1
|
Yang F, Yang Z, Zhu Z, Zhu S, Song W, Yang Y, Yuan X. A joint photoacoustic imaging and broadband spectral analysis for early-stage intraoperative pathology assessment: A case study with colorectal cancer. PHOTOACOUSTICS 2025; 43:100712. [PMID: 40124587 PMCID: PMC11929096 DOI: 10.1016/j.pacs.2025.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/02/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Accurate and rapid intraoperative diagnosis of micro-infiltration in early-stage tumors presents a formidable challenge for decades. Here, we propose a novel diagnostic approach, that combines Photoacoustic Morphological Imaging (PAMI) with an in situ broadband Photoacoustic Spectral Analysis (PASA), to implement intraoperative assessment of early-stage tumor while its high-frequencies between 50 and 150 MHz respond to various nuclei specifically. Our system, a broadband Ultraviolet Photoacoustic Microscopy (bUV-PAM), uniquely integrates ultraviolet laser-induced nucleus-specific photoacoustic excitation with broadband photoacoustic detection (up to 176 MHz at -6 dB) via an optical surface wave sensor. This approach facilitates the simultaneous acquisition of morphological and spectral information from unstained tissue sections, yielding a comprehensive dual-modality virtual slice within a single raster scan. Using human colorectal tissue samples, we applied the joint PAMI and in situ PASA approach across 6 case groups. Morphological features in PAMI showed a high concordance with Hematoxylin and Eosin (H&E) staining, whereas micro-infiltrative features were too indistinct to be identified in both PAMI and H&E images. In contrast, the PASA effectively distinguishes between micro-infiltrated and non-infiltrated tissues, a finding validated by subsequent Immunohistochemical (IHC) assessments. The preliminary results suggest that the joint approach holds potential to enhance intraoperative detection of micro-infiltration, thereby offering a promising avenue for accurate and rapid surgical margin assessment.
Collapse
Affiliation(s)
- Fan Yang
- Research Center for Frontier Fundamental Studies, Zhejiang Laboratory, Hangzhou 311100, China
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Zhengduo Yang
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Zheng Zhu
- Research Center for Frontier Fundamental Studies, Zhejiang Laboratory, Hangzhou 311100, China
| | - Siwei Zhu
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Wei Song
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yong Yang
- Research Center for Frontier Fundamental Studies, Zhejiang Laboratory, Hangzhou 311100, China
| | - Xiaocong Yuan
- Research Center for Frontier Fundamental Studies, Zhejiang Laboratory, Hangzhou 311100, China
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Neurath MF, Artis D, Becker C. The intestinal barrier: a pivotal role in health, inflammation, and cancer. Lancet Gastroenterol Hepatol 2025; 10:573-592. [PMID: 40086468 DOI: 10.1016/s2468-1253(24)00390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 03/16/2025]
Abstract
The intestinal barrier serves as a boundary between the mucosal immune system in the lamina propria and the external environment of the intestinal lumen, which contains a diverse array of microorganisms and ingested environmental factors, including pathogens, food antigens, toxins, and other foreign substances. This barrier has a central role in regulating the controlled interaction between luminal factors and the intestinal immune system. Disruptions of intestinal epithelial cells, which serve as a physical barrier, or the antimicrobial peptides and mucins they produce, which act as a chemical barrier, can lead to a leaky gut. In this state, the intestinal wall is unable to efficiently separate the intestinal flora and luminal contents from the intestinal immune system. The subsequent activation of the immune system has an important role in the pathogenesis of inflammatory bowel disease, as well as in metabolic dysfunction-associated steatohepatitis, primary sclerosing cholangitis, and colorectal cancer. Dysregulated intestinal barrier integrity has also been described in patients with chronic inflammatory diseases outside the gastrointestinal tract, including rheumatoid arthritis and neurodegenerative disorders. Mechanistic studies of barrier dysfunction have revealed that the subsequent local activation and systemic circulation of activated immune cells and the cytokines they secrete, as well as extracellular vesicles, promote proinflammatory processes within and outside the gastrointestinal tract. In this Review, we summarise these findings and highlight several new therapeutic concepts currently being developed that attempt to control inflammatory processes via direct or indirect modulation of intestinal barrier function.
Collapse
Affiliation(s)
- Markus F Neurath
- Medical Clinic 1, Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Allen Discovery Center for Neuroimmune Interactions, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christoph Becker
- Medical Clinic 1, Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Umadevi K, Sundeep D, Vighnesh AR, Misra A, Krishna AG. Current Trends and Advances in Nanoplatforms-Based Imaging for Cancer Diagnosis. Indian J Microbiol 2025; 65:137-176. [PMID: 40371042 PMCID: PMC12069201 DOI: 10.1007/s12088-024-01373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/02/2024] [Indexed: 05/16/2025] Open
Abstract
The intersection of nanotechnology and biomedical imaging has ushered in a new era in the early detection and diagnosis of cancer which has revolutionized biomedical imaging by enhancing sensitivity, resolution, and targeting capability. This review presents a comprehensive overview of the latest developments and innovations in nanoplatforms-based imaging for cancer diagnosis, a burgeoning field that holds significant potential in improving cancer detection and treatment. Recently multimodal imaging techniques utilizing the unique properties of different types of nanoparticles are providing comprehensive diagnostic information. This multi-pronged approach allows for more precise tumor localization, size estimation, and growth rate calculation, offering a holistic view of the tumor and its environment. The primary focus of this review is on the recent progress in various types of nanoparticle-based imaging modalities, including optical, magnetic resonance, ultrasound, and nuclear imaging. Specific advancements in nanomaterial design for targeted imaging are highlighted, showing the improvement of precision targeting as an impact on the detection of cancer cells, even in early-stage tumors. A keen examination on the integration of diagnostic and therapeutic capabilities into single nano-based platforms for theranostics, underscoring their potential in personalized medicine is provided. The current challenges in the field, such as issues related to toxicity, biodistribution, and clearance of nanoparticles, and it explores ongoing research aimed at overcoming these hurdles. The growing body of research in this field highlights the promising future of nanoplatforms in improving the early detection and treatment of cancer.
Collapse
Affiliation(s)
- Kovuri Umadevi
- Department of Pathology, Government Medical College and Hospital, Khaleelwadi, Nizamabad, Telangana 503001 India
| | - Dola Sundeep
- Biomedical Research Laboratory, Department of Electronics and Communication Engineering, Indian Institute of Information Technology Design and Manufacturing, Jagannathagattu Hill, Kurnool, Andhra Pradesh 518008 India
| | - Alluru Raghavendra Vighnesh
- Department of Mechanical Engineering, Indian Institute of Technology (IIT-BHU) Varanasi, Varanasi, Uttar Pradesh 221005 India
| | - Aroonima Misra
- ICMR-National Institute of Pathology, Sadarjang Hospital Campus, Ansari Nagar West, New Delhi, Delhi 110029 India
| | - Alluru Gopala Krishna
- Department of Mechanical Engineering, Jawaharlal Nehru Technological University Kakinada, Nagamallithota, Kakinada, Andhra Pradesh 533003 India
| |
Collapse
|
4
|
Fasulo E, D’Amico F, Zilli A, Furfaro F, Cicerone C, Parigi TL, Peyrin-Biroulet L, Danese S, Allocca M. Advancing Colorectal Cancer Prevention in Inflammatory Bowel Disease (IBD): Challenges and Innovations in Endoscopic Surveillance. Cancers (Basel) 2024; 17:60. [PMID: 39796690 PMCID: PMC11718813 DOI: 10.3390/cancers17010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Patients with inflammatory bowel disease (IBD) face an elevated risk of developing colorectal cancer (CRC). Endoscopic surveillance is a cornerstone in CRC prevention, enabling early detection and intervention. However, despite recent advancements, challenges persist. Chromoendoscopy (CE), considered the gold standard for dysplasia detection, remains underutilized due to logistical constraints, prolonged procedural times, and the need for specialized training. New technologies, such as endomicroscopy, confocal laser endomicroscopy (CLE), and molecular endoscopy (ME), promise unprecedented precision in lesion characterization but are limited to specialized centers. Artificial intelligence (AI) can transform the field; however, barriers to widespread AI adoption include the need for robust datasets, real-time video integration, and seamless incorporation into existing workflows. Beyond technology, patient adherence to surveillance protocols, including bowel preparation and repeat procedures, remains a critical hurdle. This review aims to explore the advancements, ongoing challenges, and future prospects in CRC prevention for IBD patients, focusing on improving outcomes and expanding the implementation of advanced surveillance technologies.
Collapse
Affiliation(s)
- Ernesto Fasulo
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy; (E.F.); (F.D.); (A.Z.); (F.F.); (C.C.); (T.L.P.); (S.D.)
| | - Ferdinando D’Amico
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy; (E.F.); (F.D.); (A.Z.); (F.F.); (C.C.); (T.L.P.); (S.D.)
| | - Alessandra Zilli
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy; (E.F.); (F.D.); (A.Z.); (F.F.); (C.C.); (T.L.P.); (S.D.)
| | - Federica Furfaro
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy; (E.F.); (F.D.); (A.Z.); (F.F.); (C.C.); (T.L.P.); (S.D.)
| | - Clelia Cicerone
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy; (E.F.); (F.D.); (A.Z.); (F.F.); (C.C.); (T.L.P.); (S.D.)
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy; (E.F.); (F.D.); (A.Z.); (F.F.); (C.C.); (T.L.P.); (S.D.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France;
- NSERM, NGERE, University of Lorraine, F-54000 Nancy, France
- INFINY Institute, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- FHU-CURE, Nancy University Hospital, F-54500 Vandœuvre-lès-Nancy, France
- Groupe Hospitalier Privé Ambroise Paré-Hartmann, Paris IBD Center, F-92200 Neuilly sur Seine, France
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy; (E.F.); (F.D.); (A.Z.); (F.F.); (C.C.); (T.L.P.); (S.D.)
| | - Mariangela Allocca
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy; (E.F.); (F.D.); (A.Z.); (F.F.); (C.C.); (T.L.P.); (S.D.)
| |
Collapse
|
5
|
Malik MMUD, Alqahtani MM, Hadadi I, Kanbayti I, Alawaji Z, Aloufi BA. Molecular Imaging Biomarkers for Early Cancer Detection: A Systematic Review of Emerging Technologies and Clinical Applications. Diagnostics (Basel) 2024; 14:2459. [PMID: 39518426 PMCID: PMC11545511 DOI: 10.3390/diagnostics14212459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Early cancer detection is crucial for improving patient outcomes. Molecular imaging biomarkers offer the potential for non-invasive, early-stage cancer diagnosis. OBJECTIVES To evaluate the effectiveness and accuracy of molecular imaging biomarkers for early cancer detection across various imaging modalities and cancer types. METHODS A comprehensive search of PubMed/MEDLINE, Embase, Web of Science, Cochrane Library, and Scopus was performed, covering the period from January 2010 to December 2023. Eligibility criteria included original research articles published in English on molecular imaging biomarkers for early cancer detection in humans. The risk of bias for included studies was evaluated using the QUADAS-2 tool. The findings were synthesized through narrative synthesis, with quantitative analysis conducted where applicable. RESULTS In total, 50 studies were included. Positron emission tomography (PET)-based biomarkers showed the highest sensitivity (mean: 89.5%, range: 82-96%) and specificity (mean: 91.2%, range: 85-100%). Novel tracers such as [68Ga]-PSMA for prostate cancer and [18F]-FES for breast cancer demonstrated promising outcomes. Optical imaging techniques showed high specificity in intraoperative settings. CONCLUSIONS Molecular imaging biomarkers show significant potential for improving early cancer detection. Integration into clinical practice could lead to earlier interventions and improved outcomes. Further research is needed to address standardization and cost-effectiveness.
