1
|
Blanke EN, Holmes GM. Dysfunction of pancreatic exocrine secretion after experimental spinal cord injury. Exp Neurol 2025; 389:115257. [PMID: 40221007 PMCID: PMC12063635 DOI: 10.1016/j.expneurol.2025.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Pancreatic exocrine dysfunction is an underdiagnosed comorbidity in individuals living with spinal cord injury (SCI) who often present cholestasis, acute pancreatitis or high levels of serum pancreatic enzymes. Parasympathetic control of pancreatic exocrine secretion (PES) is mediated in the medullary dorsal vagal complex in part through cholecystokinin (CCK) release. Our previous reports indicate high thoracic (T3-) SCI reduces vagal afferent sensitivity to GI regulatory peptides, like CCK and thyrotropin releasing hormone (TRH). To date, the effects of experimental SCI on PES are unknown. Here we investigated the modulation of PES following T3-SCI in rats. We measured PES volume and amylase concentration in control and T3-SCI rats (3-days or 3-weeks after injury) following: (i) intra-duodenal administration of a mixed-nutrient liquid meal (Ensure® ™) or (ii) central TRH injection (100 pmol) in the dorsal motor nucleus of the vagus. In a separate cohort of overnight-fasted rats, basal serum amylase levels were measured. The baseline volume of PES secretion was lower in 3-week rats destined to receive Ensure® or TRH following T3-SCI surgery compared to control. PES protein concentration was significantly reduced at baseline in 3-week T3-SCI and elevated in 3-day and 3-week T3-SCI rats postprandially but only elevated in 3-day rats following TRH microinjection. Serum amylase activity levels were elevated in 3-day T3-SCI rats and remained at similar levels post 3-weeks T3-SCI. Our data suggest that vagally-mediated regulation of multiple visceral organs is disrupted in the days and weeks following experimental SCI.
Collapse
Affiliation(s)
- Emily N Blanke
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States of America; Department of Biology, Pennsylvania State University, York, PA 17403, United States of America
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States of America.
| |
Collapse
|
2
|
Wu L, Li J, Zou J, Tang D, Chen R. Vagus nerve modulates acute-on-chronic liver failure progression via CXCL9. Chin Med J (Engl) 2025; 138:1103-1115. [PMID: 38945689 PMCID: PMC12068771 DOI: 10.1097/cm9.0000000000003104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Hepatic inflammatory cell accumulation and the subsequent systematic inflammation drive acute-on-chronic liver failure (ACLF) development. Previous studies showed that the vagus nerve exerts anti-inflammatory activity in many inflammatory diseases. Here, we aimed to identify the key molecule mediating the inflammatory process in ACLF and reveal the neuroimmune communication arising from the vagus nerve and immunological disorders of ACLF. METHODS Proteomic analysis was performed and validated in ACLF model mice or patients, and intervention animal experiments were conducted using neutralizing antibodies. PNU-282987 (acetylcholine receptor agonist) and vagotomy were applied for perturbing vagus nerve activity. Single-cell RNA sequencing (scRNA-seq), flow cytometry, immunohistochemical and immunofluorescence staining, and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technology were used for in vivo or in vitro mechanistic studies. RESULTS The unbiased proteomics identified C-X-C motif chemokine ligand 9 (CXCL9) as the greatest differential protein in the livers of mice with ACLF and its relation to the systematic inflammation and mortality were confirmed in patients with ACLF. Interventions on CXCL9 and its receptor C-X-C chemokine receptor 3 (CXCR3) improved liver injury and decreased mortality of ACLF mice, which were related to the suppressing of hepatic immune cells' accumulation and activation. Vagus nerve stimulation attenuated while vagotomy aggravated the expression of CXCL9 and the severity of ACLF. Blocking CXCL9 and CXCR3 ameliorated liver inflammation and increased ACLF-associated mortality in ACLF mice with vagotomy. scRNA-seq revealed that hepatic macrophages served as the major source of CXCL9 in ACLF and were validated by immunofluorescence staining and flow cytometry analysis. Notably, the expression of CXCL9 in macrophages was modulated by vagus nerve-mediated cholinergic signaling. CONCLUSIONS Our novel findings highlighted that the neuroimmune communication of the vagus nerve-macrophage-CXCL9 axis contributed to ACLF development. These results provided evidence for neuromodulation as a promising approach for preventing and treating ACLF.
Collapse
Affiliation(s)
- Li Wu
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jie Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
3
|
Leem YH, Park JE, Park JS, Kim DY, Park JM, Kim SE, Kang JL, Kim HS. Activation of α7nAch receptors ameliorates α-synuclein pathology in the brain and gut of a subacute MPTP mouse model of Parkinson's disease. Biomed Pharmacother 2025; 184:117871. [PMID: 39893851 DOI: 10.1016/j.biopha.2025.117871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025] Open
Abstract
Parkinson's disease (PD) is a neurological disorder that causes a gradual decrease in mobility. Abnormal α-synuclein (α-syn) levels and aggregation contribute to PD development. The dissemination of α-synuclein pathology via the gut-brain axis has emerged as a critical aspect in α-synucleinopathies, including PD. Recently, α7 nicotinic acetylcholine receptor (α7nAchR) agonists have been proposed as promising agents for treating PD, owing to their biological properties such as anti-inflammatory effects. This study aims to investigate whether activation of α7nAchR improves α-synuclein pathology in the brain and gut of a mouse model of PD. We found that α7nAchR agonists, GTS-21 and PNU-282987, induced behavioral recovery and improved nigrostriatal dopaminergic neurotransmission in a subacute MPTP mouse model of PD. In addition, GTS-21 and PNU-282987 facilitated α-syn clearance in the brain and distal colon, as evidenced by a considerable reduction in the accumulation of pathogenic forms of α-syn. Accordingly, GTS-21 and PNU-282987 were found to promote the AMPK-mTOR autophagy signaling pathway. Furthermore, GTS-21 and PNU-282987 exerted anti-inflammatory effects, reducing the levels of proinflammatory mediators such as inducible nitric oxide synthase, interleukin-6, and tumor necrosis factor-α in both the brain and gut. To validate the specific effects of α7nAchR agonists, subacute MPTP mice were pretreated with methyllycaconitine (MLA), a selective α7nAchR antagonist before GTS-21 administration. Pretreatment with MLA abolished the GTS-21-elicited behavioral recovery, α-syn clearance, and anti-inflammatory effects in the brain and gut. Therefore, α7nAchR activation may be a potential candidate strategy for the treatment of PD by altering α-syn aggregation in the brain and gut.
Collapse
Affiliation(s)
- Yea-Hyun Leem
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jung-Eun Park
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jin-Sun Park
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Do-Yeon Kim
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jae-Min Park
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Seong-Eun Kim
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jihee Lee Kang
- Department of Physiology and Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
4
|
Eralp Inan O, Kocaturk M, Cansev M, Ozarda Y, Yilmaz Z, Ulus IH. Thromboelastographic evaluation of the effectiveness of choline or CDP-choline treatment on endotoxin-induced hemostatic alterations in dogs. Res Vet Sci 2024; 171:105205. [PMID: 38479101 DOI: 10.1016/j.rvsc.2024.105205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
Sepsis/endotoxemia associates with coagulation abnormalities. We showed previously that exogenous choline treatment reversed the changes in platelet count and function as well as prevented disseminated intravascular coagulation (DIC) in endotoxemic dogs. The aim of this follow-up study was to evaluate the effect of treatment with choline or cytidine-5'-diphosphocholine (CDP-choline), a choline donor, on endotoxin-induced hemostatic alterations using thromboelastography (TEG). Dogs were randomized to six groups and received intravenously (iv) saline, choline (20 mg/kg) or CDP-choline (70 mg/kg) in the control groups, whereas endotoxin (0.1 mg/kg, iv) was used alone or in combination with choline or CDP-choline at the same doses in the treatment groups. TEG variables including R- and K-time (clot formation), maximum amplitude (MA) and α-angle (clot stability), G value (clot elasticity), and EPL, A, and LY30 (fibrinolysis), as well as overall assessment of coagulation (coagulation index - CI), were measured before and at 0.5-48 h after the treatments. TEG parameters did not change significantly in the control groups, except for CI parameter after choline administration. Endotoxemia resulted in increased R-time and A value (P < 0.05), decreased K-time (P < 0.05), α-angle (P < 0.001) and CI values (P < 0.01) at different time points. Treatment with either choline or CDP-choline attenuated or prevented completely the alterations in TEG parameters in endotoxemic dogs with CDP-choline being more effective. These results confirm and extend the effectiveness of choline or CDP-choline in endotoxemia by further demonstrating their efficacy in attenuating or preventing the altered viscoelastic properties of blood clot measured by TEG.
