2 and two within miR-429. Sanger sequencing of genomic DNA replicated these findings and confirmed the altered methylation status of the CpG sites identified by the EWAS in bisulphite-treated DNA. This investigation successfully fine-mapped the genetic sequence around key microRNAs. Variants have been detected which may affect their methylation status and methylated CpG sites have been confirmed. Additionally, we explored both the fidelity of next generation sequencing analysis and the potential efficacy of cell-line transformed DNA samples in place of finite patient samples in discovery genetic and epigenetic research. Electronic supplementary material The online version of this article (10.1186/s13104-018-3872-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura J Smyth
- Genetic Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK.
| | - Alexander P Maxwell
- Genetic Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Katherine A Benson
- Genetic Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Jill Kilner
- Genetic Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Gareth J McKay
- Genetic Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Amy Jayne McKnight
- Genetic Epidemiology Research Group, Centre for Public Health, Queen's University of Belfast, Belfast, UK
| |
Collapse
|
11
|
Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA, Fogo AB, Fox CS, Gansevoort RT, Heerspink HJL, Jardine M, Kasiske B, Köttgen A, Kretzler M, Levey AS, Luyckx VA, Mehta R, Moe O, Obrador G, Pannu N, Parikh CR, Perkovic V, Pollock C, Stenvinkel P, Tuttle KR, Wheeler DC, Eckardt KU. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet 2017; 390:1888-1917. [PMID: 28434650 DOI: 10.1016/s0140-6736(17)30788-2] [Citation(s) in RCA: 635] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
Abstract
The global nephrology community recognises the need for a cohesive plan to address the problem of chronic kidney disease (CKD). In July, 2016, the International Society of Nephrology hosted a CKD summit of more than 85 people with diverse expertise and professional backgrounds from around the globe. The purpose was to identify and prioritise key activities for the next 5-10 years in the domains of clinical care, research, and advocacy and to create an action plan and performance framework based on ten themes: strengthen CKD surveillance; tackle major risk factors for CKD; reduce acute kidney injury-a special risk factor for CKD; enhance understanding of the genetic causes of CKD; establish better diagnostic methods in CKD; improve understanding of the natural course of CKD; assess and implement established treatment options in patients with CKD; improve management of symptoms and complications of CKD; develop novel therapeutic interventions to slow CKD progression and reduce CKD complications; and increase the quantity and quality of clinical trials in CKD. Each group produced a prioritised list of goals, activities, and a set of key deliverable objectives for each of the themes. The intended users of this action plan are clinicians, patients, scientists, industry partners, governments, and advocacy organisations. Implementation of this integrated comprehensive plan will benefit people who are at risk for or affected by CKD worldwide.
Collapse
Affiliation(s)
- Adeera Levin
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joseph Bonventre
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Josef Coresh
- Johns Hopkins University Bloomberg School of Public Health, George W Comstock Center for Public Health Research and Prevention, Baltimore, MD, USA; Johns Hopkins University School of Medicine, Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, MD, USA
| | - Jo-Ann Donner
- International Society of Nephrology, Brussels, Belgium
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Ron T Gansevoort
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Meg Jardine
- The George Institute for Global Health, Sydney, NSW, Australia; Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Bertram Kasiske
- Hennepin County Medical Center, Minneapolis, MN, USA; University of Minnesota, Minneapolis, MN, USA
| | - Anna Köttgen
- Division of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Matthias Kretzler
- Department of Internal Medicine and Department of ComputationalMedicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Andrew S Levey
- Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Valerie A Luyckx
- Institute of Biomedical Ethics and Klinik für Nephrologie University Hospital, University of Zurich, Zurich, Switzerland
| | - Ravindra Mehta
- Department of Medicine, University of California, San Diego, CA, USA
| | - Orson Moe
- Department of Internal Medicine and Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gregorio Obrador
- Faculty of Health Sciences, Universidad Panamericana, Mexico City, Mexico
| | - Neesh Pannu
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Chirag R Parikh
- Program of Applied Translational Research, Department of Medicine, Yale University, New Haven, CT, USA; Veterans Affairs Medical Center, West Haven, CT, USA
| | - Vlado Perkovic
- The George Institute for Global Health, Sydney, NSW, Australia; University of Sydney, Sydney, NSW, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Katherine R Tuttle
- Providence Medical Research Center, Providence Health Care Kidney Research Institute, Nephrology Division and Institute for Translational Health Sciences, University of Washington, Spokane, WA, USA
| | - David C Wheeler
- Centre for Nephrology, Royal Free Hospital, University College London, London, UK
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Obrador GT, Schultheiss UT, Kretzler M, Langham RG, Nangaku M, Pecoits-Filho R, Pollock C, Rossert J, Correa-Rotter R, Stenvinkel P, Walker R, Yang CW, Fox CS, Köttgen A. Genetic and environmental risk factors for chronic kidney disease. Kidney Int Suppl (2011) 2017; 7:88-106. [PMID: 30675423 DOI: 10.1016/j.kisu.2017.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In order to change the current state of chronic kidney disease knowledge and therapeutics, a fundamental improvement in the understanding of genetic and environmental causes of chronic kidney disease is essential. This article first provides an overview of the existing knowledge gaps in our understanding of the genetic and environmental causes of chronic kidney disease, as well as their interactions. The second part of the article formulates goals that should be achieved in order to close these gaps, along with suggested timelines and stakeholders that are to be involved. A better understanding of genetic and environmental factors and their interactions that influence kidney function in healthy and diseased conditions can provide novel insights into renal physiology and pathophysiology and result in the identification of novel therapeutic or preventive targets to tackle the global public health care problem of chronic kidney disease.