Collapse
Affiliation(s)
- Maajid Mohi Ud Din Malik
- Dr. D.Y. Patil School of Allied Health Sciences, Dr. D.Y. Patil Vidyapeeth, (Deemed to be University) Sant Tukaram Nagar, Pune 411018, MH, India;
| | - Mansour M. Alqahtani
- Department of Radiological Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Ibrahim Hadadi
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Asir, Abha 62529, Saudi Arabia
| | - Ibrahem Kanbayti
- Radiologic Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Zeyad Alawaji
- Department of Radiologic Technology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Bader A. Aloufi
- Department of Diagnostic Radiology, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia;
| |
Collapse
|
6
|
Bozic I, Behr MR, Brown JQ. Quantitative and comparative assessment of dyes and protocols for rapid ex vivo microscopy of fresh tissues. Sci Rep 2024; 14:21376. [PMID: 39271788 PMCID: PMC11399393 DOI: 10.1038/s41598-024-72213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Using ex vivo microscopy, virtual pathology can improve histological procedures by providing pathology images in near real-time without tissue destruction. Several emerging and promising approaches leverage fast-acting small-molecule fluorescent stains to replicate traditional pathology structural contrast, combined with rapid optical sectioning microscopes. However, several vital challenges must be addressed to translate virtual pathology into the clinical environment. One such challenge is selecting robust, reliable, and repeatable staining protocols that can be adopted across institutions. In this work, we addressed the effects of dye selection and staining protocol on image quality in rapid point-of-care imaging settings. For this purpose, we used structured illumination microscopy to evaluate fluorescent dyes currently used in the field of ex vivo virtual pathology, in particular, studying the effects of staining protocol and temporal and photostability on image quality. We observed that DRAQ5 and SYBR gold provide higher image quality than TO-PRO3 and RedDot1 in the nuclear channel and Eosin Y515 in the extracellular/cytoplasmic channel than Atto488. Further, we found that TO-PRO3 and Eosin Y515 are less photostable than other dyes. Finally, we identify the optimal staining protocol for each dye and demonstrate pan-species generalizability.
Collapse
Affiliation(s)
- Ivan Bozic
- Department of Biomedical Engineering, Tulane University, New Orleans, 70118, USA
| | - Madeline R Behr
- Department of Biomedical Engineering, Tulane University, New Orleans, 70118, USA
| | - J Quincy Brown
- Department of Biomedical Engineering, Tulane University, New Orleans, 70118, USA.
| |
Collapse
|
7
|
Cicerone C, D’Amico F, Allocca M, Zilli A, Parigi TL, Danese S, Furfaro F. A Comprehensive Multidisciplinary Approach to Diagnosing Chronic Inflammatory Bowel Diseases: Integration of Clinical, Endoscopic, and Imaging Modalities. Diagnostics (Basel) 2024; 14:1530. [PMID: 39061667 PMCID: PMC11275644 DOI: 10.3390/diagnostics14141530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic inflammatory bowel diseases, such as Crohn's disease and ulcerative colitis, present diagnostic challenges due to their complex and heterogeneous nature. While histology remains fundamental for accurate diagnosis, a multidisciplinary approach incorporating clinical, endoscopic, and imaging modalities is increasingly recognized as essential for comprehensive evaluation. This article delves into the importance of integrating various diagnostic techniques in the assessment of IBD. Colonoscopy and histology, with its ability to directly visualize the intestinal mucosa, play a central role in the diagnostic process. However, histological analysis alone may not suffice, necessitating the inclusion of advanced imaging techniques, such as magnetic resonance enterography (MRE), computed tomography enterography (CTE), and intestinal ultrasound (IUS). These techniques provide valuable insights into the disease's extent, severity, and complications, and should be used in conjunction with biochemical parameters. These modalities complement traditional endoscopic and histological findings, offering a more holistic understanding of the disease process. A multidisciplinary approach that incorporates clinical, endoscopic, histological, serological, and imaging assessments enables clinicians to achieve a more accurate and timely diagnosis of IBD. Moreover, this integrated approach facilitates personalized treatment strategies tailored to individual patient needs, ultimately improving clinical outcomes and quality of life for those affected by chronic inflammatory bowel diseases.
Collapse
Affiliation(s)
- Clelia Cicerone
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (C.C.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.)
| | - Ferdinando D’Amico
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (C.C.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.)
| | - Mariangela Allocca
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (C.C.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.)
| | - Alessandra Zilli
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (C.C.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.)
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (C.C.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.)
- Department of Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (C.C.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.)
- Department of Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Furfaro
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (C.C.); (F.D.); (M.A.); (A.Z.); (T.L.P.); (S.D.)
| |
Collapse
|
8
|
Liu S, Chen LX, Ye LS, Hu B. Challenges in early detection and endoscopic resection of esophageal cancer: There is a long way to go. World J Gastrointest Oncol 2024; 16:3364-3367. [PMID: 39072158 PMCID: PMC11271785 DOI: 10.4251/wjgo.v16.i7.3364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
The publication by Qu et al provided a comprehensive discussion about the epidemiology, etiology, histopathology, early detection, and endoscopic treatment of esophageal carcinoma (EC) and summarized the progress in the advanced technologies for screening and endoscopic resection for EC. In this editorial, we will provide deeper insight into the challenges that hinder practical application of these advanced technologies along with the role of these technologies in upper endoscopy quality. More efforts need to be made to overcome the challenges and add the value of these technologies in upper endoscopy quality. Clinical outcomes of management strategies after noncurative endoscopic dissection for early EC patients need further investigation. The experiences with noncurative endoscopic resection of other organs may have certain implications for noncurative resection of early EC.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Gastroenterology and Hepatology/Medical Engineering Integration Laboratory of Digestive Endoscopy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Liu-Xiang Chen
- Department of Gastroenterology and Hepatology/Medical Engineering Integration Laboratory of Digestive Endoscopy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lian-Song Ye
- Department of Gastroenterology and Hepatology/Medical Engineering Integration Laboratory of Digestive Endoscopy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology/Medical Engineering Integration Laboratory of Digestive Endoscopy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
9
|
Zhou J, Xiong H, Liu Q. A novel Dual-Branch Asymmetric Encoder-Decoder Segmentation Network for accurate colonic crypt segmentation. Comput Biol Med 2024; 173:108354. [PMID: 38522251 DOI: 10.1016/j.compbiomed.2024.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with colonic crypts (CC) being crucial in its development. Accurate segmentation of CC is essential for decisions CRC and developing diagnostic strategies. However, colonic crypts' blurred boundaries and morphological diversity bring substantial challenges for automatic segmentation. To mitigate this problem, we proposed the Dual-Branch Asymmetric Encoder-Decoder Segmentation Network (DAUNet), a novel and efficient model tailored for confocal laser endomicroscopy (CLE) CC images. In DAUNet, we crafted a dual-branch feature extraction module (DFEM), employing Focus operations and dense depth-wise separable convolution (DDSC) to extract multiscale features, boosting semantic understanding and coping with the morphological diversity of CC. We also introduced the feature fusion guided module (FFGM) to adaptively combine features from both branches using cross-group spatial and channel attention to improve the model representation in focusing on specific lesion features. These modules are seamlessly integrated into the encoder for effective multiscale information extraction and fusion, and DDSC is further introduced in the decoder to provide rich representations for precise segmentation. Moreover, the local multi-layer perceptron (LMLP) module is designed to decouple and recalibrate features through a local linear transformation that filters out the noise and refines features to provide edge-enriched representation. Experimental evaluations on two datasets demonstrate that the proposed method achieves Intersection over Union (IoU) scores of 81.54% and 84.83%, respectively, which are on par with state-of-the-art methods, exhibiting its effectiveness for CC segmentation. The proposed method holds great potential in assisting physicians with precise lesion localization and region analysis, thereby improving the diagnostic accuracy of CRC.
Collapse
Affiliation(s)
- Jingjun Zhou
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| | - Hong Xiong
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| | - Qian Liu
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China; Key Laboratory of Biomedical Engineering of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
10
|
Sabino AU, Safatle-Ribeiro AV, Lima SS, Marques CFS, Maluf-Filho F, Ramos AF. Machine Learning-Based Prediction of Responsiveness to Neoadjuvant Chemoradiotheapy in Locally Advanced Rectal Cancer Patients from Endomicroscopy. Crit Rev Oncog 2024; 29:53-63. [PMID: 38505881 DOI: 10.1615/critrevoncog.2023050075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The protocol for treating locally advanced rectal cancer consists of the application of chemoradiotherapy (neoCRT) followed by surgical intervention. One issue for clinical oncologists is predicting the efficacy of neoCRT in order to adjust the dosage and avoid treatment toxicity in cases when surgery should be conducted promptly. Biomarkers may be used for this purpose along with in vivo cell-level images of the colorectal mucosa obtained by probe-based confocal laser endomicroscopy (pCLE) during colonoscopy. The aim of this article is to report our experience with Motiro, a computational framework that we developed for machine learning (ML) based analysis of pCLE videos for predicting neoCRT response in locally advanced rectal cancer patients. pCLE videos were collected from 47 patients who were diagnosed with locally advanced rectal cancer (T3/T4, or N+). The patients received neoCRT. Response to treatment by all patients was assessed by endoscopy along with biopsy and magnetic resonance imaging (MRI). Thirty-seven patients were classified as non-responsive to neoCRT because they presented a visible macroscopic neoplastic lesion, as confirmed by pCLE examination. Ten remaining patients were considered responsive to neoCRT because they presented lesions as a scar or small ulcer with negative biopsy, at post-treatment follow-up. Motiro was used for batch mode analysis of pCLE videos. It automatically characterized the tumoral region and its surroundings. That enabled classifying a patient as responsive or non-responsive to neoCRT based on pre-neoCRT pCLE videos. Motiro classified patients as responsive or non-responsive to neoCRT with an accuracy of ~ 0.62 when using images of the tumor. When using images of regions surrounding the tumor, it reached an accuracy of ~ 0.70. Feature analysis showed that spatial heterogeneity in fluorescence distribution within regions surrounding the tumor was the main contributor to predicting response to neoCRT. We developed a computational framework to predict response to neoCRT by locally advanced rectal cancer patients based on pCLE images acquired pre-neoCRT. We demonstrate that the analysis of the mucosa of the region surrounding the tumor provides stronger predictive power.
Collapse
Affiliation(s)
- Alan U Sabino
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil
| | - Adriana V Safatle-Ribeiro
- Departamento de Gastroenterologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil
| | - Suzylaine S Lima
- Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, Sao Paulo 03828-000, SP, Brazil
| | - Carlos F S Marques
- Departamento de Gastroenterologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil
| | - Fauze Maluf-Filho
- Departamento de Gastroenterologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil
| | - Alexandre F Ramos
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil; Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, Sao Paulo 03828-000, SP, Brazil
| |
Collapse
|
11
|
Cassinotti A, Parravicini M, Chapman TP, Balzarini M, Canova L, Segato S, Zadro V, Travis S, Segato S. Endoscopic characterization of neoplastic and non-neoplastic lesions in inflammatory bowel disease: systematic review in the era of advanced endoscopic imaging. Therap Adv Gastroenterol 2023; 16:17562848231208667. [PMID: 37954537 PMCID: PMC10638882 DOI: 10.1177/17562848231208667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Background Current guidelines strongly recommend the use of validated classifications to support optical diagnosis of lesions with advanced endoscopic imaging in the lower gastrointestinal tract. However, the optimal strategy in inflammatory bowel disease (IBD) is still a matter of debate. Objectives To analyze the accuracy of endoscopic classifications or single predictors for in vivo lesion characterization during endoscopic surveillance of IBD with advanced endoscopic imaging. Design Systematic review. Data sources and methods Medline and PubMed were used to extract all studies which focused on lesion characterization of neoplastic and non-neoplastic lesions in IBD. The diagnostic accuracy of endoscopic classifications and single endoscopic predictors for lesion characterization were analyzed according to type of patients, lesions, and technology used. When available, the rates of true and false positives or negatives for neoplasia were pooled and the sensitivity (SE), specificity (SP), positive predictive value, and negative predictive value (NPV) were calculated. Results We included 35 studies (2789 patients; 5925 lesions - 1149 neoplastic). Advanced endoscopic imaging included dye-based chromoendoscopy, virtual chromoendoscopy (VCE), magnification and high-definition endoscopy, confocal laser endomicroscopy (CLE), endocytoscopy, and autofluorescence imaging. The Kudo classification of pit patterns was most frequently used, with pooled SE 83%, SP 83%, and NPV 95%. The endoscopic criteria with the highest accuracy, with minimum SE ⩾ 90%, SP ⩾ 80%, and NPV ⩾ 90% were: the Kudo-IBD classification used with VCE (Fuji Intelligent Color Enhancement and i-SCAN); combined irregular surface and vascular patterns used with narrow band imaging; the Mainz classification used with CLE. Multiple clinical and technical factors were found to influence the accuracy of optical diagnosis in IBD. Conclusion No single endoscopic factor has yet shown sufficient accuracy for lesion characterization in IBD surveillance. Conventional classifications developed in the non-IBD setting have lower accuracy in IBD. The use of new classifications adapted for IBD (Kudo-IBD), and new technologies based on in vivo microscopic analysis show promise.