Collapse
Affiliation(s)
- Oya Eralp Inan
- Department of Animal Science, Eskisehir Osmangazi University Faculty of Agriculture, Eskisehir, Turkey.
| | - Meric Kocaturk
- Department of Internal Medicine, Bursa Uludag University Faculty of Veterinary Medicine, Bursa, Turkey.
| | - Mehmet Cansev
- Department of Pharmacology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey.
| | - Yesim Ozarda
- Department of Biochemistry, Yeditepe University Faculty of Medicine, Istanbul, Turkey.
| | - Zeki Yilmaz
- Department of Internal Medicine, Bursa Uludag University Faculty of Veterinary Medicine, Bursa, Turkey.
| | - Ismail Hakki Ulus
- Department of Pharmacology, Istanbul Okan University Faculty of Medicine, Istanbul, Turkey.
| |
Collapse
|
5
|
Hesampour F, Bernstein CN, Ghia JE. Brain-Gut Axis: Invasive and Noninvasive Vagus Nerve Stimulation, Limitations, and Potential Therapeutic Approaches. Inflamm Bowel Dis 2024; 30:482-495. [PMID: 37738641 DOI: 10.1093/ibd/izad211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 09/24/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing condition with no known etiology and is characterized by disrupted gut homeostasis, chronic inflammation, and ulcerative lesions. Although current treatments can reduce disease activity, IBD frequently recurs once treatments are discontinued, indicating that treatments are ineffective in providing long-term remission. The lack of responsiveness and reluctance of some affected persons to take medications because of potential adverse effects has enhanced the need for novel therapeutic approaches. The vagus nerve (VN) is likely important in the pathogenesis of IBD, considering the decreased activity of the parasympathetic nervous system, especially the VN, and the impaired interaction between the enteric nervous system and central nervous system in patients with IBD. Vagus nerve stimulation (VNS) has demonstrated anti-inflammatory effects in various inflammatory disorders, including IBD, by inhibiting the production of inflammatory cytokines by immune cells. It has been suggested that stimulating the vagus nerve to induce its anti-inflammatory effects may be a potential therapeutic approach for IBD. Noninvasive techniques for VNS have been developed. Considering the importance of VN function in the brain-gut axis, VNS is a promising treatment option for IBD. This review discusses the potential therapeutic advantages and drawbacks of VNS, particularly the use of noninvasive transcutaneous auricular vagus nerve stimulation.
Collapse
Affiliation(s)
| | - Charles N Bernstein
- Internal Medicine, University of Manitoba, Winnipeg, Canada
- Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba, Winnipeg, Canada
| | - Jean-Eric Ghia
- Immunology, University of Manitoba, Winnipeg, Canada
- Internal Medicine, University of Manitoba, Winnipeg, Canada
- Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba, Winnipeg, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Budhiraja A, Mehta A, Alhamo MA, Swedarsky R, Dahle S, Isseroff RR. Vagus nerve stimulation: Potential for treating chronic wounds. Wound Repair Regen 2024; 32:108-117. [PMID: 38235529 DOI: 10.1111/wrr.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024]
Abstract
Vagus nerve stimulation (VNS) has been approved as a treatment for various conditions, including drug-resistant epilepsy, migraines, chronic cluster headaches and treatment-resistant depression. It is known to have anti-inflammatory, anti-nociceptive and anti-adrenergic effects, and its therapeutic potential for diverse pathologies is being investigated. VNS can be achieved through invasive (iVNS) or non-invasive (niVNS) means, targeting different branches of the vagus nerve. iVNS devices require surgical implantation and have associated risks, while niVNS devices are generally better tolerated and have a better safety profile. Studies have shown that both iVNS and niVNS can reduce inflammation and pain perception in patients with acute and chronic conditions. VNS devices, such as the VNS Therapy System and MicroTransponder Vivistim, have received Food and Drug Administration approval for specific indications. Other niVNS devices, like NEMOS and gammaCore, have shown effectiveness in managing epilepsy, pain and migraines. VNS has also demonstrated potential in autoimmune disorders, such as rheumatoid arthritis and Crohn's disease, as well as neurological disorders like epilepsy and migraines. In addition, VNS has been explored in cardiovascular disorders, including post-operative atrial fibrillation and myocardial ischemia-reperfusion injury, and has shown positive outcomes. The mechanisms behind VNS's effects include the cholinergic anti-inflammatory pathway, modulation of cytokines and activation of specialised pro-resolving mediators. The modulation of inflammation by VNS presents a promising avenue for investigating its potential to improve the healing of chronic wounds. However, more research is needed to understand the specific mechanisms and optimise the use of VNS in wound healing. Ongoing clinical trials may support the use of this modality as an adjunct to improve healing.
Collapse
Affiliation(s)
- Anuj Budhiraja
- California Northstate University College of Medicine, Elk Grove, California, USA
| | - Alisha Mehta
- California Northstate University College of Medicine, Elk Grove, California, USA
| | - Moyasar A Alhamo
- Department of Dermatology, University of California, Davis, California, USA
| | | | - Sara Dahle
- Department of Dermatology, University of California, Davis, California, USA
- Podiatry Section, VA Northern California Health Care System, California, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California, Davis, California, USA
- Dermatology Section, VA Northern California Health Care System, California, USA
| |
Collapse
|
7
|
Ding X, Chen J, Zeng W. Neuroimmune regulation in the pancreas. FUNDAMENTAL RESEARCH 2024; 4:201-205. [PMID: 38933519 PMCID: PMC11197567 DOI: 10.1016/j.fmre.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
The pancreas exerts endocrine and exocrine functions in energy balance. The neural innervation and immune milieu are both crucial in supporting pancreatic homeostasis. The neuronal network connects the pancreas with the central nervous system (CNS) and the enteric nervous system (ENS) and sustains metabolic activities. The nerves in the pancreas are categorized as spinal sensory afferent fibers, vagal sensory afferent nerves, autonomic fibers of both sympathetic and parasympathetic divisions, and fibers from the ENS and intrapancreatic ganglia. They innervate different regions and various cell types, which collectively determine physiological functions. Studies have established that the diverse pathological conditions, including pancreatitis, diabetes, and pancreatic tumor, are attributed to aberrant immune reactions; however, it is largely not clear how the neuronal network may influence the disease conditions. Enlightened by the recent advances illuminating the organ-wide neuronal architecture and the dysfunctions in pancreatic disorders, this review will highlight emerging opportunities to explore the cellular interrelationship, particularly the neuroimmune components in pancreatic health and diseases.
Collapse
Affiliation(s)
- Xiaofan Ding
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jianhui Chen
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wenwen Zeng
- Institute for Immunology and School of Basic Medical Sciences, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
8
|
Thompson DA, Tsaava T, Rishi A, George SJ, Hepler TD, Hide D, Pavlov VA, Brines M, Chavan SS, Tracey KJ. Galantamine ameliorates experimental pancreatitis. Mol Med 2023; 29:149. [PMID: 37907853 PMCID: PMC10617083 DOI: 10.1186/s10020-023-00746-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Acute pancreatitis is a common and serious inflammatory condition currently lacking disease modifying therapy. The cholinergic anti-inflammatory pathway (CAP) is a potent protective anti-inflammatory response activated by vagus nerve-dependent α7 nicotinic acetylcholine receptor (α7nAChR) signaling using splenic CD4+ T cells as an intermediate. Activating the CAP ameliorates experimental acute pancreatitis. Galantamine is an acetylcholinesterase inhibitor (AChEI) which amplifies the CAP via modulation of central muscarinic ACh receptors (mAChRs). However, as mAChRs also activate pancreatitis, it is currently unknown whether galantamine would be beneficial in acute pancreatitis. METHODS The effect of galantamine (1-6 mg/kg-body weight) on caerulein-induced acute pancreatitis was evaluated in mice. Two hours following 6 hourly doses of caerulein (50 µg/kg-body weight), organ and serum analyses were performed with accompanying pancreatic histology. Experiments utilizing vagotomy, gene knock out (KO) technology and the use of nAChR antagonists were also performed. RESULTS Galantamine attenuated pancreatic histologic injury which was mirrored by a reduction in serum amylase and pancreatic inflammatory cytokines and an increase the anti-inflammatory cytokine IL-10 in the serum. These beneficial effects were not altered by bilateral subdiaphragmatic vagotomy, KO of either choline acetyltransferase+ T cells or α7nAChR, or administration of the nAChR ganglionic blocker mecamylamine or the more selective α7nAChR antagonist methyllycaconitine. CONCLUSION Galantamine improves acute pancreatitis via a mechanism which does not involve previously established physiological and molecular components of the CAP. As galantamine is an approved drug in widespread clinical use with an excellent safety record, our findings are of interest for further evaluating the potential benefits of this drug in patients with acute pancreatitis.