Collapse
Affiliation(s)
- Gregorio T Obrador
- Department of Epidemiology, Biostatistics and Public Health, Universidad Panamericana School of Medicine, Mexico City, Mexico
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Medical Center and Faculty of Medicine-University of Freiburg, Freiburg, Germany.,Renal Division, Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Robyn G Langham
- Monash Rural Health, Monash University, Clayton VIC, Australia
| | - Masaomi Nangaku
- Department of Hemodialysis and Apheresis, Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Roberto Pecoits-Filho
- Department of Internal Medicine, School of Medicine, Pontificia Universidade Catolica do Paraná, Curitiba, Brazil
| | - Carol Pollock
- Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | | | - Ricardo Correa-Rotter
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zuibrán, Mexico City, Mexico
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Walker
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Caroline S Fox
- Genetics and Pharmacogenomics, Merck Research Laboratories, Boston, Massachusetts, USA
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Medical Center and Faculty of Medicine-University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Bailie C, Kilner J, Maxwell AP, McKnight AJ. Development of next generation sequencing panel for UMOD and association with kidney disease. PLoS One 2017; 12:e0178321. [PMID: 28609449 PMCID: PMC5469457 DOI: 10.1371/journal.pone.0178321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 05/11/2017] [Indexed: 11/19/2022] Open
Abstract
Chronic kidney disease (CKD) has a prevalence of approximately 10% in adult populations. CKD can progress to end-stage renal disease (ESRD) and this is usually fatal unless some form of renal replacement therapy (chronic dialysis or renal transplantation) is provided. There is an inherited predisposition to CKD with several genetic risk markers now identified. The UMOD gene has been associated with CKD of varying aetiologies. An AmpliSeq next generation sequencing panel was developed to facilitate comprehensive sequencing of the UMOD gene, covering exonic and regulatory regions. SNPs and CpG sites in the genomic region encompassing UMOD were evaluated for association with CKD in two studies; the UK Wellcome Trust Case-Control 3 Renal Transplant Dysfunction Study (n = 1088) and UK-ROI GENIE GWAS (n = 1726). A technological comparison of two Ion Torrent machines revealed 100% allele call concordance between S5 XL™ and PGM™ machines. One SNP (rs183962941), located in a non-coding region of UMOD, was nominally associated with ESRD (p = 0.008). No association was identified between UMOD variants and estimated glomerular filtration rate. Analysis of methylation data for over 480,000 CpG sites revealed differential methylation patterns within UMOD, the most significant of these was cg03140788 p = 3.7 x 10-10.
Collapse
Affiliation(s)
- Caitlin Bailie
- Nephrology Research, Centre for Public Health, Queen’s University of Belfast, Belfast City Hospital, Belfast, Northern Ireland
| | - Jill Kilner
- Nephrology Research, Centre for Public Health, Queen’s University of Belfast, Belfast City Hospital, Belfast, Northern Ireland
| | - Alexander P. Maxwell
- Nephrology Research, Centre for Public Health, Queen’s University of Belfast, Belfast City Hospital, Belfast, Northern Ireland
| | - Amy Jayne McKnight
- Nephrology Research, Centre for Public Health, Queen’s University of Belfast, Belfast City Hospital, Belfast, Northern Ireland
| |
Collapse
|
14
|
Vikulova OK, Zheleznyakova AV, Lebedeva NO, Nikitin AG, Nosikov VV, Shestakova MV. Genetic factors in the development of chronic kidney disease in patients with diabetes mellitus. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Wanner N, Bechtel-Walz W. Epigenetics of kidney disease. Cell Tissue Res 2017; 369:75-92. [PMID: 28286899 DOI: 10.1007/s00441-017-2588-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023]
Abstract
DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.