Collapse
Affiliation(s)
- Andrea Cassinotti
- Gastroenterology and Digestive Endoscopy Unit, Ospedale di Circolo and Fondazione Macchi University Hospital, ASST Sette Laghi, viale Borri 57, 21100 Varese, Italy
| | - Marco Parravicini
- Gastroenterology and Digestive Endoscopy Unit, Ospedale di Circolo and Fondazione Macchi University Hospital, ASST Sette Laghi, Varese, Italy
| | - Thomas P. Chapman
- Department of Gastroenterology, St Richard’s and Worthing Hospitals, University Hospitals Sussex NHS Foundation Trust, West Sussex, UK
| | - Marco Balzarini
- Gastroenterology and Digestive Endoscopy Unit, Ospedale di Circolo and Fondazione Macchi University Hospital, ASST Sette Laghi, Varese, Italy
| | - Lorenzo Canova
- Gastroenterology and Digestive Endoscopy Unit, Ospedale di Circolo and Fondazione Macchi University Hospital, ASST Sette Laghi, Varese, Italy
| | - Simone Segato
- Gastroenterology and Digestive Endoscopy Unit, Ospedale di Circolo and Fondazione Macchi University Hospital, ASST Sette Laghi, Varese, Italy
| | - Valentina Zadro
- Gastroenterology and Digestive Endoscopy Unit, Ospedale di Circolo and Fondazione Macchi University Hospital, ASST Sette Laghi, Varese, Italy
| | - Simon Travis
- Translational Gastroenterology Unit, Nuffield Department of Medicine, and Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Biomedical Research Centre, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Sergio Segato
- Gastroenterology and Digestive Endoscopy Unit, Ospedale di Circolo and Fondazione Macchi University Hospital, ASST Sette Laghi, Varese, Italy
| |
Collapse
|
12
|
Solari S, Martellucci J, Annicchiarico A, Scheiterle M, Bergamini C, Prosperi P. Laser technology in proctological diseases: is it really the wave of the future? Updates Surg 2023; 75:1759-1772. [PMID: 37438655 DOI: 10.1007/s13304-023-01578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
Different types of lasers have been applied for various proctological conditions. We discuss about published articles regarding the application of lasers, with concern about evidence-based use of these techniques and technologies. We performed a literature search about laser treatments for proctological conditions. 55 studies were included for the final revision. Meta-analysis of data was not performed because of heterogeneity of study designs and outcome measures. A scoping review was performed. Laser treatments for hemorrhoids require a shorter operative time and show less postoperative pain and bleeding compared to conventional hemorrhoidectomy, but are more expensive. Studies are heterogeneous in design, endpoints, postoperative assessment, length of follow-up and outcome measures. Only 3 RCTs are available and only three studies evaluate long-term outcomes. FiLaC (fistula laser closure) was initially described in 2011 for the treatment of anal fistula. In the published studies the reported healing rates vary between 20 and 82%, and the ideal indication is yet to be defined. Studies with long-term follow-up are lacking. SiLaT (sinus laser treatment) applied the technology used for FiLaC to the treatment of pilonidal sinus disease. This technique had less perioperative pain and shorter hospital stay, but a lower primary healing rate when compared to traditional techniques. Available data is very limited, and no randomized trials are published to date. Laser assisted techniques are a viable, minimally invasive, but expensive option for the treatment of several proctological conditions. Further researches are needed to assess if patients could benefit of their use, and for what indication.
Collapse
Affiliation(s)
- Stefano Solari
- Emergency Surgery, Careggi University Hospital, Florence, Italy.
- Department of Medical Science, University of Ferrara, Ferrara, Italy.
| | | | - Alfredo Annicchiarico
- Emergency Surgery, Careggi University Hospital, Florence, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Carlo Bergamini
- Emergency Surgery, Careggi University Hospital, Florence, Italy
| | - Paolo Prosperi
- Emergency Surgery, Careggi University Hospital, Florence, Italy
| |
Collapse
|
13
|
Yap T, Tan I, Ramani RS, Bhatia N, Demetrio de Souza Franca P, Angel C, Moore C, Reiner T, Bussau L, McCullough MJ. Acquisition and annotation in high resolution in vivo digital biopsy by confocal microscopy for diagnosis in oral precancer and cancer. Front Oncol 2023; 13:1209261. [PMID: 37469413 PMCID: PMC10352099 DOI: 10.3389/fonc.2023.1209261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Scanned fibre endomicroscopes are full point-scanning confocal microscopes with submicron lateral resolution with an optical slice thickness thin enough to isolate individual cell layers, allow active positioning of the optical slice in the z-axis and collection of megapixel images. Here we present descriptive findings and a brief atlas of an acquisition and annotation protocol high resolution in vivo capture of oral mucosal pathology including oral squamous cell carcinoma and dysplasia using a fluorescence scanned fibre endomicroscope with 3 topical fluorescent imaging agents: fluorescein, acriflavine and PARPi-FL. Methods Digital biopsy was successfully performed via an acquisition protocol in seventy-one patients presenting for investigation of oral mucosal abnormalities using a miniaturized, handheld scanned fibre endoscope. Multiple imaging agents were utilized and multiple time points sampled. Fifty-nine patients had a matched histopathology correlating in location with imaging. The images were annotated back to macrographic location using a purpose-built software, MouthMap™. Results Acquisition and annotation of cellular level resolved images was demonstrated with all 3 topical agents. Descriptive observations between clinically or histologically normal oral mucosa showed regular intranuclear distance, a regular nuclear profile and fluorescent homogeneity. This was dependent on the intraoral location and type of epithelium being observed. Key features of malignancy were a loss of intranuclear distance, disordered nuclear clustering and irregular nuclear fluorescence intensity and size. Perinuclear fluorescent granules were seen in the absence of irregular nuclear features in lichenoid inflammation. Discussion High resolution oral biopsy allows for painless and rapid capture of multiple mucosal sites, resulting in more data points to increase diagnostic precision. High resolution digital micrographs can be easily compared serially across multiple time points utilizing an annotation software. In the present study we have demonstrated realization of a high-resolution digital biopsy protocol of the oral mucosa for utility in the diagnosis of oral cancer and precancer..
Collapse
Affiliation(s)
- Tami Yap
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, Carlton, VIC, Australia
- Oral Medicine Unit, Royal Dental Hospital of Melbourne, Carlton, VIC, Australia
| | - Ivy Tan
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, Carlton, VIC, Australia
- Oral Medicine Unit, Royal Dental Hospital of Melbourne, Carlton, VIC, Australia
| | - Rishi S. Ramani
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, Carlton, VIC, Australia
| | - Nirav Bhatia
- Oral Medicine Unit, Royal Dental Hospital of Melbourne, Carlton, VIC, Australia
| | - Paula Demetrio de Souza Franca
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Chris Angel
- Department of Pathology, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Caroline Moore
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, Carlton, VIC, Australia
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Michael J. McCullough
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, Carlton, VIC, Australia
- Oral Medicine Unit, Royal Dental Hospital of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
14
|
Rath T, Atreya R, Neurath MF. A spotlight on intestinal permeability and inflammatory bowel diseases. Expert Rev Gastroenterol Hepatol 2023; 17:893-902. [PMID: 37606514 DOI: 10.1080/17474124.2023.2242772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION The intestinal barrier is a multi-faced structure lining the surface of the intestinal mucosa of the GI tract. To exert its main functions as a physical and immunological defense barrier, several components of the intestinal barrier act in a concerted and cooperative manner. AREAS COVERED Herein, we first introduce to the basic organization of the intestinal barrier and then summarize different methods to assess barrier function in and ex vivo. Finally, we provide an in-depth overview of the relevance of intestinal barrier dysfunction in inflammatory bowel diseases. EXPERT OPINION In parallel to a more fundamental understanding of the intestinal barrier as a key component for intestinal integrity is the notion that intestinal barrier defects are associated with a variety of diseases such as inflammatory bowel diseases. Recent research has fueled and perpetuated the concept that barrier defects are critical components of disease development, disease behavior, and potentially also an area of therapeutic intervention in IBD patients. Although being far away from standard, new technologies can be used to easily assess barrier healing in IBD and to derive clinical consequences from these findings such as more accurate forecasting of future disease behavior or the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Timo Rath
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Raja Atreya
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie DZI, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| |
Collapse
|
15
|
Jiang J, Chao WL, Culp S, Krishna SG. Artificial Intelligence in the Diagnosis and Treatment of Pancreatic Cystic Lesions and Adenocarcinoma. Cancers (Basel) 2023; 15:2410. [PMID: 37173876 PMCID: PMC10177524 DOI: 10.3390/cancers15092410] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer is projected to become the second leading cause of cancer-related mortality in the United States by 2030. This is in part due to the paucity of reliable screening and diagnostic options for early detection. Amongst known pre-malignant pancreatic lesions, pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasms (IPMNs) are the most prevalent. The current standard of care for the diagnosis and classification of pancreatic cystic lesions (PCLs) involves cross-sectional imaging studies and endoscopic ultrasound (EUS) and, when indicated, EUS-guided fine needle aspiration and cyst fluid analysis. However, this is suboptimal for the identification and risk stratification of PCLs, with accuracy of only 65-75% for detecting mucinous PCLs. Artificial intelligence (AI) is a promising tool that has been applied to improve accuracy in screening for solid tumors, including breast, lung, cervical, and colon cancer. More recently, it has shown promise in diagnosing pancreatic cancer by identifying high-risk populations, risk-stratifying premalignant lesions, and predicting the progression of IPMNs to adenocarcinoma. This review summarizes the available literature on artificial intelligence in the screening and prognostication of precancerous lesions in the pancreas, and streamlining the diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Joanna Jiang
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wei-Lun Chao
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Stacey Culp
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Ohio State University Wexner Medical Ceter, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Eadie M, Liao J, Ageeli W, Nabi G, Krstajić N. Fiber Bundle Image Reconstruction Using Convolutional Neural Networks and Bundle Rotation in Endomicroscopy. SENSORS (BASEL, SWITZERLAND) 2023; 23:2469. [PMID: 36904673 PMCID: PMC10007631 DOI: 10.3390/s23052469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Fiber-bundle endomicroscopy has several recognized drawbacks, the most prominent being the honeycomb effect. We developed a multi-frame super-resolution algorithm exploiting bundle rotation to extract features and reconstruct underlying tissue. Simulated data was used with rotated fiber-bundle masks to create multi-frame stacks to train the model. Super-resolved images are numerically analyzed, which demonstrates that the algorithm can restore images with high quality. The mean structural similarity index measurement (SSIM) improved by a factor of 1.97 compared with linear interpolation. The model was trained using images taken from a single prostate slide, 1343 images were used for training, 336 for validation, and 420 for testing. The model had no prior information about the test images, adding to the robustness of the system. Image reconstruction was completed in 0.03 s for 256 × 256 images indicating future real-time performance is within reach. The combination of fiber bundle rotation and multi-frame image enhancement through machine learning has not been utilized before in an experimental setting but could provide a much-needed improvement to image resolution in practice.