Collapse
Affiliation(s)
- Dane A Thompson
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA
- Department of Surgery, Northshore University Hospital, Northwell Health, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tea Tsaava
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Arvind Rishi
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Sam J George
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Tyler D Hepler
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Daniel Hide
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Valentin A Pavlov
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA
| | - Michael Brines
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Sangeeta S Chavan
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA.
| | - Kevin J Tracey
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA.
| |
Collapse
|
9
|
Tatsushima D, Kurioka T, Mizutari K, Suzuki J, Ikeda R, Hisaoka T, Koshiba Y, Takahashi H, Hashimoto H, Katori Y, Shiotani A. Effects of Unilateral Vagotomy on LPS-Induced Aspiration Pneumonia in Mice. Dysphagia 2023; 38:1353-1362. [PMID: 36788140 DOI: 10.1007/s00455-023-10564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Respiratory-related dysphagia and aspiration pneumonia can be attributed to multiple causes. However, reproduction of multiple factor-related respiratory distress and aspiration pneumonia in a single animal model is challenging. To validate animals with vagal nerve palsy as novel models for severe aspiration pneumonia associated with respiratory distress, we investigated the effects of unilateral vagotomy on the swallowing function and severity of pneumonia after forced aspiration in mice. Unilateral vagotomy was performed in C57BL6 male mice that subsequently underwent evaluation of swallowing function by videofluoroscopic swallow study (VFSS) and histological assessments for aspiration pneumonia induced by lipopolysaccharide (LPS). VFSS examinations demonstrated that unilateral vagotomy did not cause apparent aspiration in mice, but it resulted in a significant loss of body weight (BW) due to decreased oral intake. In addition, when aspiration pneumonia was induced by forced administration of LPS, significantly prolonged BW loss and severe infiltration of inflammatory cells associated with aspiration pneumonia were observed in the mice that underwent unilateral vagotomy. In conclusion, the vagotomized mice showed appropriate characteristics as a model of aspiration pneumonia caused by multiple factors, including the paralysis of vocal fold movement and respiratory distress. This model can help elucidate the pathogenesis of aspiration pneumonia and the treatment methods for the respiration-compromised model.
Collapse
Affiliation(s)
- Daisuke Tatsushima
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takaomi Kurioka
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Kunio Mizutari
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Jun Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ryoukichi Ikeda
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Takuma Hisaoka
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yasutoshi Koshiba
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hiyori Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hikaru Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
10
|
Sun M, Wan Y, Shi M, Meng ZX, Zeng W. Neural innervation in adipose tissue, gut, pancreas, and liver. LIFE METABOLISM 2023; 2:load022. [PMID: 39872245 PMCID: PMC11749697 DOI: 10.1093/lifemeta/load022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 01/30/2025]
Abstract
Efficient communication between the brain and peripheral organs is indispensable for regulating physiological function and maintaining energy homeostasis. The peripheral nervous system (PNS) in vertebrates, consisting of the autonomic and somatic nervous systems, bridges the peripheral organs and the central nervous system (CNS). Metabolic signals are processed by both vagal sensory nerves and somatosensory nerves. The CNS receives sensory inputs via ascending nerves, serves as the coordination and integration center, and subsequently controls internal organs and glands via descending nerves. The autonomic nervous system consists of sympathetic and parasympathetic branches that project peripheral nerves into various anatomical locations to regulate the energy balance. Sympathetic and parasympathetic nerves typically control the reflexive and involuntary functions in organs. In this review article, we outline the innervation of adipose tissue, gut, pancreas, and liver, to illustrate the neurobiological basis of central-peripheral interactions. We emphasize the importance of understanding the functional atlas of neural control of energy metabolism, and more importantly, provide potential avenues for further research in this area.
Collapse
Affiliation(s)
- Mengxue Sun
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yongwen Wan
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Mengjie Shi
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
11
|
Mina S, Elfeky DM, Kabel AM, Hedya SE. Ameliorative Potential of Donepezil with or without Prednisolone in Bleomycin-Induced Pulmonary Fibrosis in Rats: Involvement of the Anti-Inflammatory, Antioxidant, and the Antifibrotic Pathways. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:980. [PMID: 37241212 PMCID: PMC10223402 DOI: 10.3390/medicina59050980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: Bleomycin-induced pulmonary fibrosis is one of the serious complications that may limit the use of bleomycin in cancer therapy. To date, there is no effective remedy for the amelioration of this condition. Donepezil, an anti-Alzheimer's medication, has recently been proven to exhibit potent anti-inflammatory, antioxidant, and antifibrotic effects. To the best of our knowledge, this study represents the first study designed to investigate the prophylactic effects of donepezil, either alone or in combination with the classic anti-inflammatory drug prednisolone, in bleomycin-induced pulmonary fibrosis. Methods: This study was carried out on fifty rats, which were divided into five equal groups: control (Saline) group; bleomycin group; bleomycin + prednisolone group; bleomycin + donepezil group; and bleomycin + prednisolone + donepezil group. At the end of the experiments, bronchoalveolar lavage was performed to evaluate the total and differential leucocytic counts. The right lung was processed to assess the oxidative stress markers, proinflammatory cytokines, NLRP3 inflammasome, and transforming growth factor-beta1. The left lung was subjected to histopathological and immunohistochemical examination. Results: The administration of donepezil and/or prednisolone induced a significant amelioration of oxidative stress, inflammation, and fibrosis. In addition, these animals showed a significant amelioration of the histopathological changes of fibrosis, together with a significant decline in nuclear factor kappa B (p65) immunoexpression, compared to the group treated with bleomycin alone. However, the rats treated with the donepezil/prednisolone combination showed non-significant effects on the aforementioned parameters compared to the group treated with prednisolone alone. Conclusions: Donepezil may emerge as a promising drug that shows significant prophylactic effects against bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Shery Mina
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Dina M. Elfeky
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmed M. Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- National Committee of Drugs, Academy of Scientific Research and Technology (ASRT), Ministry of Higher Education, Cairo 11694, Egypt
| | - Sabeha E. Hedya
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
12
|
Thompson DA, Tsaava T, Rishi A, Nadella S, Mishra L, Tuveson DA, Pavlov VA, Brines M, Tracey KJ, Chavan SS. Optogenetic stimulation of the brainstem dorsal motor nucleus ameliorates acute pancreatitis. Front Immunol 2023; 14:1166212. [PMID: 37180135 PMCID: PMC10167283 DOI: 10.3389/fimmu.2023.1166212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/28/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Inflammation is an inherently self-amplifying process, resulting in progressive tissue damage when unresolved. A brake on this positive feedback system is provided by the nervous system which has evolved to detect inflammatory signals and respond by activating anti-inflammatory processes, including the cholinergic anti-inflammatory pathway mediated by the vagus nerve. Acute pancreatitis, a common and serious condition without effective therapy, develops when acinar cell injury activates intrapancreatic inflammation. Prior study has shown that electrical stimulation of the carotid sheath, which contains the vagus nerve, boosts the endogenous anti-inflammatory response and ameliorates acute pancreatitis, but it remains unknown whether these anti-inflammatory signals originate in the brain. Methods Here, we used optogenetics to selectively activate efferent vagus nerve fibers originating in the brainstem dorsal motor nucleus of the vagus (DMN) and evaluated the effects on caerulein-induced pancreatitis. Results Stimulation of the cholinergic neurons in the DMN significantly attenuates the severity of pancreatitis as indicated by reduced serum amylase, pancreatic cytokines, tissue damage, and edema. Either vagotomy or silencing cholinergic nicotinic receptor signaling by pre-administration of the antagonist mecamylamine abolishes the beneficial effects. Discussion These results provide the first evidence that efferent vagus cholinergic neurons residing in the brainstem DMN can inhibit pancreatic inflammation and implicate the cholinergic anti-inflammatory pathway as a potential therapeutic target for acute pancreatitis.