Collapse
Affiliation(s)
- Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Center for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| | - Wibke Bechtel-Walz
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| |
Collapse
|
16
|
Wuttke M, Köttgen A. Insights into kidney diseases from genome-wide association studies. Nat Rev Nephrol 2016; 12:549-62. [PMID: 27477491 DOI: 10.1038/nrneph.2016.107] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, genome-wide association studies (GWAS) have considerably improved our understanding of the genetic basis of kidney function and disease. Population-based studies, used to investigate traits that define chronic kidney disease (CKD), have identified >50 genomic regions in which common genetic variants associate with estimated glomerular filtration rate or urinary albumin-to-creatinine ratio. Case-control studies, used to study specific CKD aetiologies, have yielded risk loci for specific kidney diseases such as IgA nephropathy and membranous nephropathy. In this Review, we summarize important findings from GWAS and clinical and experimental follow-up studies. We also compare risk allele frequency, effect sizes, and specificity in GWAS of CKD-defining traits and GWAS of specific CKD aetiologies and the implications for study design. Genomic regions identified in GWAS of CKD-defining traits can contain causal genes for monogenic kidney diseases. Population-based research on kidney function traits can therefore generate insights into more severe forms of kidney diseases. Experimental follow-up studies have begun to identify causal genes and variants, which are potential therapeutic targets, and suggest mechanisms underlying the high allele frequency of causal variants. GWAS are thus a useful approach to advance knowledge in nephrology.
Collapse
Affiliation(s)
- Matthias Wuttke
- Division of Genetic Epidemiology, Institute for Medical Biometry and Statistics, Faculty of Medicine, and Medical Centre - University of Freiburg, Berliner Allee 29, 79110 Freiburg, Germany.,Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Anna Köttgen
- Division of Genetic Epidemiology, Institute for Medical Biometry and Statistics, Faculty of Medicine, and Medical Centre - University of Freiburg, Berliner Allee 29, 79110 Freiburg, Germany.,Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Radcliffe NJ, Seah JM, Clarke M, MacIsaac RJ, Jerums G, Ekinci EI. Clinical predictive factors in diabetic kidney disease progression. J Diabetes Investig 2016; 8:6-18. [PMID: 27181363 PMCID: PMC5217935 DOI: 10.1111/jdi.12533] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) represents a major component of the health burden associated with type 1 and type 2 diabetes. Recent advances have produced an explosion of ‘novel’ assay‐based risk markers for DKD, though clinical use remains restricted. Although many patients with progressive DKD follow a classical albuminuria‐based pathway, non‐albuminuric DKD progression is now well recognized. In general, the following clinical and biochemical characteristics have been associated with progressive DKD in both type 1 and type 2 diabetes: increased hemoglobin A1c, systolic blood pressure, albuminuria grade, early glomerular filtration rate decline, duration of diabetes, age (including pubertal onset) and serum uric acid; the presence of concomitant microvascular complications; and positive family history. The same is true in type 2 diabetes for male sex category, in patients following an albuminuric pathway to DKD, and also true for the presence of increased pulse wave velocity. The following baseline clinical characteristics have been proposed as risk factors for DKD progression, but with further research required to assess the nature of any relationship: dyslipidemia (including low‐density lipoprotein, total and high‐density lipoprotein cholesterol); elevated body mass index; smoking status; hyperfiltration; decreases in vitamin D, hemoglobin and uric acid excretion (all known consequences of advanced DKD); and patient test result visit‐to‐visit variability (hemoglobin A1c, blood pressure and high‐density lipoprotein cholesterol). The development of multifactorial ‘renal risk equations’ for type 2 diabetes has the potential to simplify the task of DKD prognostication; however, there are currently none for type 1 diabetes‐specific populations. Significant progress has been made in the prediction of DKD progression using readily available clinical data, though further work is required to elicit the role of several variables, and to consolidate data to facilitate clinical implementation.