Collapse
Affiliation(s)
- Matthew Eadie
- School of Science and Engineering, Centre for Medical Engineering and Technology, University of Dundee, Dundee DD1 4HN, UK
| | - Jinpeng Liao
- School of Science and Engineering, Centre for Medical Engineering and Technology, University of Dundee, Dundee DD1 4HN, UK
| | - Wael Ageeli
- School of Medicine, Centre for Medical Engineering and Technology, University of Dundee, Dundee DD1 9SY, UK
- Diagnostic Radiology Department, College of Applied Medical Sciences, Jazan University, Al Maarefah Rd, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ghulam Nabi
- School of Medicine, Centre for Medical Engineering and Technology, University of Dundee, Dundee DD1 9SY, UK
| | - Nikola Krstajić
- School of Science and Engineering, Centre for Medical Engineering and Technology, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
17
|
Development, Implementation and Application of Confocal Laser Endomicroscopy in Brain, Head and Neck Surgery—A Review. Diagnostics (Basel) 2022; 12:diagnostics12112697. [PMID: 36359540 PMCID: PMC9689276 DOI: 10.3390/diagnostics12112697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
When we talk about visualization methods in surgery, it is important to mention that the diagnosis of tumors and how we define tumor borders intraoperatively in a correct way are two main things that would not be possible to achieve without this grand variety of visualization methods we have at our disposal nowadays. In addition, histopathology also plays a very important role, and its importance cannot be neglected either. Some biopsy specimens, e.g., frozen sections, are examined by a histopathologist and lead to tumor diagnosis and the definition of its borders. Furthermore, surgical resection is a very important point when it comes to prognosis and life survival. Confocal laser endomicroscopy (CLE) is an imaging technique that provides microscopic information on the tissue in real time. CLE of disorders, such as head, neck and brain tumors, has only recently been suggested to contribute to both immediate tumor characterization and detection. It can be used as an additional tool for surgical biopsies during biopsy or surgical procedures and for inspection of resection margins during surgery. In this review, we analyze the development, implementation, advantages and disadvantages as well as the future directions of this technique in neurosurgical and otorhinolaryngological disciplines.
Collapse
|
18
|
Restelli F, Mathis AM, Höhne J, Mazzapicchi E, Acerbi F, Pollo B, Quint K. Confocal laser imaging in neurosurgery: A comprehensive review of sodium fluorescein-based CONVIVO preclinical and clinical applications. Front Oncol 2022; 12:998384. [PMID: 36263218 PMCID: PMC9574261 DOI: 10.3389/fonc.2022.998384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Given the established direct correlation that exists among extent of resection and postoperative survival in brain tumors, obtaining complete resections is of primary importance. Apart from the various technological advancements that have been introduced in current clinical practice, histopathological study still remains the gold-standard for definitive diagnosis. Frozen section analysis still represents the most rapid and used intraoperative histopathological method that allows for an intraoperative differential diagnosis. Nevertheless, such technique owes some intrinsic limitations that limit its overall potential in obtaining real-time diagnosis during surgery. In this context, confocal laser technology has been suggested as a promising method to have near real-time intraoperative histological images in neurosurgery, thanks to the results of various studies performed in other non-neurosurgical fields. Still far to be routinely implemented in current neurosurgical practice, pertinent literature is growing quickly, and various reports have recently demonstrated the utility of this technology in both preclinical and clinical settings in identifying brain tumors, microvasculature, and tumor margins, when coupled to the intravenous administration of sodium fluorescein. Specifically in neurosurgery, among different available devices, the ZEISS CONVIVO system probably boasts the most recent and largest number of experimental studies assessing its usefulness, which has been confirmed for identifying brain tumors, offering a diagnosis and distinguishing between healthy and pathologic tissue, and studying brain vessels. The main objective of this systematic review is to present a state-of-the-art summary on sodium fluorescein-based preclinical and clinical applications of the ZEISS CONVIVO in neurosurgery.
Collapse
Affiliation(s)
- Francesco Restelli
- Department of Neurosurgery, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Maria Mathis
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Julius Höhne
- Department of Neurosurgery, Universitätsklinikum, Regensburg, Germany
| | - Elio Mazzapicchi
- Department of Neurosurgery, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
- *Correspondence: Francesco Acerbi,
| | - Bianca Pollo
- Department of Neuropathology, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | | |
Collapse
|
19
|
Kaniyala Melanthota S, Kistenev YV, Borisova E, Ivanov D, Zakharova O, Boyko A, Vrazhnov D, Gopal D, Chakrabarti S, K SP, Mazumder N. Types of spectroscopy and microscopy techniques for cancer diagnosis: a review. Lasers Med Sci 2022; 37:3067-3084. [PMID: 35834141 PMCID: PMC9525344 DOI: 10.1007/s10103-022-03610-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
Cancer is a life-threatening disease that has claimed the lives of many people worldwide. With the current diagnostic methods, it is hard to determine cancer at an early stage, due to its versatile nature and lack of genomic biomarkers. The rapid development of biophotonics has emerged as a potential tool in cancer detection and diagnosis. Using the fluorescence, scattering, and absorption characteristics of cells and tissues, it is possible to detect cancer at an early stage. The diagnostic techniques addressed in this review are highly sensitive to the chemical and morphological changes in the cell and tissue during disease progression. These changes alter the fluorescence signal of the cell/tissue and are detected using spectroscopy and microscopy techniques including confocal and two-photon fluorescence (TPF). Further, second harmonic generation (SHG) microscopy reveals the morphological changes that occurred in non-centrosymmetric structures in the tissue, such as collagen. Again, Raman spectroscopy is a non-destructive method that provides a fingerprinting technique to differentiate benign and malignant tissue based on Raman signal. Photoacoustic microscopy and spectroscopy of tissue allow molecule-specific detection with high spatial resolution and penetration depth. In addition, terahertz spectroscopic studies reveal the variation of tissue water content during disease progression. In this review, we address the applications of spectroscopic and microscopic techniques for cancer detection based on the optical properties of the tissue. The discussed state-of-the-art techniques successfully determines malignancy to its rapid diagnosis.
Collapse
Affiliation(s)
- Sindhoora Kaniyala Melanthota
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Yury V Kistenev
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
- Central Research Laboratory, Siberian State Medical University, Tomsk, 634050, Russia
| | - Ekaterina Borisova
- Laboratory of Biophotonics, Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd, 72, 1784, Sofia, Bulgaria.
- Biology Faculty, Saratov State University, 83, Astrakhanskaya Str, 410012, Saratov, Russia.
| | - Deyan Ivanov
- Laboratory of Biophotonics, Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd, 72, 1784, Sofia, Bulgaria
| | - Olga Zakharova
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Andrey Boyko
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Denis Vrazhnov
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Dharshini Gopal
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Shweta Chakrabarti
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Shama Prasada K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
20
|
Nardone OM, Iacucci M. Image-Enhanced Endoscopy in the Surveillance of Colitis-Associated Neoplasia. Gastrointest Endosc Clin N Am 2022; 32:845-862. [PMID: 36202520 DOI: 10.1016/j.giec.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Advances in endoscopic technology have allowed for improved detection and management of dysplasia. These developments have also raised the question of the optimal methods for surveillance. Promising data showed that virtual chromoendoscopy (VCE) is comparable to dye-based chromoendoscopy (DCE). However, the usefulness of DCE and VCE in the surveillance of longstanding inflammatory bowel disease colitis when compared with high-definition white-light endoscopy has been recently questioned. Confocal laser endomicroscopy is a highly innovative endoscopic procedure but is still far from the routine adoption for surveillance. Thus, a personalized approach should guide the most appropriate surveillance strategy.
Collapse
Affiliation(s)
- Olga Maria Nardone
- Institute of Immunology and Immunotherapy, Heritage Building for Research and Development, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Marietta Iacucci
- Institute of Immunology and Immunotherapy, Heritage Building for Research and Development, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
21
|
Agrawal LS, Acharya S, Shukla S, Parekh YC. Future of Endoscopy in Inflammatory Bowel Diseases (IBDs). Cureus 2022; 14:e29567. [PMID: 36312686 PMCID: PMC9596090 DOI: 10.7759/cureus.29567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/25/2022] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal (GI) endoscopy has transformed over the years in scope, safety, accuracy, acceptability, and cost effectiveness of the clinical practice. There has been a reduction in the superiority of the endoscopic devices as innovations have taken place and increased the diagnostic values with certain limitations. There are particular difficulties in striking a balance between the development of new technology and the device's acceptance. The wide use of endoscopy for investigating GI lesions and diagnosis has led to an increase in more advanced methods and their broad application. It can simultaneously diagnose pre-malignant and malignant lesions, and newer interventions have made the biopsy specimen uptake possible. In this review article, we focus on the more recent roles, indications, applications, and usage of the innovative methods of endoscopy.
Collapse
|
22
|
Lerner DG, Mencin A, Novak I, Huang C, Ng K, Lirio RA, Khlevner J, Utterson EC, Harris BR, Pitman RT, Mir S, Gugig R, Walsh CM, Fishman D. Advances in Pediatric Diagnostic Endoscopy: A State-of-the-Art Review. JPGN REPORTS 2022; 3:e224. [PMID: 37168622 PMCID: PMC10158303 DOI: 10.1097/pg9.0000000000000224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/20/2022] [Indexed: 05/13/2023]
Abstract
Pediatric endoscopy has revolutionized the way we diagnose and treat gastrointestinal disorders in children. Technological advances in computer processing and imaging continue to affect endoscopic equipment and advance diagnostic tools for pediatric endoscopy. Although commonly used by adult gastroenterologists, modalities, such as endomicroscopy, image-enhanced endoscopy, and impedance planimetry, are not routinely used in pediatric gastroenterology. This state-of-the-art review describes advances in diagnostic modalities, including image-enhanced endoscopy, confocal laser endomicroscopy, optical coherence tomography, endo functional luminal imaging probes, wireless motility/pH capsule, wireless colon capsule endoscopy, endoscopic ultrasound, and discusses the basic principles of each technology, including adult indications and pediatric applications, safety cost, and training data.
Collapse
Affiliation(s)
- Diana G. Lerner
- From the Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, WI
| | - Ali Mencin
- Division of Pediatric Gastroenterology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Inna Novak
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital at Montefiore, Bronx, NY
| | - Clifton Huang
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cook Children’s Medical Center, Fort Worth, TX
| | - Kenneth Ng
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard A. Lirio
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, UMASS Memorial Children’s Medical Center/UMASS Medical School, Worcester, MA
| | - Julie Khlevner
- Division of Pediatric Gastroenterology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Elizabeth C. Utterson
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
| | - Brendan R. Harris
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
| | - Ryan T. Pitman
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
| | - Sabina Mir
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, UNC School of Medicine, Chapel Hill, NC
| | - Roberto Gugig
- Lucile Packard Children’s Hospital at Stanford, Palo Alto, CA
| | - Catharine M. Walsh
- Department of Paediatrics and the Wilson Centre, Division of Gastroenterology, Hepatology and Nutrition and the Research and Learning Institutes, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Doug Fishman
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX
| |
Collapse
|
23
|
Bojarski C, Tangermann P, Barmeyer C, Buchkremer J, Kiesslich R, Ellrichmann M, Schreiber S, Schmidt C, Stallmach A, Roehle R, Loddenkemper C, Daum S, Siegmund B, Schumann M, Ullrich R. Prospective, double-blind diagnostic multicentre study of confocal laser endomicroscopy for wheat sensitivity in patients with irritable bowel syndrome. Gut 2022; 71:1567-1576. [PMID: 34544843 PMCID: PMC9279748 DOI: 10.1136/gutjnl-2021-325181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE A considerable proportion of patients with irritable bowel syndrome (IBS) may be wheat-sensitive and respond to a gluten-free diet (GFD) although they do not have coeliac disease. However, a diagnostic test for wheat sensitivity (WS) is missing. Our study evaluated the diagnostic accuracy (sensitivity and specificity) of confocal laser endomicroscopy (CLE) for the identification of WS as primary outcome. DESIGN In this prospective, double-blind diagnostic study 147 non-coeliac patients fulfilling the Rome III criteria for IBS were tested by CLE for duodenal changes after wheat (index test), soy, yeast or milk exposure. Patients with IBS responding to 2 months of GFD were classified as having WS (reference test) using response criteria recommended by regulatory bodies for pharmaceutical trials of patients with IBS. After 2 months, CLE results were unblinded and patients were advised to exclude those food components that had led to a positive CLE reaction. The clinical response was assessed at follow-up after 6 and 12 months. RESULTS Of 130 patients who completed the study per protocol, 74 (56.9%) responded to GFD and were classified as WS after 2 months, and 38 of these 74 patients were correctly identified by CLE (sensitivity 51.4%; 97.5% CI: 38.7% to 63.9%). A total of 38 of 56 patients without WS were correctly identified by CLE (specificity 67.9%; 97.5% CI: 52.9% to 79.9%). At 6 months follow-up, CLE correctly identified 49 of 59 food-sensitive patients (sensitivity 83.1%; 97.5% CI: 69.9% to 91.3%) but specificity was only 32% (97.5% CI: 15.7% to 54.3%). CONCLUSION In light of the high proportion of patients with IBS responding to GFD, the diagnostic accuracy of CLE is too low to recommend widespread use of this invasive procedure. TRAIL REGISTRATION NUMBER This study was registered as clinical trial in the German Registry for Clinical Studies (DRKS00010123).