Collapse
Affiliation(s)
- Dane A. Thompson
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Northshore University Hospital, Northwell Health, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Tea Tsaava
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Arvind Rishi
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Sandeep Nadella
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Lopa Mishra
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, United States
| | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Valentin A. Pavlov
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Michael Brines
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin J. Tracey
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Sangeeta S. Chavan
- Laboratory of Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| |
Collapse
|
13
|
Xu L, Sgalla G, Wang F, Zhu M, Li L, Li P, Xie Q, Lv X, Yu J, Wang G, Wan H, Richeldi L, Luo F. Monitoring small airway dysfunction in connective tissue disease-related interstitial lung disease: a retrospective and prospective study. BMC Pulm Med 2023; 23:90. [PMID: 36941622 PMCID: PMC10026226 DOI: 10.1186/s12890-023-02381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Small airway dysfunction (SAD), a hallmark of early lung function abnormality, is a major component of several chronic respiratory disorders. The role of SAD in patients with connective tissue disease-related interstitial lung disease (CTD-ILD) has not been explored. METHODS We conducted a two-parts (retrospective and prospective) study to collect pulmonary function tests from CTD-ILD patients. SAD was defined as at least two of the three measures (MMEF, FEF 50%, and FEF 75%) must be 65% of predicted values. Spearman correlation coefficient was used to evaluate association between SAD and other pulmonary function parameters. Mixed effects regression modeling analysis was used to assess response to treatment. RESULTS CTD-ILD patients with SAD and without SAD were compared in this study. In the retrospective study, pulmonary function tests (PFTs) from 491 CTD-ILD patients were evaluated, SAD were identified in 233 (47.5%). CTD-ILD patients with SAD were less smokers (17.6% vs. 27.9%, p = 0.007) and more females (74.3% vs. 64.0%, p = 0.015) than those without SAD. CTD-ILD patients with SAD had lower vital capacity (% predicted FVC, 70.4 ± 18.3 vs. 80.0 ± 20.9, p < 0.001) and lower diffusion capacity (% predicted DLCO, 58.8 ± 19.7 vs. 63.8 ± 22.1, p = 0.011) than those without SAD. Among 87 CTD-ILD patients prospectively enrolled, significant improvement in % predicted FVC was observed at 12-months follow-up (6.37 ± 1.53, p < 0.001 in patients with SAD; 5.13 ± 1.53, p = 0.002 in patients without SAD), but not in diffusion capacity and SAD parameters. CONCLUSION In our cohort, about half of CTD-ILD patients have SAD, which is less frequent in smokers and more common in female patients. CTD-ILD patients with SAD have worse pulmonary function compared to those without SAD. Improvement of FVC but no improvement of SAD was observed in CTD-ILD patients after treatment.
Collapse
Affiliation(s)
- Linrui Xu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Giacomo Sgalla
- Division of Pulmonary Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Faping Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Min Zhu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Liangyuan Li
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ping Li
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiaoyan Lv
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jianqun Yu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Gang Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Huajing Wan
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
| | - Luca Richeldi
- Division of Pulmonary Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Fengming Luo
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
14
|
Papke RL, Quadri M, Gulsevin A. Silent agonists for α7 nicotinic acetylcholine receptors. Pharmacol Res 2023; 190:106736. [PMID: 36940890 DOI: 10.1016/j.phrs.2023.106736] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
We discuss models for the activation and desensitization of α7 nicotinic acetylcholine receptors (nAChRs) and the effects of efficacious type II positive allosteric modulators (PAMs) that destabilize α7 desensitized states. Type II PAMs such as PNU-120596 can be used to distinguish inactive compounds from silent agonists, compounds that produce little or no channel activation but stabilize the non-conducting conformations associated with desensitization. We discuss the effects of α7 nAChRs in cells of the immune system and their roles in modulating inflammation and pain through what has come to be known as the cholinergic anti-inflammatory system (CAS). Cells controlling CAS do not generate ion channel currents but rather respond to α7 drugs by modulating intracellular signaling pathways analogous to the effects of metabotropic receptors. Metabotropic signaling by α7 receptors appears to be mediated by receptors in nonconducting conformations and can be accomplished by silent agonists. We discuss electrophysiological structure-activity relationships for α7 silent agonists and their use in cell-based and in vivo assays for CAS regulation. We discuss the strongly desensitizing partial agonist GTS-21 and its effectiveness in modulation of CAS. We also review the properties of the silent agonist NS6740, which is remarkably effective at maintaining α7 receptors in PAM-sensitive desensitized states. Most silent agonists bind to sites overlapping those for orthosteric agonists, but some appear to bind to allosteric sites. Finally, we discuss α9⁎ nAChRs and their potential role in CAS, and ligands that will be useful in defining and distinguishing the specific roles of α7 and α9 in CAS.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610 USA (RLP); Olon S.p.A., Strada Rivoltana, Km 6/7 - 20053 Rodano (MI) - ITALY (MQ); Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA, 37212 (AG).
| | - Marta Quadri
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610 USA (RLP); Olon S.p.A., Strada Rivoltana, Km 6/7 - 20053 Rodano (MI) - ITALY (MQ); Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA, 37212 (AG)
| | - Alican Gulsevin
- Department of Pharmacology and Therapeutics, University of Florida, PO Box 100267 Gainesville, FL 32610 USA (RLP); Olon S.p.A., Strada Rivoltana, Km 6/7 - 20053 Rodano (MI) - ITALY (MQ); Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA, 37212 (AG)
| |
Collapse
|
15
|
Alvarez MR, Alarcon JM, Roman CA, Lazaro D, Bobrowski-Khoury N, Baena-Caldas GP, Esber GR. Can a basic solution activate the inflammatory reflex? A review of potential mechanisms, opportunities, and challenges. Pharmacol Res 2023; 187:106525. [PMID: 36441036 DOI: 10.1016/j.phrs.2022.106525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
Abstract
Stimulation of the inflammatory reflex (IR) is a promising strategy to treat systemic inflammatory disorders. However, this strategy is hindered by the cost and side effects of traditional IR activators. Recently, oral intake of sodium bicarbonate (NaHCO3) has been suggested to activate the IR, providing a safe and inexpensive alternative. Critically, the mechanisms whereby NaHCO3 might achieve this effect and more broadly the pathways underlying the IR remain poorly understood. Here, we argue that the recognition of NaHCO3 as a potential IR activator presents exciting clinical and research opportunities. To aid this quest, we provide an integrative review of our current knowledge of the neural and cellular pathways mediating the IR and discuss the status of physiological models of IR activation. From this vantage point, we derive testable hypotheses on potential mechanisms whereby NaHCO3 might stimulate the IR and compare NaHCO3 with classic IR activators. Elucidation of these mechanisms will help determine the therapeutic value of NaHCO3 as an IR activator and provide new insights into the IR circuitry.
Collapse
Affiliation(s)
- Milena Rodriguez Alvarez
- Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| | - Juan Marcos Alarcon
- Department of Pathology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Christopher A Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Deana Lazaro
- Division of Rheumatology, Department of Internal Medicine, Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, USA
| | | | | | | |
Collapse
|
16
|
Zhou K, Luo W, Liu T, Ni Y, Qin Z. Neurotoxins Acting at Synaptic Sites: A Brief Review on Mechanisms and Clinical Applications. Toxins (Basel) 2022; 15:18. [PMID: 36668838 PMCID: PMC9865788 DOI: 10.3390/toxins15010018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Neurotoxins generally inhibit or promote the release of neurotransmitters or bind to receptors that are located in the pre- or post-synaptic membranes, thereby affecting physiological functions of synapses and affecting biological processes. With more and more research on the toxins of various origins, many neurotoxins are now widely used in clinical treatment and have demonstrated good therapeutic outcomes. This review summarizes the structural properties and potential pharmacological effects of neurotoxins acting on different components of the synapse, as well as their important clinical applications, thus could be a useful reference for researchers and clinicians in the study of neurotoxins.