Collapse
Affiliation(s)
- Nicholas J Radcliffe
- Austin Clinical School, Melbourne, Victoria, Australia.,The University of Melbourne, Melbourne, Victoria, Australia
| | - Jas-Mine Seah
- Austin Health Endocrine Center, Melbourne, Victoria, Australia
| | - Michele Clarke
- The University of Melbourne, Melbourne, Victoria, Australia.,Austin Health Endocrine Center, Melbourne, Victoria, Australia
| | - Richard J MacIsaac
- The University of Melbourne, Melbourne, Victoria, Australia.,Department of Endocrinology & Diabetes, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - George Jerums
- The University of Melbourne, Melbourne, Victoria, Australia.,Austin Health Endocrine Center, Melbourne, Victoria, Australia
| | - Elif I Ekinci
- The University of Melbourne, Melbourne, Victoria, Australia.,Austin Health Endocrine Center, Melbourne, Victoria, Australia.,Menzies School of Health, Darwin, Northern Territory, Australia
| |
Collapse
|
18
|
Bajaj S, Makkar BM, Abichandani VK, Talwalkar PG, Saboo B, Srikanta SS, Das A, Chandrasekaran S, Krishnan PV, Shah A, Abraham G, Tikku P, Kumar S. Management of anemia in patients with diabetic kidney disease: A consensus statement. Indian J Endocrinol Metab 2016; 20:268-81. [PMID: 27042425 PMCID: PMC4792030 DOI: 10.4103/2230-8210.176348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This consensus statement focuses on the window of opportunity, which exists while treating patients with diabetic kidney disease and anemia.
Collapse
Affiliation(s)
- Sarita Bajaj
- Director-Professor and Head, Department of Medicine, MLN Medical College, Allahabad, India
| | - Brij Mohan Makkar
- Sr. Consultant Physician and Diabetologist, Diabetes and Obesity Centre, Paschim Vihar, New Delhi, India
| | | | | | - Banshi Saboo
- Consultant Diabetologist, Dia Care - Diabetes Care and Hormone Clinic, Ambawadi, Ahmedabad, India
| | - S. S. Srikanta
- Medical Director and Senior Consultant Endocrinology Diabetes, Samatvam Endocrinology Diabetes Center, Samatvam: Science and Research for Human Welfare Trust, Jnana Sanjeevini Diabetes Hospital and Medical Center, Bengaluru, India
| | - Ashok Das
- Professor of Medicine and Head of Endocrinology, Pondicherry Institute of Medical Sciences, Puducherry, India
| | - Sruti Chandrasekaran
- Consultant Endocrinology, Diabetology and Metabolism, Global Hospitals, Adyar Cancer Institute, Vikas Center for Hormones and Mental Health, Chennai, India
| | - P. Venkata Krishnan
- Consultant, Division of Internal Medicine, Medanta - The Medicity Hospital, Gurgaon, Haryana, India
| | - Arun Shah
- Consultant Nephrologist, Lilavati Hospital and Bharatiya Arogyanidhi Hospital, Mumbai, India
| | - Georgi Abraham
- Professor of Medicine, Pondicherry Institute of Medical Sciences, Puducherry and Consultant – Nephrologist, Madras Medical Mission, Chennai, India
| | - Pankaj Tikku
- Executive Chief Editor and Editorial Head, Passi HealthCom Pvt. Ltd., Delhi, India
| | - Sushil Kumar
- Sr. Executive Editor, Passi HealthCom Pvt. Ltd, Delhi, India
| |
Collapse
|
19
|
Buffon MP, Carpena MP, Sortica DA, Santer A, Carlessi R, de Souza BM, Edelweiss MI, Berger M, Crispim D, Canani LH. rs1888747 polymorphism in the FRMD3 gene, gene and protein expression: role in diabetic kidney disease. Diabetol Metab Syndr 2016; 8:3. [PMID: 26753002 PMCID: PMC4706705 DOI: 10.1186/s13098-015-0121-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/23/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND We carried out a case-control study in patients with type 2 diabetes mellitus (T2DM) to evaluate the association between seven single nucleotide polymorphisms (SNPs) previously described to be linked to diabetic kidney disease (DKD) in type 1 diabetes mellitus (T1DM). Additionally, we evaluated gene and protein expression related to the polymorphism associated with DKD. METHODS The association study included 1098 T2DM patients (718 with DKD and 380 without DKD). Out of the 13 polymorphisms associated with DKD in a previous study with T1DM, seven were chosen for evaluation in this sample: rs1888747, rs9521445, rs39075, rs451041, rs1041466, rs1411766 and rs6492208. The expression study included 91 patients who underwent nephrectomy. Gene expression was assessed by RT-qPCR and protein expression in kidney samples was quantified by western blot and it localization by immunohistochemistry. RESULTS The C/C genotype of rs1888747 SNP was associated with protection for DKD (OR = 0.6, 95 % CI 0.3-0.9; P = 0.022). None of the other SNPs were associated with DKD. rs1888747 is located near FRMD3 gene. Therefore, FRMD3 gene and protein expression were evaluated in human kidney tissue according to rs1888747 genotypes. Gene and protein expression were similar in subjects homozygous for the C allele and in those carrying the G allele. CONCLUSIONS Replication of the association between rs1888747 SNP and DKD in a different population suggests that this link is not the result of chance. rs1888747 SNP is located at the FRMD3 gene, which is expressed in human kidney. Therefore, this gene is a candidate gene for DKD. However, in this study, no rs1888747 genotype or specific allele effect on gene and/or protein expression of the FRMD3 gene was demonstrated.