Collapse
Affiliation(s)
- Christian Bojarski
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Campus Benjamin Franklin, Department for Internal Medicine (Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Paul Tangermann
- Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Campus Benjamin Franklin, Department for Internal Medicine (Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Christian Barmeyer
- Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Campus Benjamin Franklin, Department for Internal Medicine (Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Juliane Buchkremer
- Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Campus Benjamin Franklin, Department for Internal Medicine (Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Ralf Kiesslich
- Helios Dr. Horst Schmidt Kliniken Wiesbaden, Internal Medicine II Gastroenterology, Hepatology and Endocrinology, Wiesbaden, Germany
| | - Mark Ellrichmann
- Universitätsklinikum Schleswig-Holstein, Medical Department I, Kiel, Germany
| | - Stefan Schreiber
- Universitätsklinikum Schleswig-Holstein, Medical Department I, Kiel, Germany
| | - Carsten Schmidt
- Universitätsklinikum Jena, Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena, Germany,Klinikum Fulda, Medical Clinic II, Fulda, Germany
| | - Andreas Stallmach
- Universitätsklinikum Jena, Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena, Germany
| | - Robert Roehle
- Charité – Universitätsmedizin Berlin, Institute of Biometry and Clinical Epidemiology, Berlin, Germany,Charité – Universitätsmedizin Berlin, Clinical Study Center, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Severin Daum
- Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Campus Benjamin Franklin, Department for Internal Medicine (Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Britta Siegmund
- Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Campus Benjamin Franklin, Department for Internal Medicine (Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Michael Schumann
- Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Campus Benjamin Franklin, Department for Internal Medicine (Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Reiner Ullrich
- Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Campus Benjamin Franklin, Department for Internal Medicine (Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| |
Collapse
|
24
|
The Current Status of Molecular Biomarkers for Inflammatory Bowel Disease. Biomedicines 2022; 10:biomedicines10071492. [PMID: 35884797 PMCID: PMC9312796 DOI: 10.3390/biomedicines10071492] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Diagnosis and prognosis of inflammatory bowel disease (IBD)-a chronic inflammation that affects the gastrointestinal tract of patients-are challenging, as most clinical symptoms are not specific to IBD, and are often seen in other inflammatory diseases, such as intestinal infections, drug-induced colitis, and monogenic diseases. To date, there is no gold-standard test for monitoring IBD. Endoscopy and imaging are essential diagnostic tools that provide information about the disease's state, location, and severity. However, the invasive nature and high cost of endoscopy make it unsuitable for frequent monitoring of disease activity in IBD patients, and even when it is possible to replace endoscopy with imaging, high cost remains a concern. Laboratory testing of blood or feces has the advantage of being non-invasive, rapid, cost-effective, and standardizable. Although the specificity and accuracy of laboratory testing alone need to be improved, it is increasingly used to monitor disease activity or to diagnose suspected IBD cases in combination with endoscopy and/or imaging. The literature survey indicates a dearth of summarization of biomarkers for IBD testing. This review introduces currently available non-invasive biomarkers of clinical importance in laboratory testing for IBD, and discusses the trends and challenges in the IBD biomarker studies.
Collapse
|
25
|
Han J, Xu C, An Z, Qian K, Tan W, Wang D, Fang Q. PRAPNet: A Parallel Residual Atrous Pyramid Network for Polyp Segmentation. SENSORS (BASEL, SWITZERLAND) 2022; 22:4658. [PMID: 35808154 PMCID: PMC9268928 DOI: 10.3390/s22134658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023]
Abstract
In a colonoscopy, accurate computer-aided polyp detection and segmentation can help endoscopists to remove abnormal tissue. This reduces the chance of polyps developing into cancer, which is of great importance. In this paper, we propose a neural network (parallel residual atrous pyramid network or PRAPNet) based on a parallel residual atrous pyramid module for the segmentation of intestinal polyp detection. We made full use of the global contextual information of the different regions by the proposed parallel residual atrous pyramid module. The experimental results showed that our proposed global prior module could effectively achieve better segmentation results in the intestinal polyp segmentation task compared with the previously published results. The mean intersection over union and dice coefficient of the model in the Kvasir-SEG dataset were 90.4% and 94.2%, respectively. The experimental results outperformed the scores achieved by the seven classical segmentation network models (U-Net, U-Net++, ResUNet++, praNet, CaraNet, SFFormer-L, TransFuse-L).
Collapse
Affiliation(s)
- Jubao Han
- School of Integrated Circuits, Anhui University, Hefei 230601, China; (J.H.); (Z.A.); (K.Q.); (W.T.); (D.W.); (Q.F.)
- Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China
| | - Chao Xu
- School of Integrated Circuits, Anhui University, Hefei 230601, China; (J.H.); (Z.A.); (K.Q.); (W.T.); (D.W.); (Q.F.)
- Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China
| | - Ziheng An
- School of Integrated Circuits, Anhui University, Hefei 230601, China; (J.H.); (Z.A.); (K.Q.); (W.T.); (D.W.); (Q.F.)
- Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China
| | - Kai Qian
- School of Integrated Circuits, Anhui University, Hefei 230601, China; (J.H.); (Z.A.); (K.Q.); (W.T.); (D.W.); (Q.F.)
- Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China
| | - Wei Tan
- School of Integrated Circuits, Anhui University, Hefei 230601, China; (J.H.); (Z.A.); (K.Q.); (W.T.); (D.W.); (Q.F.)
- Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China
| | - Dou Wang
- School of Integrated Circuits, Anhui University, Hefei 230601, China; (J.H.); (Z.A.); (K.Q.); (W.T.); (D.W.); (Q.F.)
- Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China
| | - Qianqian Fang
- School of Integrated Circuits, Anhui University, Hefei 230601, China; (J.H.); (Z.A.); (K.Q.); (W.T.); (D.W.); (Q.F.)
- Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China
| |
Collapse
|
26
|
Kreiss L, Thoma OM, Lemire S, Lechner K, Carlé B, Dilipkumar A, Kunert T, Scheibe K, Heichler C, Merten AL, Weigmann B, Neufert C, Hildner K, Vieth M, Neurath MF, Friedrich O, Schürmann S, Waldner MJ. Label-Free Characterization and Quantification of Mucosal Inflammation in Common Murine Colitis Models With Multiphoton Imaging. Inflamm Bowel Dis 2022; 28:1637-1646. [PMID: 35699622 PMCID: PMC9629455 DOI: 10.1093/ibd/izac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Clinical challenges in inflammatory bowel diseases require microscopic in vivo evaluation of inflammation. Here, label-free imaging holds great potential, and recently, our group demonstrated the advantage of using in vivo multiphoton endomicroscopy for longitudinal animal studies. This article extends our previous work by in-depth analysis of label-free tissue features in common colitis models quantified by the multiphoton colitis score (MCS). METHODS Fresh mucosal tissues were evaluated from acute and chronic dextran sulfate sodium (DSS), TNBS, oxazolone, and transfer colitis. Label-free imaging was performed by using second harmonic generation and natural autofluorescence. Morphological changes in mucosal crypts, collagen fibers, and cellularity in the stroma were analyzed and graded. RESULTS Our approach discriminated between healthy (mean MCS = 2.5) and inflamed tissue (mean MCS > 5) in all models, and the MCS was validated by hematoxylin and eosin scoring of the same samples (85.2% agreement). Moreover, specific characteristics of each phenotype were identified. While TNBS, oxazolone, and transfer colitis showed high cellularity in stroma, epithelial damage seemed specific for chronic, acute DSS and transfer colitis. Crypt deformations were mostly observed in acute DSS. CONCLUSIONS Quantification of label-free imaging is promising for in vivo endoscopy. In the future, this could be valuable for monitoring of inflammatory pathways in murine models, which is highly relevant for the development of new inflammatory bowel disease therapeutics.
Collapse
Affiliation(s)
- Lucas Kreiss
- Address correspondence to: Lucas Kreiss, Dr.-Ing, Institute of Medical Biotechnology, Paul-Gordan-Str 3, 91052 Erlangen, Germany ()
| | | | - Sarah Lemire
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kristina Lechner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Birgitta Carlé
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Ashwathama Dilipkumar
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Timo Kunert
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kristina Scheibe
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Christina Heichler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Anna-Lena Merten
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany,Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany,Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander UniversityErlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
27
|
Yang CB, Kim SH, Lim YJ. Preparation of image databases for artificial intelligence algorithm development in gastrointestinal endoscopy. Clin Endosc 2022; 55:594-604. [PMID: 35636749 PMCID: PMC9539300 DOI: 10.5946/ce.2021.229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/07/2022] [Indexed: 12/09/2022] Open
Abstract
Over the past decade, technological advances in deep learning have led to the introduction of artificial intelligence (AI) in medical imaging. The most commonly used structure in image recognition is the convolutional neural network, which mimics the action of the human visual cortex. The applications of AI in gastrointestinal endoscopy are diverse. Computer-aided diagnosis has achieved remarkable outcomes with recent improvements in machine-learning techniques and advances in computer performance. Despite some hurdles, the implementation of AI-assisted clinical practice is expected to aid endoscopists in real-time decision-making. In this summary, we reviewed state-of-the-art AI in the field of gastrointestinal endoscopy and offered a practical guide for building a learning image dataset for algorithm development.
Collapse
Affiliation(s)
- Chang Bong Yang
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Sang Hoon Kim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| |
Collapse
|
28
|
Kennedy GT, Azari FS, Bernstein E, Nadeem B, Chang A, Segil A, Carlin S, Sullivan NT, Encarnado E, Desphande C, Kularatne S, Gagare P, Thomas M, Kucharczuk JC, Christien G, Lacombe F, Leonard K, Low PS, Criton A, Singhal S. Targeted detection of cancer at the cellular level during biopsy by near-infrared confocal laser endomicroscopy. Nat Commun 2022; 13:2711. [PMID: 35581212 PMCID: PMC9114105 DOI: 10.1038/s41467-022-30265-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/23/2022] [Indexed: 12/21/2022] Open
Abstract
Suspicious nodules detected by radiography are often investigated by biopsy, but the diagnostic yield of biopsies of small nodules is poor. Here we report a method-NIR-nCLE-to detect cancer at the cellular level in real-time during biopsy. This technology integrates a cancer-targeted near-infrared (NIR) tracer with a needle-based confocal laser endomicroscopy (nCLE) system modified to detect NIR signal. We develop and test NIR-nCLE in preclinical models of pulmonary nodule biopsy including human specimens. We find that the technology has the resolution to identify a single cancer cell among normal fibroblast cells when co-cultured at a ratio of 1:1000, and can detect cancer cells in human tumors less than 2 cm in diameter. The NIR-nCLE technology rapidly delivers images that permit accurate discrimination between tumor and normal tissue by non-experts. This proof-of-concept study analyzes pulmonary nodules as a test case, but the results may be generalizable to other malignancies.