Collapse
Affiliation(s)
- Kunming Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Yong Ni
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhenghong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
17
|
Shahid RA, Vigna SR, Huang MN, Gunn MD, Liddle RA. Nicotinic stimulation of splenic T cells is protective in endoscopic retrograde cholangiopancreatography-induced acute pancreatitis in mice. Am J Physiol Gastrointest Liver Physiol 2022; 323:G420-G427. [PMID: 36126221 PMCID: PMC9602779 DOI: 10.1152/ajpgi.00156.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/31/2023]
Abstract
It has previously been shown that current smoking is protective against endoscopic retrograde cholangiopancreatography (ERCP)-induced acute pancreatitis, but the mechanism of this effect was not identified. We tested the hypothesis that nicotine is the active factor in this protection in a mouse model of ERCP. Pretreatment with nicotine dose dependently inhibited acute pancreatitis caused by infusion of ERCP contrast solution into the main pancreatic duct in mice. 3-2,4-Dimethoxybenzylidene anabaseine (GTS-21), a specific partial agonist of the α7 nicotinic cholinergic receptor (α7nAChR), also protected the pancreas against ERCP-induced acute pancreatitis. The effects of GTS-21 were abolished by pretreatment with the nicotinic receptor antagonist mecamylamine. Surgical splenectomy performed 7 days before ERCP-induced pancreatitis blocked the protective effects of GTS-21. Intravenous injection of a crude preparation of total splenocytes prepared from mice pretreated with GTS-21 inhibited ERCP-induced pancreatitis; splenocytes from mice treated with vehicle had no effect. When T cells were removed from the crude GTS-21-treated splenocyte preparation by immunomagnetic separation, the remaining non-T-cell splenocytes did not protect against ERCP-induced acute pancreatitis. We conclude that nicotine protects against ERCP-induced acute pancreatitis and that splenic T cells are required for this effect. Stimulation of α7 nicotinic cholinergic receptors may protect against ERCP-induced acute pancreatitis and may also be a novel approach to therapeutic reversal of ongoing acute pancreatitis.NEW & NOTEWORTHY Epidemiological evidence indicated that acute smoking reduced the risk of endoscopic retrograde cholangiopancreatography (ERCP)-induced pancreatitis, but the mechanism has remained elusive. The current findings indicate the nicotine reduces the severity of ERCP-induced pancreatitis by stimulating a population of splenic T cells that exert a protective effect on the pancreas. These findings raise the possibility that nicotinic agonists might be useful in treating pancreatitis.
Collapse
Affiliation(s)
- Rafiq A Shahid
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Steven R Vigna
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Min-Nung Huang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Michael D Gunn
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Rodger A Liddle
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Department of Veterans Affairs Medical Center, Durham, North Carolina
| |
Collapse
|
18
|
Spada GE, Masiero M, Pizzoli SFM, Pravettoni G. Heart Rate Variability Biofeedback in Cancer Patients: A Scoping Review. Behav Sci (Basel) 2022; 12:389. [PMID: 36285958 PMCID: PMC9598295 DOI: 10.3390/bs12100389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022] Open
Abstract
Heart Rate Variability (HRV) Biofeedback (BFB) has been shown to improve autonomic balance and wellbeing in chronic diseases. As cardiac variability represents an index of cognitive and emotional regulation, HRV-BFB has been shown to lead to improvements in physiological and psychological adaptability and quality of life. However, knowledge of HRV-BFB in cancer patients is lacking, and available results are diversified according to methods and outcomes. The present paper undertakes a scoping review, exploring the use of HRV-BFB to modulate autonomic balance, cancer symptom management, and quality of life in cancer. This scoping review analyzes empirical evidence considering study designs, BFB methods, and psychophysiological outcomes. Research that focused on HRV-BFB effects in cancer patients was selected (79%). In addition, a systematic review and meta-analysis (31%) focusing on HRV, or BFB in chronic conditions, including cancer, were considered. The studies examined BFB treatment for thyroid, lung, brain or colon cancer, hematologic cancer, and survivors or terminal cancer patients. Retrieved studies reported physiological and psychological indices as primary outcomes: they included HRV values, sleep, pain, fatigue, depression, anxiety, and quality of life. Although the heterogeneity of publications makes it difficult to generalize the effectiveness of HRV-BFB, the training has been proven to improve cancer symptoms and well-being.
Collapse
Affiliation(s)
- Gea Elena Spada
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, IRCCS, 20132 Milan, Italy
| | - Marianna Masiero
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, IRCCS, 20132 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | | | - Gabriella Pravettoni
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, IRCCS, 20132 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
19
|
Lin M, Stewart MT, Zefi S, Mateti KV, Gauthier A, Sharma B, Martinez LR, Ashby CR, Mantell LL. Dual effects of supplemental oxygen on pulmonary infection, inflammatory lung injury, and neuromodulation in aging and COVID-19. Free Radic Biol Med 2022; 190:247-263. [PMID: 35964839 PMCID: PMC9367207 DOI: 10.1016/j.freeradbiomed.2022.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022]
Abstract
Clinical studies have shown a significant positive correlation between age and the likelihood of being infected with SARS-CoV-2. This increased susceptibility is positively correlated with chronic inflammation and compromised neurocognitive functions. Postmortem analyses suggest that acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), with systemic and lung hyperinflammation, can cause significant morbidity and mortality in COVID-19 patients. Supraphysiological supplemental oxygen, also known as hyperoxia, is commonly used to treat decreased blood oxygen saturation in COVID-19 patients. However, prolonged exposure to hyperoxia alone can cause oxygen toxicity, due to an excessive increase in the levels of reactive oxygen species (ROS), which can overwhelm the cellular antioxidant capacity. Subsequently, this causes oxidative cellular damage and increased levels of aging biomarkers, such as telomere shortening and inflammaging. The oxidative stress in the lungs and brain can compromise innate immunity, resulting in an increased susceptibility to secondary lung infections, impaired neurocognitive functions, and dysregulated hyperinflammation, which can lead to ALI/ARDS, and even death. Studies indicate that lung inflammation is regulated by the central nervous system, notably, the cholinergic anti-inflammatory pathway (CAIP), which is innervated by the vagus nerve and α7 nicotinic acetylcholine receptors (α7nAChRs) on lung cells, particularly lung macrophages. The activation of α7nAChRs attenuates oxygen toxicity in the lungs and improves clinical outcomes by restoring hyperoxia-compromised innate immunity. Mechanistically, α7nAChR agonist (e.g., GAT 107 and GTS-21) can regulate redox signaling by 1) activating Nrf2, a master regulator of the antioxidant response and a cytoprotective defense system, which can decrease cellular damage caused by ROS and 2) inhibiting the activation of the NF-κB-mediated inflammatory response. Notably, GTS-21 has been shown to be safe and it improves neurocognitive functions in humans. Therefore, targeting the α7nAChR may represent a viable therapeutic approach for attenuating dysregulated hyperinflammation-mediated ARDS and sepsis in COVID-19 patients receiving prolonged oxygen therapy.