Collapse
Affiliation(s)
- Marjoriê P. Buffon
- />Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, RS 90035-003 Brazil
- />Post-Graduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Mariana P. Carpena
- />Post-Graduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Denise A. Sortica
- />Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, RS 90035-003 Brazil
- />Post-Graduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Andressa Santer
- />Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, RS 90035-003 Brazil
| | - Rodrigo Carlessi
- />Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, RS 90035-003 Brazil
- />Post-Graduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Bianca M. de Souza
- />Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, RS 90035-003 Brazil
- />Post-Graduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Maria I. Edelweiss
- />Pathology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
- />Post-Graduation Program in Medical Sciences: Ginecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Milton Berger
- />Urology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
| | - Daisy Crispim
- />Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, RS 90035-003 Brazil
- />Post-Graduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Luís H. Canani
- />Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, RS 90035-003 Brazil
- />Post-Graduation Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| |
Collapse
|
20
|
Zhang Y, Zhang S, Wang G. Metabolomic biomarkers in diabetic kidney diseases--A systematic review. J Diabetes Complications 2015; 29:1345-51. [PMID: 26253264 DOI: 10.1016/j.jdiacomp.2015.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 01/26/2023]
Abstract
Diabetic kidney disease (DKD) is generally characterized by increasing albuminuria in diabetic patients; however, few biomarkers are available to facilitate early diagnosis of this disease. The application of metabolomics has shown promises addressing this need. In this review, we conducted a search about metabolomic biomarkers in DKD patients through MEDLINE, EMBASE, and Cochrane Database up to the end of March, 2015. 12 eligible studies were selected and evaluated subsequently through the use of QUADOMICS, a quality assessment tool. 7 of the 12 included studies were classified as 'high quality'. We also recorded specific study characteristics including participants' characteristics, metabolomic techniques, sample types, and significantly altered metabolites between DKD and control groups. Products of lipid metabolisms including esterified and non-esterified fatty acids, carnitines, phospholipids and metabolites involved in branch-chained amino acids and aromatic amino acids metabolisms were frequently affected biomarkers of DKD. Other differential metabolites were also found, while some of their associations with DKD were unclear. Further more studies are required to test these findings in larger, diverse ethnic populations with elaborate study designs, and finally we could translate them into the benefits of DKD patients.
Collapse
Affiliation(s)
- Yumin Zhang
- Department of Endocrinology and Metabolism, the First Hospital of Jilin University, Changchun, 130021, China
| | - Siwen Zhang
- Department of Endocrinology and Metabolism, the First Hospital of Jilin University, Changchun, 130021, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, the First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
21
|
The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 2015; 51:156-86. [PMID: 26297071 DOI: 10.1016/j.preteyeres.2015.08.001] [Citation(s) in RCA: 703] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy is the most frequently occurring complication of diabetes mellitus and remains a leading cause of vision loss globally. Its aetiology and pathology have been extensively studied for half a century, yet there are disappointingly few therapeutic options. Although some new treatments have been introduced for diabetic macular oedema (DMO) (e.g. intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') and new steroids), up to 50% of patients fail to respond. Furthermore, for people with proliferative diabetic retinopathy (PDR), laser photocoagulation remains a mainstay therapy, even though it is an inherently destructive procedure. This review summarises the clinical features of diabetic retinopathy and its risk factors. It describes details of retinal pathology and how advances in our understanding of pathogenesis have led to identification of new therapeutic targets. We emphasise that although there have been significant advances, there is still a pressing need for a better understanding basic mechanisms enable development of reliable and robust means to identify patients at highest risk, and to intervene effectively before vision loss occurs.