Collapse
Affiliation(s)
- Gregory T Kennedy
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Feredun S Azari
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Elizabeth Bernstein
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Bilal Nadeem
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ashley Chang
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alix Segil
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sean Carlin
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Neil T Sullivan
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Emmanuel Encarnado
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charuhas Desphande
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | - Mini Thomas
- On Target Laboratories, West Lafayette, IN, USA
| | - John C Kucharczuk
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Sunil Singhal
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Bishop KW, Maitland KC, Rajadhyaksha M, Liu JTC. In vivo microscopy as an adjunctive tool to guide detection, diagnosis, and treatment. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220032-PER. [PMID: 35478042 PMCID: PMC9043840 DOI: 10.1117/1.jbo.27.4.040601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 05/05/2023]
Abstract
SIGNIFICANCE There have been numerous academic and commercial efforts to develop high-resolution in vivo microscopes for a variety of clinical use cases, including early disease detection and surgical guidance. While many high-profile studies, commercialized products, and publications have resulted from these efforts, mainstream clinical adoption has been relatively slow other than for a few clinical applications (e.g., dermatology). AIM Here, our goals are threefold: (1) to introduce and motivate the need for in vivo microscopy (IVM) as an adjunctive tool for clinical detection, diagnosis, and treatment, (2) to discuss the key translational challenges facing the field, and (3) to propose best practices and recommendations to facilitate clinical adoption. APPROACH We will provide concrete examples from various clinical domains, such as dermatology, oral/gastrointestinal oncology, and neurosurgery, to reinforce our observations and recommendations. RESULTS While the incremental improvement and optimization of IVM technologies should and will continue to occur, future translational efforts would benefit from the following: (1) integrating clinical and industry partners upfront to define and maintain a compelling value proposition, (2) identifying multimodal/multiscale imaging workflows, which are necessary for success in most clinical scenarios, and (3) developing effective artificial intelligence tools for clinical decision support, tempered by a realization that complete adoption of such tools will be slow. CONCLUSIONS The convergence of imaging modalities, academic-industry-clinician partnerships, and new computational capabilities has the potential to catalyze rapid progress and adoption of IVM in the next few decades.
Collapse
Affiliation(s)
- Kevin W. Bishop
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Kristen C. Maitland
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Milind Rajadhyaksha
- Memorial Sloan Kettering Cancer Center, Dermatology Service, New York, New York, United States
| | - Jonathan T. C. Liu
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, Washington, United States
- Address all correspondence to Jonathan T.C. Liu,
| |
Collapse
|
30
|
Waldner MJ, Neurath MF. Molecular Endoscopy for the Diagnosis and Therapeutic Monitoring of Colorectal Cancer. Front Oncol 2022; 12:835256. [PMID: 35280747 PMCID: PMC8913894 DOI: 10.3389/fonc.2022.835256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer related death in the western world. Its successful treatment requires early detection and removal of precursor lesions as well as individualized treatment of advanced disease. During recent years, molecular imaging techniques have shown promising results to improve current clinical practice. For instance, molecular endoscopy resulted in higher detection rates of precursors in comparison to conventional endoscopy in preclinical and clinical studies. Molecular confocal endomicroscopy allowed a further classification of suspect lesions as well as the prediction and monitoring of the therapeutic response. In this review, we summarize recent achievements for molecular imaging of CRC in preclinical studies, initial clinical trials and the remaining challenges for future translation into clinical practice.
Collapse
Affiliation(s)
- Maximilian J Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
31
|
Buchner AM, Sharma P, Wallace MB. Contrast‐Enhanced Endoscopy. SUCCESSFUL TRAINING IN GASTROINTESTINAL ENDOSCOPY 2022:177-194. [DOI: 10.1002/9781119529675.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Artificial Endoscopy and Inflammatory Bowel Disease: Welcome to the Future. J Clin Med 2022; 11:jcm11030569. [PMID: 35160021 PMCID: PMC8836846 DOI: 10.3390/jcm11030569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is assuming an increasingly important and central role in several medical fields. Its application in endoscopy provides a powerful tool supporting human experiences in the detection, characterization, and classification of gastrointestinal lesions. Lately, the potential of AI technology has been emerging in the field of inflammatory bowel disease (IBD), where the current cornerstone is the treat-to-target strategy. A sensible and specific tool able to overcome human limitations, such as AI, could represent a great ally and guide precision medicine decisions. Here we reviewed the available literature on the endoscopic applications of AI in order to properly describe the current state-of-the-art and identify the research gaps in IBD at the dawn of 2022.
Collapse
|
33
|
Kandel P, Wallace MB. Advanced Imaging Techniques and In vivo Histology: Current Status and Future Perspectives (Lower G.I.). GASTROINTESTINAL AND PANCREATICO-BILIARY DISEASES: ADVANCED DIAGNOSTIC AND THERAPEUTIC ENDOSCOPY 2022:291-310. [DOI: 10.1007/978-3-030-56993-8_110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Kobayashi M, Sumiyama K. Endoscopy: Application of MCA Modeling to Abnormal Nerve Plexus in the GI Tract. MULTIDISCIPLINARY COMPUTATIONAL ANATOMY 2022:343-347. [DOI: 10.1007/978-981-16-4325-5_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
35
|
Ellebrecht DB, von Weihe S. Endoscopic confocal laser-microscopy for the intraoperative nerve recognition: is it feasible? BIOMED ENG-BIOMED TE 2021; 67:11-17. [PMID: 34913620 DOI: 10.1515/bmt-2021-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022]
Abstract
Surgeons lose most of their tactile tissue information during minimal invasive surgery and need an additional tool of intraoperative tissue recognition. Confocal laser microscopy (CLM) is a well-established method of tissue investigation. The objective of this study was to analyze the feasibility and diagnostic accuracy of CLM nervous tissue recognition. Images taken with an endoscopic CLM system of sympathetic ganglions, nerve fibers and pleural tissue were characterized in terms of specific signal-patterns ex-vivo. No fluorescent dye was used. Diagnostic accuracy of tissue classification was evaluated by newly trained observers (sensitivity, specificity, PPV, NPV and interobserver variability). Although CLM images showed low CLM image contrast, assessment of nerve tissue was feasible without any fluorescent dye. Sensitivity and specificity ranged between 0.73 and 0.9 and 0.55-1.0, respectively. PPVs were 0.71-1.0 and the NPV range was between 0.58 and 0.86. The overall interobserver variability was 0.36. The eCLM enables to evaluate nervous tissue and to distinguish between nerve fibers, ganglions and pleural tissue based on backscattered light. However, the low image contrast and the heterogeneity in correct tissue diagnosis and a fair interobserver variability indicate the limit of CLM imaging without any fluorescent dye.
Collapse
Affiliation(s)
| | - Sönke von Weihe
- Department of Thoracic Surgery, LungClinic Großhansdorf, Wöhrendamm 80, 22927 Großhansdorf, Germany
| |
Collapse
|
36
|
Diagnostic Accuracy of Confocal Laser Endomicroscopy for the Diagnosis of Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312390. [PMID: 34886116 PMCID: PMC8657406 DOI: 10.3390/ijerph182312390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 01/22/2023]
Abstract
Background: Advances in treatment approaches for patients with oral squamous cell carcinoma (OSCC) have been unsuccessful in preventing frequent recurrences and distant metastases, leading to a poor prognosis. Early detection and prevention enable an improved 5-year survival and better prognosis. Confocal Laser Endomicroscopy (CLE) is a non-invasive imaging instrument that could enable an earlier diagnosis and possibly help in reducing unnecessary invasive surgical procedures. Objective: To present an up to date systematic review and meta-analysis assessing the diagnostic accuracy of CLE in diagnosing OSCC. Materials and Methods. PubMed, Scopus, and Web of Science databases were explored up to 30 June 2021, to collect articles concerning the diagnosis of OSCC through CLE. Screening: data extraction and appraisal was done by two reviewers. The quality of the methodology followed by the studies included in this review was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. A random effects model was used for the meta-analysis. Results: Six studies were included, leading to a total number of 361 lesions in 213 patients. The pooled sensitivity and specificity were 95% (95% CI, 92–97%; I2 = 77.5%) and 93% (95% CI, 90–95%; I2 = 68.6%); the pooled positive likelihood ratios and negative likelihood ratios were 10.85 (95% CI, 5.4–21.7; I2 = 55.9%) and 0.08 (95% CI, 0.03–0.2; I2 = 83.5%); and the pooled diagnostic odds ratio was 174.45 (95% CI, 34.51–881.69; I2 = 73.6%). Although risk of bias and heterogeneity is observed, this study validates that CLE may have a noteworthy clinical influence on the diagnosis of OSCC, through its high sensitivity and specificity. Conclusions: This review indicates an exceptionally high sensitivity and specificity of CLE for diagnosing OSCC. Whilst it is a promising diagnostic instrument, the limited number of existing studies and potential risk of bias of included studies does not allow us to draw firm conclusions. A conclusive inference can be drawn when more studies, possibly with homogeneous methodological approach, are performed.
Collapse
|
37
|
Wenda N, Kiesslich R, Gosepath J. Technical Note: First Use of Endonasal Confocal Laser Endomicroscopy – Feasibility and Proof of Concept. Int Arch Otorhinolaryngol 2021; 26:e396-e400. [PMID: 35846802 PMCID: PMC9282955 DOI: 10.1055/s-0041-1724091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/21/2020] [Indexed: 12/02/2022] Open
Abstract
Introduction
Probe-based confocal laser endomicroscopy (p-CLE) is a method for real-time in vivo visualization of mucosal changes on a cellular level. Due to the size of the endoscopes, it was mainly used in the gastrointestinal tract so far. First investigations on head and neck carcinoma described the oropharyngeal application. The further miniaturization of the laser probe now allows endonasal application and, thus, first experiences with the investigation of endonasal neoplasms.
Objectives
The aim of the present investigation is to elucidate, based on the morphological criteria validated in the oropharynx, whether these criteria be transferred in a similar way to the endonasal mucosa.
Methods
We conducted p-CLE (Cellvizio, Paris, France) with intravenous fluorescein staining in endoscopic sinus surgery in a patient with sinonasal inverted papilloma and a histologically confirmed squamous cell carcinoma. We compared the cellular visualization of pathological changes with those of healthy mucosa in the same specimen, and also with our former findings in the oropharynx.
Results
Endonasal p-CLE proved to be quite feasible in the surgical setting, and the transfer of malignancy criteria in analogy to histological examination could be optically retraced. Furthermore, additional criteria for tissue dignity assessment were obtained.
Conclusion
Our results suggest that endonasal application of p-CLE represents a valuable extension of the diagnostic repertoire available to date by an additional real-time analysis of the nasal mucosa. This is of particular value in surgically challenging anatomical areas such as the paranasal sinuses.
Further investigation and validation will be necessary.
Collapse
Affiliation(s)
- Nina Wenda
- Department for Otolaryngology, Head and Neck Surgery, Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | - Ralf Kiesslich
- Department for Gastroenterology, Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | - Jan Gosepath
- Department for Otolaryngology, Head and Neck Surgery, Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| |
Collapse
|
38
|
Confocal Laser Endomicroscopy in Oncological Surgery. Diagnostics (Basel) 2021; 11:diagnostics11101813. [PMID: 34679511 PMCID: PMC8535042 DOI: 10.3390/diagnostics11101813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The therapy of choice in the treatment of abnormalities in the human body, is to attempt a personalized diagnosis and with minimal invasiveness, ideally resulting in total resection (surgery) or turning off (intervention) of the pathology with preservation of normal functional tissue, followed by additional treatments, e [...].