Collapse
Affiliation(s)
- Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Maleka T Stewart
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Sidorela Zefi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Kranthi Venkat Mateti
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Bharti Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Lauren R Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
20
|
Gao M, Aveyard P, Lindson N, Hartmann-Boyce J, Watkinson P, Young D, Coupland C, Clift AK, Harrison D, Gould D, Pavord ID, Smith M, Hippisley-Cox J. Association between smoking, e-cigarette use and severe COVID-19: a cohort study. Int J Epidemiol 2022; 51:1062-1072. [PMID: 35179598 PMCID: PMC8903448 DOI: 10.1093/ije/dyac028] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/03/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Smoking is a risk factor for most respiratory infections, but it may protect against SARS-CoV-2 infection. The objective was to assess whether smoking and e-cigarette use were associated with severe COVID-19. METHODS This cohort ran from 24 January 2020 until 30 April 2020 at the height of the first wave of the SARS-CoV-2 epidemic in England. It comprised 7 869 534 people representative of the population of England with smoking status, demographic factors and diseases recorded by general practitioners in the medical records, which were linked to hospital and death data. The outcomes were COVID-19-associated hospitalization, intensive care unit (ICU) admission and death. The associations between smoking and the outcomes were assessed with Cox proportional hazards models, with sequential adjustment for confounding variables and indirect causal factors (body mass index and smoking-related disease). RESULTS Compared with never smokers, people currently smoking were at lower risk of COVID-19 hospitalization, adjusted hazard ratios (HRs) were 0.64 (95% confidence intervals 0.60 to 0.69) for <10 cigarettes/day, 0.49 (0.41 to 0.59) for 10-19 cigarettes/day, and 0.61 (0.49 to 0.74) for ≥20 cigarettes/day. For ICU admission, the corresponding HRs were 0.31 (0.24 to 0.40), 0.15 (0.06 to 0.36), and 0.35 (0.17 to 0.74) and death were: 0.79 (0.70 to 0.89), 0.66 (0.48 to 0.90), and 0.77 (0.54 to 1.09) respectively. Former smokers were at higher risk of severe COVID-19: HRs: 1.07 (1.03 to 1.11) for hospitalization, 1.17 (1.04 to 1.31) for ICU admission, and 1.17 (1.10 to 1.24) for death. All-cause mortality was higher for current smoking than never smoking, HR 1.42 (1.36 to 1.48). Among e-cigarette users, the adjusted HR for e-cigarette use and hospitalization with COVID-19 was 1.06 (0.88 to 1.28), for ICU admission was 1.04 (0.57 to 1.89, and for death was 1.12 (0.81 to 1.55). CONCLUSIONS Current smoking was associated with a reduced risk of severe COVID-19 but the association with e-cigarette use was unclear. All-cause mortality remained higher despite this possible reduction in death from COVID-19 during an epidemic of SARS-CoV-2. Findings support investigating possible protective mechanisms of smoking for SARS-CoV-2 infection, including the ongoing trials of nicotine to treat COVID-19.
Collapse
Affiliation(s)
- Min Gao
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Paul Aveyard
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Nicola Lindson
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| | - Jamie Hartmann-Boyce
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Peter Watkinson
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Duncan Young
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Carol Coupland
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Ashley K Clift
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| | - David Harrison
- Intensive Care National Audit & Research Centre (ICNARC), Napier House, London, UK
| | - Doug Gould
- Intensive Care National Audit & Research Centre (ICNARC), Napier House, London, UK
| | - Ian D Pavord
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Margaret Smith
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Julia Hippisley-Cox
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Kelly MJ, Breathnach C, Tracey KJ, Donnelly SC. Manipulation of the inflammatory reflex as a therapeutic strategy. Cell Rep Med 2022; 3:100696. [PMID: 35858588 PMCID: PMC9381415 DOI: 10.1016/j.xcrm.2022.100696] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 06/20/2021] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
The cholinergic anti-inflammatory pathway is the efferent arm of the inflammatory reflex, a neural circuit through which the CNS can modulate peripheral immune responses. Signals communicated via the vagus and splenic nerves use acetylcholine, produced by Choline acetyltransferase (ChAT)+ T cells, to downregulate the inflammatory actions of macrophages expressing α7 nicotinic receptors. Pre-clinical studies using transgenic animals, cholinergic agonists, vagotomy, and vagus nerve stimulation have demonstrated this pathway's role and therapeutic potential in numerous inflammatory diseases. In this review, we summarize what is understood about the inflammatory reflex. We also demonstrate how pre-clinical findings are being translated into promising clinical trials, and we draw particular attention to innovative bioelectronic methods of harnessing the cholinergic anti-inflammatory pathway for clinical use.
Collapse
Affiliation(s)
- Mark J Kelly
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland; Tallaght University Hospital, Dublin, Ireland
| | | | - Kevin J Tracey
- Center for Biomedical Science and Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Seamas C Donnelly
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland; Tallaght University Hospital, Dublin, Ireland.
| |
Collapse
|
22
|
Yang JM, Yang XY, Wan JH. Multiple roles for cholinergic signaling in pancreatic diseases. World J Gastroenterol 2022; 28:2910-2919. [PMID: 35978870 PMCID: PMC9280742 DOI: 10.3748/wjg.v28.i25.2910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Cholinergic nerves are widely distributed throughout the human body and participate in various physiological activities, including sensory, motor, and visceral activities, through cholinergic signaling. Cholinergic signaling plays an important role in pancreatic exocrine secretion. A large number of studies have found that cholinergic signaling overstimulates pancreatic acinar cells through muscarinic receptors, participates in the onset of pancreatic diseases such as acute pancreatitis and chronic pancreatitis, and can also inhibit the progression of pancreatic cancer. However, cholinergic signaling plays a role in reducing pain and inflammation through nicotinic receptors, but enhances the proliferation and invasion of pancreatic tumor cells. This review focuses on the progression of cholinergic signaling and pancreatic diseases in recent years and reveals the role of cholinergic signaling in pancreatic diseases.
Collapse
Affiliation(s)
- Jun-Min Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Yu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jian-Hua Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
23
|
Wei M, Xie X, Yu X, Lu Y, Ke L, Ye B, Zhou J, Li G, Li B, Tong Z, Lu G, Li W, Li J. Predictive value of serum cholinesterase in the mortality of acute pancreatitis: A retrospective cohort study. Eur J Clin Invest 2022; 52:e13741. [PMID: 34981831 DOI: 10.1111/eci.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Severe acute pancreatitis has a high mortality of 20%-40%, but there is a lack of optimal prognostic biomarker for the severity of acute pancreatitis (AP) or mortality. This study is designed to investigate the relationship between serum cholinesterase (ChE) level and poor outcomes of AP. METHODS A total of 1904 AP patients were screened in the study, and we finally got 692 patients eligible for analysis. Patients were divided into 2 groups based on serum ChE. The primary outcome was mortality, and multivariable logistic regression analysis for mortality was completed. Additionally, we used receiver operating characteristic (ROC) curve analysis to clarify the predictive value of serum ChE for mortality and organ failure. RESULTS Three hundred and seventy eight patients and 314 patients were included in the ChE-low and ChE-normal group, respectively. Patients in the ChE-low group were older (46.68 ± 12.70 vs. 43.56 ± 12.13 years old, p = .001) and had a lower percentage of man (62.4% vs. 71.0%, p = .017) when compared to the ChE-normal group. Mortality was significantly different in two groups (10.3% vs. 0.0%, p < .001). Moreover, organ failure also differed significantly in two groups (46.6% vs. 8.6%, p < .001). Decreased ChE level was independently associated with mortality in acute pancreatitis (odds ratio: 0.440; 95% confidence interval, 0.231, 0.838, p = .013). The area under the curve of serum ChE was 0.875 and 0.803 for mortality and organ failure, respectively. CONCLUSIONS Lower level of serum ChE was independently associated with the severity and mortality of AP.