Collapse
|
22
|
Swan EJ, Salem RM, Sandholm N, Tarnow L, Rossing P, Lajer M, Groop PH, Maxwell AP, McKnight AJ. Genetic risk factors affecting mitochondrial function are associated with kidney disease in people with Type 1 diabetes. Diabet Med 2015; 32:1104-9. [PMID: 25819010 PMCID: PMC4504747 DOI: 10.1111/dme.12763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2015] [Indexed: 01/13/2023]
Abstract
AIM To evaluate the association with diabetic kidney disease of single nucleotide polymorphisms (SNPs) that may contribute to mitochondrial dysfunction. METHODS The mitochondrial genome and 1039 nuclear genes that are integral to mitochondrial function were investigated using a case (n = 823 individuals with diabetic kidney disease) vs. control (n = 903 individuals with diabetes and no renal disease) approach. All people included in the analysis were of white European origin and were diagnosed with Type 1 diabetes before the age of 31 years. Replication was conducted in 5093 people with similar phenotypes to those of the discovery collection. Association analyses were performed using the plink genetic analysis toolset, with adjustment for relevant covariates. RESULTS A total of 25 SNPs were evaluated in the mitochondrial genome, but none were significantly associated with diabetic kidney disease or end-stage renal disease. A total of 38 SNPs in nuclear genes influencing mitochondrial function were nominally associated with diabetic kidney disease and 16 SNPS were associated with end-stage renal disease, secondary to diabetic kidney disease, with meta-analyses confirming the same direction of effect. Three independent signals (seven SNPs) were common to the replication data for both phenotypes with Type 1 diabetes and persistent proteinuria or end-stage renal disease. CONCLUSIONS Our results suggest that SNPs in nuclear genes that influence mitochondrial function are significantly associated with diabetic kidney disease in a white European population.
Collapse
Affiliation(s)
- E J Swan
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - R M Salem
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - N Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland
- Department of Medicine, Division of Nephrology, Helsinki University Central Hospital, Helsinki, Finland
| | - L Tarnow
- Nordsjaellands Hospital, Hilleroed, Denmark and Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Centre, Gentofte, Denmark
| | - P Rossing
- Steno Diabetes Centre, Gentofte, Denmark
| | - M Lajer
- Steno Diabetes Centre, Gentofte, Denmark
| | - P H Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland
- Department of Medicine, Division of Nephrology, Helsinki University Central Hospital, Helsinki, Finland
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - A P Maxwell
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast, UK
| | - A J McKnight
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
| |
Collapse
|
23
|
Swan EJ, Maxwell AP, McKnight AJ. Distinct methylation patterns in genes that affect mitochondrial function are associated with kidney disease in blood-derived DNA from individuals with Type 1 diabetes. Diabet Med 2015; 32:1110-5. [PMID: 25850930 DOI: 10.1111/dme.12775] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 12/18/2022]
Abstract
AIMS Epigenetic modifications, such as DNA methylation, can influence the risk of developing kidney disease. We studied methylation profiles in genes related to mitochondrial function to assess whether differences in these epigenetic features were associated with diabetic kidney disease in people with Type 1 diabetes. METHODS A case-control association study was undertaken (n = 196 individuals with diabetic kidney disease vs. n = 246 individuals without renal disease). Participants were White and diagnosed with Type 1 diabetes before 31 years of age. Genes that encode mitochondrial proteins (n = 780) were downloaded from mitoproteome.org. DNA methylation profiles from blood-derived DNA were generated using the Illumina Infinium HumanMethylation450 (262 samples) and Illumina Infinium HumanMethylation27 (192 samples) arrays. Beta values (β) were calculated and quality control was conducted, including evaluating blind duplicate DNA samples. RESULTS Fifty-four Cytosine-phosphate-Guanine probes across 51 unique genes were significantly associated (P ≤ 10(-8) ) with diabetic kidney disease across both the 450K and the 27K methylation arrays. A subanalysis, employing the 450K array, identified 755 Cytosine-phosphate-Guanine probes in 374 genes that were significantly associated (P ≤ 10(-8) ) with end-stage renal disease. Forty-six of the top-ranked variants for diabetic kidney disease were also identified as being differentially methylated in individuals with end-stage renal disease. The largest change in methylation (Δβ = 0.2) was observed for cg03169527 in the TAMM41 gene, chromosome 3p25.2. Three genes, PMPCB, TSFM and AUH, were observed with differential methylation at multiple Cytosine-phosphate-Guanine sites each (P < 10(-12) ). CONCLUSIONS Differential methylation in genes that influence mitochondrial function are associated with kidney disease in individuals with Type 1 diabetes.