Collapse
|
39
|
Sawada T, Takizawa H, Aoyama M, Kawakita N, Miyamoto N, Sakamoto S, Takashima M, Matsumoto D, Toba H, Kawakami Y, Yoshida M, Kondo K, Tangoku A. Diagnosis of visceral pleural invasion using confocal laser endomicroscopy during lung cancer surgery. J Thorac Dis 2021; 13:4742-4752. [PMID: 34527315 PMCID: PMC8411182 DOI: 10.21037/jtd-21-137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/19/2021] [Indexed: 11/11/2022]
Abstract
Background Visceral pleural invasion (VPI) in lung cancer is a significant prognostic factor; however, it is difficult to diagnose preoperatively or intraoperatively. In this study, we examined the possibility of intraoperative diagnosis of VPI using confocal laser endomicroscopy (CLE). Methods Among patients with primary lung cancer who underwent surgery between April 2018 and August 2019, those in whom the tumor was in contact with the pleura on chest computed tomography and whose pleural changes were intraoperatively confirmed were enrolled in this study. In the 35 patients who underwent lung resection (6 cases with visceral pleural infiltration), the area where pleural change was noted was observed and a short video was recorded using CLE. Based on the video images, three evaluators determined the defect ratio (0%, 25%, 50%, 75%, and 100%) of the autofluorescence-positive structure. The area under the receiver operating characteristic curve was used to evaluate the diagnostic performance for VPI. In 15 cases (3 cases with VPI), a validation study was performed for intraoperative VPI according to the cutoff value of the defect ratio of the autofluorescence-positive structure. Results The areas under the receiver operating characteristic curve for the defect ratio of the autofluorescence-positive structure were 0.86–0.91 for the three readers. Using defect ratio of autofluorescence-positive structure cutoff of ≥50% as predictor of VPI, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 83.3–100.0%, 57.7–73.1%, 35.3–41.7%, 95.0–100.0%, and 75.0–78.1%, respectively, for the three readers. In the validation study, the sensitivity was 100%, the specificity was 83.3%, and the diagnostic accuracy rate was 86.7%. Conclusions The diagnosis of VPI through CLE is simple, non-invasive, and has high diagnostic accuracy rates. This method may be applicable for determining surgical procedures.
Collapse
Affiliation(s)
- Toru Sawada
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Mariko Aoyama
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Naoya Kawakita
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Naoki Miyamoto
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Shinichi Sakamoto
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Mika Takashima
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Daisuke Matsumoto
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Yukikiyo Kawakami
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Mitsuteru Yoshida
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Kazuya Kondo
- Department of Oncological Medical Services, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery and Oncology, Tokushima University Graduate School of Biomedical Sciences, Kuramotocho, Tokushima, Japan
| |
Collapse
|
40
|
Schreuder RM, van der Zander QE, Fonollà R, Gilissen LP, Stronkhorst A, Klerkx B, de With PH, Masclee AM, van der Sommen F, Schoon EJ. Algorithm combining virtual chromoendoscopy features for colorectal polyp classification. Endosc Int Open 2021; 9:E1497-E1503. [PMID: 34540541 PMCID: PMC8445691 DOI: 10.1055/a-1512-5175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/11/2021] [Indexed: 11/06/2022] Open
Abstract
Background and study aims Colonoscopy is considered the gold standard for decreasing colorectal cancer incidence and mortality. Optical diagnosis of colorectal polyps (CRPs) is an ongoing challenge in clinical colonoscopy and its accuracy among endoscopists varies widely. Computer-aided diagnosis (CAD) for CRP characterization may help to improve this accuracy. In this study, we investigated the diagnostic accuracy of a novel algorithm for polyp malignancy classification by exploiting the complementary information revealed by three specific modalities. Methods We developed a CAD algorithm for CRP characterization based on high-definition, non-magnified white light (HDWL), Blue light imaging (BLI) and linked color imaging (LCI) still images from routine exams. All CRPs were collected prospectively and classified into benign or premalignant using histopathology as gold standard. Images and data were used to train the CAD algorithm using triplet network architecture. Our training dataset was validated using a threefold cross validation. Results In total 609 colonoscopy images of 203 CRPs of 154 consecutive patients were collected. A total of 174 CRPs were found to be premalignant and 29 were benign. Combining the triplet network features with all three image enhancement modalities resulted in an accuracy of 90.6 %, 89.7 % sensitivity, 96.6 % specificity, a positive predictive value of 99.4 %, and a negative predictive value of 60.9 % for CRP malignancy classification. The classification time for our CAD algorithm was approximately 90 ms per image. Conclusions Our novel approach and algorithm for CRP classification differentiates accurately between benign and premalignant polyps in non-magnified endoscopic images. This is the first algorithm combining three optical modalities (HDWL/BLI/LCI) exploiting the triplet network approach.
Collapse
Affiliation(s)
- Ramon-Michel Schreuder
- Department of Gastroenterology and Hepatology, Catharina Cancer Institute, Catharina Hospital Eindhoven, The Netherlands
| | - Qurine E.W. van der Zander
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, The Netherlands,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Roger Fonollà
- Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands
| | - Lennard P.L. Gilissen
- Department of Gastroenterology and Hepatology, Catharina Cancer Institute, Catharina Hospital Eindhoven, The Netherlands
| | - Arnold Stronkhorst
- Department of Gastroenterology and Hepatology, Catharina Cancer Institute, Catharina Hospital Eindhoven, The Netherlands
| | - Birgitt Klerkx
- Department of Gastroenterology and Hepatology, Catharina Cancer Institute, Catharina Hospital Eindhoven, The Netherlands
| | - Peter H.N. de With
- Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands
| | - Ad M. Masclee
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands
| | - Erik J. Schoon
- Department of Gastroenterology and Hepatology, Catharina Cancer Institute, Catharina Hospital Eindhoven, The Netherlands
| |
Collapse
|
41
|
Tuniyazi A, Mu T, Jiang X, Han F, Li H, Li Q, Gong H, Wang W, Qin B. Snapshot polarized light scattering spectroscopy using spectrally-modulated polarimetry for early gastric cancer detection. JOURNAL OF BIOPHOTONICS 2021; 14:e202100140. [PMID: 34089571 DOI: 10.1002/jbio.202100140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Polarized light scattering spectroscopy (PLSS) is a promising optical technique developed for the detection of cancer, which extracts the single scattering light to infer morphological information of epithelial cells. However, traditional PLSS uses either a rotatable polarizer or two orthogonal polarizers to purify the single scattering light, which makes it complicated and challenged to build a PLSS endoscope. Herein, we propose a snapshot PLSS with a single optical path to directly get the single scattering light for the first time. The single scattering light is encoded using the spectrally-modulated polarimetry and decoded using the continuous slide iterative method. Both the polystyrene microsphere solutions and the ex vivo gastric cancer samples are used to verify the method. The experimental results of the snapshot PLSS are consistent well with that of the traditional PLSS. The proposed method has a potential for the building of snapshot PLSS endoscope systems in future.
Collapse
Affiliation(s)
- Abudusalamu Tuniyazi
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Research Center for Space Optics and Astronomy, Academy of Physical Science & Technology, Western China Science & Technology Innovation Harbor, Xi'an, Shaanxi, China
| | - Tingkui Mu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Research Center for Space Optics and Astronomy, Academy of Physical Science & Technology, Western China Science & Technology Innovation Harbor, Xi'an, Shaanxi, China
| | - Xiaosa Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Han
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Research Center for Space Optics and Astronomy, Academy of Physical Science & Technology, Western China Science & Technology Innovation Harbor, Xi'an, Shaanxi, China
| | - Haoyang Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Research Center for Space Optics and Astronomy, Academy of Physical Science & Technology, Western China Science & Technology Innovation Harbor, Xi'an, Shaanxi, China
| | - Qiuxia Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Research Center for Space Optics and Astronomy, Academy of Physical Science & Technology, Western China Science & Technology Innovation Harbor, Xi'an, Shaanxi, China
| | - Hang Gong
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Research Center for Space Optics and Astronomy, Academy of Physical Science & Technology, Western China Science & Technology Innovation Harbor, Xi'an, Shaanxi, China
| | - Wenjing Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Research Center for Space Optics and Astronomy, Academy of Physical Science & Technology, Western China Science & Technology Innovation Harbor, Xi'an, Shaanxi, China
| | - Bin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
42
|
Kim HI, Kim J, Kim H, Lee H, Yoon YS, Hwang SW, Park SH, Yang DH, Ye BD, Byeon JS, Yang SK, Kim SY, Myung SJ. Biomolecular imaging of colorectal tumor lesions using a FITC-labeled scFv-Cκ fragment antibody. Sci Rep 2021; 11:17155. [PMID: 34433835 PMCID: PMC8387423 DOI: 10.1038/s41598-021-96281-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
For the sensitive diagnosis of colorectal cancer lesions, advanced molecular imaging techniques using cancer-specific targets have emerged. However, issues regarding the clearance of unbound probes and immunogenicity remain unresolved. To overcome these limitations, we developed a small-sized scFv antibody fragment conjugated with FITC for the real-time detection of colorectal cancer by in vivo molecular endoscopy imaging. A small-sized scFv fragment can target colon cancer secreted protein-2 (CCSP-2), highly expressed in colorectal adenocarcinoma tissues; moreover, its full-length IgG probe has been used for molecular imaging previously. To assess the efficacy of anti-CCSP-2 scFv-FITC, surgical specimens were obtained from 21 patients with colorectal cancer for ex vivo molecular fluorescence analysis, histology, and immunohistochemistry. Orthotopic mice were administered with anti-CCSP-2 scFv-FITC topically and intravenously, and distinct tumor lesions were observed by real-time fluorescence colonoscopy. The fluorescence imaging of human colon cancer specimens allowed the differentiation of malignant tissues from non-malignant tissues (p < 0.05), and the CCSP-2 expression level was found to be correlated with the fluorescence intensity. Here, we demonstrated the feasibility and safety of anti-CCSP-2 scFv-FITC for molecular imaging as well as its potential in real-time fluorescence colonoscopy for the differential diagnosis of tumor lesions.
Collapse
Affiliation(s)
- Hyung Il Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jinhyeon Kim
- Edisbiotech, Songpa-gu, Seoul, Republic of Korea
| | - Hyori Kim
- Convergence Medicine Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Hyeri Lee
- Edisbiotech, Songpa-gu, Seoul, Republic of Korea
| | - Yong Sik Yoon
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Hoon Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Young Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Seung-Jae Myung
- Edisbiotech, Songpa-gu, Seoul, Republic of Korea.
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Solovev EA, Kovalenko TV, Duvanskiy VA. Modern endoscopic methods for the diagnosis of laterally spreading tumors (LST) of the colon. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021; 1:74-81. [DOI: 10.31146/1682-8658-ecg-189-5-74-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The aim: to focus on the possibilities of modern endoscopy in the diagnosis of laterally spreading (creeping) tumors — LST (laterally spreading tumor) of the colon.Materials and methods: description and comparison, based on data available in the literature, of modern endoscopic techniques for the diagnosis and differential diagnosis of LST.Results: the analysis and systematization of the obtained data revealed the advantages of modern endoscopic diagnostic methods not only in detecting LST, but also in predicting their morphological structure.Conclusion: the use of modern endoscopic diagnostic methods allows not only to improve the detection of neoplasms, but also to choose the best options for further treatment based on the information received.
Collapse
Affiliation(s)
- E. A. Solovev
- Multidisciplinary medical center of the Bank of Russia
| | - T. V. Kovalenko
- Multidisciplinary medical center of the Bank of Russia; RUDN University
| | - V. A. Duvanskiy
- Skobelkin state scientifi c center of laser medicine; RUDN University
| |
Collapse
|
44
|
A Small and High-Speed Driving Mechanism for 3D Shape Measurement in Monocular Endoscopy. SENSORS 2021; 21:s21144887. [PMID: 34300626 PMCID: PMC8309870 DOI: 10.3390/s21144887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Three-dimensional (3D) shape acquisition has been widely introduced to enrich quantitative analysis with the combination of object shape and texture, for example, surface roughness evaluation in industry and gastrointestinal endoscopy in medicine. Shape from focus is a promising technique to measure substance surfaces in 3D space because no occlusion problem appears in principle, as does with stereo shape measurement, which is another commonly used option. We have been developing endoscopic shape measurement devices and shape reconstruction algorithms. In this paper, we propose a mechanism for driving an image sensor reciprocated for the shape from focus of 3D shape measurement in monocular endoscopy. It uses a stepping motor and a planar-end cam, which transforms the motor rotation to imaging sensor reciprocation, to implement the shape from focus of 3D shape measurement in endoscopy. We test and discuss the device in terms of its driving accuracy and application feasibility for endoscopic 3D shape measurement.