Collapse
Affiliation(s)
- Mei Wei
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaochun Xie
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical College of Southeast University, Nanjing, China
| | - Xianqiang Yu
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical College of Southeast University, Nanjing, China
| | - Yingying Lu
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical College of Southeast University, Nanjing, China
| | - Lu Ke
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bo Ye
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Nanjing, China
| | - Jing Zhou
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Nanjing, China
| | - Gang Li
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Nanjing, China
| | - Baiqiang Li
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Nanjing, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guotao Lu
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Gastroenterology, Pancreatic Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weiqin Li
- Department of Critical Care Medicine, Center of Severe Acute Pancreatitis (CSAP), Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jieshou Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Caravaca AS, Gallina AL, Tarnawski L, Shavva VS, Colas RA, Dalli J, Malin SG, Hult H, Arnardottir H, Olofsson PS. Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit. Proc Natl Acad Sci U S A 2022; 119:e2023285119. [PMID: 35622894 PMCID: PMC9295760 DOI: 10.1073/pnas.2023285119] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/09/2022] [Indexed: 12/31/2022] Open
Abstract
Nonresolving inflammation underlies a range of chronic inflammatory diseases, and therapeutic acceleration of resolution of inflammation may improve outcomes. Neural reflexes regulate the intensity of inflammation (for example, through signals in the vagus nerve), but whether activation of the vagus nerve promotes the resolution of inflammation in vivo has been unknown. To investigate this, mice were subjected to electrical vagus nerve stimulation (VNS) or sham surgery at the cervical level followed by zymosan-induced peritonitis. The duration of inflammation resolution was significantly reduced and efferocytosis was significantly increased in mice treated with VNS as compared with sham. Lipid mediator (LM) metabololipidomics revealed that mice treated with VNS had higher levels of specialized proresolving mediators (SPMs), particularly from the omega-3 docosahexaenoic (DHA) and docosapentaenoic (n-3 DPA) metabolomes, in peritoneal exudates. VNS also shifted the ratio between proinflammatory and proresolving LMs toward a proresolving profile, but this effect by VNS was inverted in mice deficient in 12/15-lipoxgenase (Alox15), a key enzyme in this SPM biosynthesis. The significant VNS-mediated reduction of neutrophil numbers in peritoneal exudates was absent in mice deficient in the cholinergic α7-nicotinic acetylcholine receptor subunit (α7nAChR), an essential component of the inflammatory reflex. Thus, VNS increased local levels of SPM and accelerated resolution of inflammation in zymosan-induced peritonitis by a mechanism that involves Alox15 and requires the α7nAChR.
Collapse
Affiliation(s)
- April S. Caravaca
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, 171 76, Sweden
- Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, 171 76, Sweden
| | - Alessandro L. Gallina
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, 171 76, Sweden
- Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, 171 76, Sweden
| | - Laura Tarnawski
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, 171 76, Sweden
- Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, 171 76, Sweden
| | - Vladimir S. Shavva
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, 171 76, Sweden
| | - Romain A. Colas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Stephen G. Malin
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, 171 76, Sweden
| | - Henrik Hult
- Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, 171 76, Sweden
- Department of Mathematics, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - Hildur Arnardottir
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, 171 76, Sweden
| | - Peder S. Olofsson
- Laboratory of Immunobiology, Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, 171 76, Sweden
- Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, 171 76, Sweden
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, 11030
| |
Collapse
|
25
|
Park JE, Leem YH, Park JS, Kim DY, Kang JL, Kim HS. Anti-Inflammatory and Neuroprotective Mechanisms of GTS-21, an α7 Nicotinic Acetylcholine Receptor Agonist, in Neuroinflammation and Parkinson's Disease Mouse Models. Int J Mol Sci 2022; 23:ijms23084420. [PMID: 35457238 PMCID: PMC9026703 DOI: 10.3390/ijms23084420] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022] Open
Abstract
Neuroinflammation is crucial in the progression of neurodegenerative diseases. Thus, controlling neuroinflammation has been proposed as an important therapeutic strategy for neurodegenerative disease. In the present study, we examined the anti-inflammatory and neuroprotective effects of GTS-21, a selective α7 nicotinic acetylcholine receptor (α7 nAChR) agonist, in neuroinflammation and Parkinson's disease (PD) mouse models. GTS-21 inhibited the expression of inducible nitric oxide synthase (iNOS) and proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated BV2 microglial cells and primary microglia. Further research revealed that GTS-21 has anti-inflammatory properties by inhibiting PI3K/Akt, NF-κB, and upregulating AMPK, Nrf2, CREB, and PPARγ signals. The effects of GTS-21 on these pro-/anti-inflammatory signaling molecules were reversed by treatment with an α7 nAChR antagonist, suggesting that the anti-inflammatory effects of GTS-21 are mediated through α7 nAChR activation. The anti-inflammatory and neuroprotective properties of GTS-21 were then confirmed in LPS-induced systemic inflammation and MPTP-induced PD model mice. In LPS-injected mouse brains, GTS-21 reduced microglial activation and production of proinflammatory markers. Furthermore, in the brains of MPTP-injected mice, GTS-21 restored locomotor activity and dopaminergic neuronal cell death while inhibiting microglial activation and pro-inflammatory gene expression. These findings suggest that GTS-21 has therapeutic potential in neuroinflammatory and neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (D.-Y.K.)
| | - Yea-Hyun Leem
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (D.-Y.K.)
| | - Jin-Sun Park
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (D.-Y.K.)
| | - Do-Yeon Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (D.-Y.K.)
| | - Jihee Lee Kang
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Korea;
| | - Hee-Sun Kim
- Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.-E.P.); (Y.-H.L.); (J.-S.P.); (D.-Y.K.)
- Correspondence: ; Tel.: +82-2-6986-6270
| |
Collapse
|
26
|
Re-directing nanomedicines to the spleen: A potential technology for peripheral immunomodulation. J Control Release 2022; 350:60-79. [DOI: 10.1016/j.jconrel.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
27
|
Pattanaik B, Hammarlund M, Mjörnstedt F, Ulleryd MA, Zhong W, Uhlén M, Gummesson A, Bergström G, Johansson ME. Polymorphisms in alpha 7 nicotinic acetylcholine receptor gene, CHRNA7, and its partially duplicated gene, CHRFAM7A, associate with increased inflammatory response in human peripheral mononuclear cells. FASEB J 2022; 36:e22271. [PMID: 35344211 DOI: 10.1096/fj.202101898r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 01/16/2023]
Abstract
The vagus nerve can, via the alpha 7 nicotinic acetylcholine receptor (α7nAChR), regulate inflammation. The gene coding for the α7nAChR, CHRNA7, can be partially duplicated, that is, CHRFAM7A, which is reported to impair the anti-inflammatory effect mediated via the α7nAChR. Several single nucleotide polymorphisms (SNPs) have been described in both CHRNA7 and CHRFAM7A, however, the functional role of these SNPs for immune responses remains to be investigated. In the current study, we set out to investigate whether genetic variants of CHRNA7 and CHRFAM7A can influence immune responses. By investigating data available from the Swedish SciLifeLab SCAPIS Wellness Profiling (S3WP) study, in combination with droplet digital PCR and freshly isolated PBMCs from the S3WP participants, challenged with lipopolysaccharide (LPS), we show that CHRNA7 and CHRFAM7A are expressed in human PBMCs, with approximately four times higher expression of CHRFAM7A compared with CHRNA7. One SNP in CHRFAM7A, rs34007223, is positively associated with hsCRP in healthy individuals. Furthermore, gene ontology (GO)-terms analysis of plasma proteins associated with gene expression of CHRNA7 and CHRFAM7A demonstrated an involvement for these genes in immune responses. This was further supported by in vitro data showing that several SNPs in both CHRNA7 and CHRFAM7A are significantly associated with cytokine response. In conclusion, genetic variants of CHRNA7 and CHRFAM7A alters cytokine responses. Furthermore, given that CHRFAM7A SNP rs34007223 is associated with inflammatory marker hsCRP in healthy individuals suggests that CHRFAM7A may have a more pronounced role in regulating inflammatory processes in humans than previously been recognized.