Collapse
Affiliation(s)
- E J Swan
- Centre for Public Health, Queen's University of Belfast
| | - A P Maxwell
- Centre for Public Health, Queen's University of Belfast
- Regional Nephrology Unit, Belfast City Hospital, Belfast, UK
| | - A J McKnight
- Centre for Public Health, Queen's University of Belfast
| |
Collapse
|
24
|
Abstract
The global prevalence of diabetic nephropathy is rising in parallel with the increasing incidence of diabetes in most countries. Unfortunately, up to 40 % of persons diagnosed with diabetes may develop kidney complications. Diabetic nephropathy is associated with substantially increased risks of cardiovascular disease and premature mortality. An inherited susceptibility to diabetic nephropathy exists, and progress is being made unravelling the genetic basis for nephropathy thanks to international research collaborations, shared biological resources and new analytical approaches. Multiple epidemiological studies have highlighted the clinical heterogeneity of nephropathy and the need for better phenotyping to help define important subgroups for analysis and increase the power of genetic studies. Collaborative genome-wide association studies for nephropathy have reported unique genes, highlighted novel biological pathways and suggested new disease mechanisms, but progress towards clinically relevant risk prediction models for diabetic nephropathy has been slow. This review summarises the current status, recent developments and ongoing challenges elucidating the genetics of diabetic nephropathy.
Collapse
Affiliation(s)
- Amy Jayne McKnight
- Nephrology Research Group, Centre for Public Health, Queen's University Belfast, c/o Regional Genetics Centre, Level A, Tower Block, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, UK,
| | | | | |
Collapse
|
25
|
Recent developments in epigenetics of acute and chronic kidney diseases. Kidney Int 2015; 88:250-61. [PMID: 25993323 PMCID: PMC4522401 DOI: 10.1038/ki.2015.148] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/22/2015] [Accepted: 03/30/2015] [Indexed: 12/25/2022]
Abstract
The growing epidemic of obesity and diabetes, the aging population as well as prevalence of drug abuse has led to significant increases in the rates of the closely associated acute and chronic kidney diseases, including diabetic nephropathy. Furthermore, evidence shows that parental behavior and diet can affect the phenotype of subsequent generations via epigenetic transmission mechanisms. These data suggest a strong influence of the environment on disease susceptibility and that, apart from genetic susceptibility, epigenetic mechanisms need to be evaluated to gain critical new information about kidney diseases. Epigenetics is the study of processes that control gene expression and phenotype without alterations in the underlying DNA sequence. Epigenetic modifications, including cytosine DNA methylation and covalent post translational modifications of histones in chromatin are part of the epigenome, the interface between the stable genome and the variable environment. This dynamic epigenetic layer responds to external environmental cues to influence the expression of genes associated with disease states. The field of epigenetics has seen remarkable growth in the past few years with significant advances in basic biology, contributions to human disease, as well as epigenomics technologies. Further understanding of how the renal cell epigenome is altered by metabolic and other stimuli can yield novel new insights into the pathogenesis of kidney diseases. In this review, we have discussed the current knowledge on the role of epigenetic mechanisms (primarily DNA me and histone modifications) in acute and chronic kidney diseases, and their translational potential to identify much needed new therapies.