Collapse
|
45
|
Ramezani S, Parkhideh A, Bhattacharya PK, Farach-Carson MC, Harrington DA. Beyond Colonoscopy: Exploring New Cell Surface Biomarkers for Detection of Early, Heterogenous Colorectal Lesions. Front Oncol 2021; 11:657701. [PMID: 34290978 PMCID: PMC8287259 DOI: 10.3389/fonc.2021.657701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths among both men and women in the United States. Early detection and surgical removal of high-risk lesions in the colon can prevent disease from developing and spreading. Despite implementation of programs aimed at early detection, screening colonoscopies fail to detect a fraction of potentially aggressive colorectal lesions because of their location or nonobvious morphology. Optical colonoscopies, while highly effective, rely on direct visualization to detect changes on the surface mucosa that are consistent with dysplasia. Recent advances in endoscopy techniques and molecular imaging permit microscale visualization of the colonic mucosa. These technologies can be combined with various molecular probes that recognize and target heterogenous lesion surfaces to achieve early, real-time, and potentially non-invasive, detection of pre-cancerous lesions. The primary goal of this review is to contextualize existing and emergent CRC surface biomarkers and assess each’s potential as a candidate marker for early marker-based detection of CRC lesions. CRC markers that we include were stratified by the level of support gleaned from peer-reviewed publications, abstracts, and databases of both CRC and other cancers. The selected biomarkers, accessible on the cell surface and preferably on the luminal surface of the colon tissue, are organized into three categories: (1) established biomarkers (those with considerable data and high confidence), (2) emerging biomarkers (those with increasing research interest but with less supporting data), and (3) novel candidates (those with very recent data, and/or supportive evidence from other tissue systems). We also present an overview of recent advances in imaging techniques useful for visual detection of surface biomarkers, and discuss the ease with which these methods can be combined with microscopic visualization.
Collapse
Affiliation(s)
- Saleh Ramezani
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Arianna Parkhideh
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Department of Anthropology, Washington University in St. Louis, St. Louis, MO, United States
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Departments of BioSciences and Bioengineering, Rice University, Houston, TX, United States
| | - Daniel A Harrington
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Departments of BioSciences and Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
46
|
Larson MC, Gmitro AF, Utzinger U, Rouse AR, Woodhead GJ, Carlson Q, Hennemeyer CT, Barton JK. Using FDA-approved drugs as off-label fluorescent dyes for optical biopsies: from in silico design to ex vivoproof-of-concept. Methods Appl Fluoresc 2021; 9. [PMID: 34044380 DOI: 10.1088/2050-6120/ac0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/27/2021] [Indexed: 11/12/2022]
Abstract
Optical biopsies bring the microscope to the patient rather than the tissue to the microscope, and may complement or replace the tissue-harvesting component of the traditional biopsy process with its associated risks. In general, optical biopsies are limited by the lack of endogenous tissue contrast and the small number of clinically approvedin vivodyes. This study tests multiple FDA-approved drugs that have structural similarity to research dyes as off-labelin situfluorescent alternatives to standardex vivohematoxylin & eosin tissue stain. Numerous drug-dye combinations shown here may facilitate relatively safe and fastin situor possiblyin vivostaining of tissue, enabling real-time optical biopsies and other advanced microscopy technologies, which have implications for the speed and performance of tissue- and cellular-level diagnostics.
Collapse
Affiliation(s)
- Michael C Larson
- Medical Imaging, University of Arizona/Banner-University Medical Center, United States of America
| | - Arthur F Gmitro
- Medical Imaging, University of Arizona/Banner-University Medical Center, United States of America.,Biomedical Engineering Department, University of Arizona, United States of America.,College of Optical Sciences, University of Arizona, United States of America
| | - Urs Utzinger
- Biomedical Engineering Department, University of Arizona, United States of America.,College of Optical Sciences, University of Arizona, United States of America.,Electrical and Computer Engineering Department, University of Arizona, United States of America.,BIO5 Institute, University of Arizona, United States of America.,Obstetrics & Gynecology, University of Arizona/Banner-University Medical Center, United States of America
| | - Andrew R Rouse
- Medical Imaging, University of Arizona/Banner-University Medical Center, United States of America.,College of Optical Sciences, University of Arizona, United States of America.,Research, Innovation and Impact, University of Arizona, United States of America
| | - Gregory J Woodhead
- Medical Imaging, University of Arizona/Banner-University Medical Center, United States of America
| | - Quinlan Carlson
- Post-Sophomore Fellowship in Pathology, College of Medicine, University of Arizona, United States of America
| | - Charles T Hennemeyer
- Medical Imaging, University of Arizona/Banner-University Medical Center, United States of America
| | - Jennifer K Barton
- Medical Imaging, University of Arizona/Banner-University Medical Center, United States of America.,Biomedical Engineering Department, University of Arizona, United States of America.,College of Optical Sciences, University of Arizona, United States of America.,Electrical and Computer Engineering Department, University of Arizona, United States of America.,BIO5 Institute, University of Arizona, United States of America
| |
Collapse
|
47
|
Kim KO, Kim EY. Application of Artificial Intelligence in the Detection and Characterization of Colorectal Neoplasm. Gut Liver 2021; 15:346-353. [PMID: 32773386 PMCID: PMC8129657 DOI: 10.5009/gnl20186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022] Open
Abstract
Endoscpists always have tried to pursue a perfect colonoscopy, and application of artificial intelligence (AI) using deep-learning algorithms is one of the promising supportive options for detection and characterization of colorectal polyps during colonoscopy. Many retrospective studies conducted with real-time application of AI using convolutional neural networks have shown improved colorectal polyp detection. Moreover, a recent randomized clinical trial reported additional polyp detection with shorter analysis time. Studies conducted regarding polyp characterization provided additional promising results. Application of AI with narrow band imaging in real-time prediction of the pathology of diminutive polyps resulted in high diagnostic accuracy. In addition, application of AI with endocytoscopy or confocal laser endomicroscopy was investigated for real-time cellular diagnosis, and the diagnostic accuracy of some studies was comparable to that of pathologists. With AI technology, we can expect a higher polyp detection rate with reduced time and cost by avoiding unnecessary procedures, resulting in enhanced colonoscopy efficiency. However, for AI application in actual daily clinical practice, more prospective studies with minimized selection bias, consensus on standardized utilization, and regulatory approval are needed. (Gut Liver 2021;15:-353)
Collapse
Affiliation(s)
- Kyeong Ok Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Eun Young Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea
| |
Collapse
|
48
|
[Confocal laser endomicroscopy - first application and validation of malignancy criteria]. Laryngorhinootologie 2021; 100:818-823. [PMID: 33772483 DOI: 10.1055/a-1418-9175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Confocal laser endomicroscopy (CLE) is a method for real-time in vivo visualization of mucosal changes on a cellular level. First investigations on head and neck carcinoma described the oropharyngeal application. The aim of this investigation is to elucidate, based on the criteria validated in the oropharynx, whether these can be transferred to endonasal mucosa. METHODS CLE was performed with intravenous fluorescein staining in endoscopic sinus surgery in one patient with sinonasal inverted papilloma and another with squamous cell carcinoma. We compared cellular visualization of pathological changes to those of healthy mucosa in the same specimen as well to our former findings in the oropharynx. RESULTS Endonasal CLE proved to be well feasible in the surgical setting and the transfer of malignancy criteria in analogy to histological examination could be optically retraced. Furthermore, additional criteria for tissue dignity assessment were obtained. CONCLUSION Our results suggest that endonasal CLE represents a valuable extension of the diagnostic repertoire available to date by an additional real-time analysis of nasal mucosa. This is of particular value in surgically challenging anatomical areas such as the paranasal sinuses. Further investigation and validation will be necessary.
Collapse
|
49
|
Saghir SM, Dhindsa BS, Daid SGS, Mashiana HS, Dhaliwal A, Cross C, Singh S, Bhat I, Ohning GV, Adler DG. Efficacy of EUS-guided needle-based confocal laser endomicroscopy in the diagnosis of pancreatic lesions: A systematic review and meta-analysis. Endosc Ultrasound 2021:310489. [PMID: 33666181 PMCID: PMC9526094 DOI: 10.4103/eus-d-20-00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Needle-based confocal laser endomicroscopy (nCLE) is a procedure in which an AQ-Flex nCLE mini-probe is passed through an EUS-FNA needle into a pancreatic lesion to enable subsurface in vivo tissue analysis. In this study, we conducted a systematic review and meta-analysis of nCLE for the diagnosis of pancreatic lesions. Materials and Methods: We conducted a comprehensive search of several databases and conference proceedings, including PubMed, EMBASE, Google-Scholar, MEDLINE, SCOPUS, and Web of Science databases (earliest inception to March 2020). The primary outcomes assessed the pooled rate of diagnostic accuracy for nCLE and the secondary outcomes assessed the pooled rate of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and adverse events (AE) of nCLE to diagnose premalignant/malignant pancreatic lesions. Results: Eleven studies on 443 patients were included in our analysis. The pooled rate of diagnostic accuracy of EUS nCLE was 83% (95 confidence interval [CI] = 79–87; I2 = 0). The pooled rate of sensitivity, specificity, PPV and NPV of EUS nCLE was 85.29% (95% CI = 76.9–93.68; I2 = 85%), 90.49% (95% CI = 82.24–98.74; I2 = 64%), 94.15% (95% CI = 88.55–99.76; I2 = 68%), and 73.44% (95% CI = 60.16–86.72; I2 = 93%), respectively. The total AE rate was 5.41% (±5.92) with postprocedure pancreatitis being the most common AE at 2.28% (±3.73). Conclusion: In summary, this study highlights the rate of diagnostic accuracy, sensitivity, specificity, and PPV for distinguishing premalignant/malignant lesions. Pancreatic lesions need to be further defined with more validation studies to characterize CLE diagnosis criteria and to evaluate its use as an adjunct to EUS-FNA.
Collapse
Affiliation(s)
- Syed Mohsin Saghir
- Department of Internal Medicine, University of Nevada Las Vegas School of Medicine, Las Vegas, NV, USA
| | - Banreet Singh Dhindsa
- Department of Internal Medicine, University of Nevada Las Vegas School of Medicine, Las Vegas, NV, USA
| | | | - Harmeet S Mashiana
- Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amaninder Dhaliwal
- Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chad Cross
- Department of Biostatistics and Epidemiology, University of Nevada, Las Vegas, NV, USA
| | - Shailender Singh
- Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ishfaq Bhat
- Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gordon V Ohning
- Department of Gastroenterology and Hepatology, University of Nevada Las Vegas School of Medicine, Las Vegas, NV, USA
| | - Douglas G Adler
- Huntsman Cancer Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
50
|
He Z, Wang P, Liang Y, Fu Z, Ye X. Clinically Available Optical Imaging Technologies in Endoscopic Lesion Detection: Current Status and Future Perspective. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:7594513. [PMID: 33628407 PMCID: PMC7886528 DOI: 10.1155/2021/7594513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023]
Abstract
Endoscopic optical imaging technologies for the detection and evaluation of dysplasia and early cancer have made great strides in recent decades. With the capacity of in vivo early detection of subtle lesions, they allow modern endoscopists to provide accurate and effective optical diagnosis in real time. This review mainly analyzes the current status of clinically available endoscopic optical imaging techniques, with emphasis on the latest updates of existing techniques. We summarize current coverage of these technologies in major hospital departments such as gastroenterology, urology, gynecology, otolaryngology, pneumology, and laparoscopic surgery. In order to promote a broader understanding, we further cover the underlying principles of these technologies and analyze their performance. Moreover, we provide a brief overview of future perspectives in related technologies, such as computer-assisted diagnosis (CAD) algorithms dealing with exploring endoscopic video data. We believe all these efforts will benefit the healthcare of the community, help endoscopists improve the accuracy of diagnosis, and relieve patients' suffering.
Collapse
Affiliation(s)
- Zhongyu He
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Peng Wang
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Zuoming Fu
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xuesong Ye
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of CAD and CG, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|