Collapse
|
26
|
Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 2015; 58:443-55. [PMID: 25481708 PMCID: PMC4324095 DOI: 10.1007/s00125-014-3462-y] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 11/06/2014] [Indexed: 01/15/2023]
Abstract
The incidence of diabetes and its associated micro- and macrovascular complications is greatly increasing worldwide. The most prevalent vascular complications of both type 1 and type 2 diabetes include nephropathy, retinopathy, neuropathy and cardiovascular diseases. Evidence suggests that both genetic and environmental factors are involved in these pathologies. Clinical trials have underscored the beneficial effects of intensive glycaemic control for preventing the progression of complications. Accumulating evidence suggests a key role for epigenetic mechanisms such as DNA methylation, histone post-translational modifications in chromatin, and non-coding RNAs in the complex interplay between genes and the environment. Factors associated with the pathology of diabetic complications, including hyperglycaemia, growth factors, oxidant stress and inflammatory factors can lead to dysregulation of these epigenetic mechanisms to alter the expression of pathological genes in target cells such as endothelial, vascular smooth muscle, retinal and cardiac cells, without changes in the underlying DNA sequence. Furthermore, long-term persistence of these alterations to the epigenome may be a key mechanism underlying the phenomenon of 'metabolic memory' and sustained vascular dysfunction despite attainment of glycaemic control. Current therapies for most diabetic complications have not been fully efficacious, and hence a study of epigenetic mechanisms that may be involved is clearly warranted as they can not only shed novel new insights into the pathology of diabetic complications, but also lead to the identification of much needed new drug targets. In this review, we highlight the emerging role of epigenetics and epigenomics in the vascular complications of diabetes and metabolic memory.
Collapse
Affiliation(s)
- Marpadga A Reddy
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | | | | |
Collapse
|
27
|
Buffon MP, Sortica DA, Gerchman F, Crispim D, Canani LH. FRMD3 gene: its role in diabetic kidney disease. A narrative review. Diabetol Metab Syndr 2015; 7:118. [PMID: 26719775 PMCID: PMC4696171 DOI: 10.1186/s13098-015-0114-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/19/2015] [Indexed: 01/15/2023] Open
Abstract
Diabetic kidney disease (DKD) is a chronic complication of diabetes mellitus, which is considered a worldwide epidemic. Several studies have been developed in order to elucidate possible genetic factors involved in this disease. The FRMD3 gene, a strong candidate selected from genome wide association studies (GWAS), encodes the structural protein 4.1O involved in maintaining cell shape and integrity. Some single nucleotide polymorphisms (SNPs) located in FRMD3 have been associated with DKD in different ethnicities. However, despite these findings, the matter is still controversial. The aim of this narrative review is to summarize the evidence regarding the role of FRMD3 in DKD.
Collapse
Affiliation(s)
- Marjoriê Piuco Buffon
- />Endocrine Division, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, RS 90035-003 Brazil
- />Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
- />Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Denise Alves Sortica
- />Endocrine Division, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, RS 90035-003 Brazil
- />Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
- />Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Fernando Gerchman
- />Endocrine Division, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, RS 90035-003 Brazil
- />Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
- />Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Daisy Crispim
- />Endocrine Division, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, RS 90035-003 Brazil
- />Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Luís Henrique Canani
- />Endocrine Division, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos 2350, prédio 12, 4° andar, Porto Alegre, RS 90035-003 Brazil
- />Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
- />Federal University of Rio Grande do Sul, Porto Alegre, RS Brazil
| |
Collapse
|
28
|
Smyth LJ, Duffy S, Maxwell AP, McKnight AJ. Genetic and epigenetic factors influencing chronic kidney disease. Am J Physiol Renal Physiol 2014; 307:F757-76. [PMID: 25080522 DOI: 10.1152/ajprenal.00306.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) has become a serious public health problem because of its associated morbidity, premature mortality, and attendant healthcare costs. The rising number of persons with CKD is linked with the aging population structure and an increased prevalence of diabetes, hypertension, and obesity. There is an inherited risk associated with developing CKD, as evidenced by familial clustering and differing prevalence rates across ethnic groups. Previous studies to determine the inherited risk factors for CKD rarely identified genetic variants that were robustly replicated. However, improvements in genotyping technologies and analytic methods are now helping to identify promising genetic loci aided by international collaboration and multiconsortia efforts. More recently, epigenetic modifications have been proposed to play a role in both the inherited susceptibility to CKD and, importantly, to explain how the environment dynamically interacts with the genome to alter an individual's disease risk. Genome-wide, epigenome-wide, and whole transcriptome studies have been performed, and optimal approaches for integrative analysis are being developed. This review summarizes recent research and the current status of genetic and epigenetic risk factors influencing CKD using population-based information.
Collapse
Affiliation(s)
- L J Smyth
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - S Duffy
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - A P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - A J McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| |
Collapse
|