Collapse
Affiliation(s)
- Bagmi Pattanaik
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hammarlund
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Filip Mjörnstedt
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus A Ulleryd
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Wen Zhong
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anders Gummesson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Lei W, Zhao C, Sun J, Jin Y, Duan Z. Electroacupuncture Ameliorates Intestinal Barrier Destruction in Mice With Bile Duct Ligation-Induced Liver Injury by Activating the Cholinergic Anti-Inflammatory Pathway. Neuromodulation 2022; 25:1122-1133. [PMID: 35300921 DOI: 10.1016/j.neurom.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Electroacupuncture (EA) at Zusanli (ST36) can attenuate inflammation in different rodent models. However, the therapeutic mechanisms underlying its action in inhibiting intestinal barrier destruction and liver injury in cholestasis mice have not been clarified. This study aimed at investigating whether EA at ST36 could activate the cholinergic anti-inflammatory pathway to inhibit intestinal barrier destruction and liver injury in cholestasis mice. MATERIALS AND METHODS Male Hmox1floxp/floxp C57BL/6 mice were randomized and subjected to a sham or bile duct ligation (BDL) surgery. The BDL mice were randomized and treated with, or without (BDL group), sham EA at ST36 (BDL+sham-ST36) or EA at ST36 (BDL+ST36), or received α-bungarotoxin (α-BGT), a specific inhibitor of nicotinic acetylcholine receptor α7 subunit (α7nAChR), before stimulation (BDL+ST36+α-BGT). These mice, together with a group of intestine-specific heme oxygenase-1 (HO-1) knockout (KO) Villin-Cre-HO-1-/- mice, were monitored for their body weights before and 14 days after BDL. The levels of plasma cytokines and liver injury-related alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured by enzyme-linked immunoassay, and pathological changes in the intestinal mucosa and liver fibrosis as well as intestinal barrier permeability in individual mice were examined by histology and immunohistochemistry. The levels of α7nAChR, HO-1, ZO-1, Occludin, Claudin-1, and NF-κBp65 expression and NF-κBp65 phosphorylation in intestinal tissues were quantified. RESULTS Compared with the sham group, BDL significantly increased the levels of plasma interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor α, ALT, and AST and caused intestinal mucosal damages, high permeability, and liver fibrosis in mice, which were remarkably mitigated, except for further increased levels of plasma IL-10 in the BDL+ST36 group of mice. Similarly, EA at ST36 significantly up-regulated α7nAChR and HO-1 expression; mitigated the BDL-decreased ZO-1, Occludin, and Claudin-1 expression; and attenuated the BDL-increased NF-κBp65 phosphorylation in intestinal tissues of mice. The therapeutic effects of EA at ST36 were significantly abrogated by pretreatment with α-BGT or HO-1 KO. CONCLUSION EA at ST36 inhibits the BDL-induced intestinal mucosal damage and liver fibrosis by activating the HO-1 cholinergic anti-inflammatory pathway in intestinal tissues of mice.
Collapse
Affiliation(s)
- Wei Lei
- Second Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian, China; Laboratory of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Changcheng Zhao
- Second Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian, China; Laboratory of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiasen Sun
- Second Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian, China; Laboratory of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanling Jin
- Pathology Department, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhijun Duan
- Second Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian, China; Laboratory of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
29
|
He W, Chen P, Lei Y, Xia L, Liu P, Zhu Y, Zeng H, Wu Y, Ke H, Huang X, Cai W, Sun X, Huang W, Sutton R, Zhu Y, Lu N. Randomized controlled trial: neostigmine for intra-abdominal hypertension in acute pancreatitis. Crit Care 2022; 26:52. [PMID: 35241135 PMCID: PMC8892692 DOI: 10.1186/s13054-022-03922-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023] Open
Abstract
Background Intra-abdominal hypertension (IAH) in acute pancreatitis (AP) is associated with deterioration in organ function. This trial aimed to assess the efficacy of neostigmine for IAH in patients with AP. Methods In this single-center, randomized trial, consenting patients with IAH within 2 weeks of AP onset received conventional treatment for 24 h. Patients with sustained intra-abdominal pressure (IAP) ≥ 12 mmHg were randomized to receive intramuscular neostigmine (1 mg every 12 h increased to every 8 h or every 6 h, depending on response) or continue conventional treatment for 7 days. The primary outcome was the percent change of IAP at 24 h after randomization. Results A total of 80 patients were recruited to neostigmine (n = 40) or conventional treatment (n = 40). There was no significant difference in baseline parameters. The rate of decrease in IAP was significantly faster in the neostigmine group compared to the conventional group by 24 h (median with 25th–75th percentile: −18.7% [− 28.4 to − 4.7%] vs. − 5.4% [− 18.0% to 0], P = 0.017). This effect was more pronounced in patients with baseline IAP ≥ 15 mmHg (P = 0.018). Per-protocol analysis confirmed these results (P = 0.03). Stool volume was consistently higher in the neostigmine group during the 7-day observational period (all P < 0.05). Other secondary outcomes were not significantly different between neostigmine and conventional treatment groups. Conclusion Neostigmine reduced IAP and promoted defecation in patients with AP and IAH. These results warrant a larger, placebo-controlled, double-blind phase III trial. Trial registration Clinical Trial No: NCT02543658 (registered August /27, 2015). Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-03922-4.
Collapse
Affiliation(s)
- Wenhua He
- Pancreatic Intensive Care Unit, Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China.,Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Liverpool University Hospitals NHS Foundation Trust, Liverpool, Merseyside, UK
| | - Peng Chen
- Pancreatic Intensive Care Unit, Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yupeng Lei
- Pancreatic Intensive Care Unit, Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Xia
- Pancreatic Intensive Care Unit, Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pi Liu
- Pancreatic Intensive Care Unit, Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Zhu
- Pancreatic Intensive Care Unit, Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hao Zeng
- Pancreatic Intensive Care Unit, Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yao Wu
- Pancreatic Intensive Care Unit, Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huajing Ke
- Pancreatic Intensive Care Unit, Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Huang
- Pancreatic Intensive Care Unit, Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenhao Cai
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Liverpool University Hospitals NHS Foundation Trust, Liverpool, Merseyside, UK.,Departments of Integrated Traditional Chinese and Western Medicine & Clinical Research Management, Sichuan Provincial Pancreatitis Center & West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Sun
- Chinese Evidence-Based Medicine Center and CREAT Group, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- Departments of Integrated Traditional Chinese and Western Medicine & Clinical Research Management, Sichuan Provincial Pancreatitis Center & West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Liverpool University Hospitals NHS Foundation Trust, Liverpool, Merseyside, UK
| | - Yin Zhu
- Pancreatic Intensive Care Unit, Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Nonghua Lu
- Pancreatic Intensive Care Unit, Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
30
|
Yang A, Liu B, Inoue T. Role of autonomic system imbalance in neurogenic pulmonary oedema. Eur J Neurosci 2022; 55:1645-1657. [PMID: 35277906 DOI: 10.1111/ejn.15648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023]
Abstract
Neurogenic pulmonary oedema (NPE) is a life-threatening complication that develops rapidly and dramatically after an injury to the central nervous system (CNS). The autonomic system imbalance produced by severe brain damage may play an important role in the development of NPE. Activation of the sympathetic nervous system and inhibition of the vagus nerve system are essential prerequisites for autonomic system imbalance. The more severe the damage, the more pronounced the phenomenon. Sympathetic hyperactivity is associated with increased release of catecholamines from peripheral sympathetic nerve endings, which can cause dramatic changes in haemodynamics and cause pulmonary oedema. On the other hand, the abnormal inflammatory response caused by vagus nerve inhibition may also play an important role in the pathogenesis of NPE. The perspective of autonomic system imbalance seems to perfectly integrate the existing pathogenesis of NPE and can explain the entire development progression of NPE.
Collapse
Affiliation(s)
- Aobing Yang
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Bin Liu
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
31
|
Mueller B, Figueroa A, Robinson-Papp J. Structural and functional connections between the autonomic nervous system, hypothalamic-pituitary-adrenal axis, and the immune system: a context and time dependent stress response network. Neurol Sci 2022; 43:951-960. [PMID: 35034231 DOI: 10.1007/s10072-021-05810-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 01/17/2023]
Abstract
The autonomic nervous system (ANS), hypothalamic-pituitary-adrenal (HPA) axis, and immune system are connected anatomically and functionally. These three systems coordinate the central and peripheral response to perceived and systemic stress signals. Both the parasympathetic and sympathetic components of the autonomic nervous system rapidly respond to stress signals, while the hypothalamic-pituitary-adrenal axis and immune system have delayed but prolonged actions. In vitro, animal, and human studies have demonstrated consistent anti-inflammatory effects of parasympathetic activity. In contrast, sympathetic activity exerts context-dependent effects on immune signaling and has been associated with both increased and decreased inflammation. The location of sympathetic action, adrenergic receptor subtype, and timing of activity in relation to disease progression all influence the ultimate impact on immune signaling. This article reviews the brain circuitry, peripheral connections, and chemical messengers that enable communication between the ANS, HPA axis, and immune system. We describe findings of in vitro and animal studies that challenge the immune system with lipopolysaccharide. Next, neuroimmune connections in animal models of chronic inflammatory disease are reviewed. Finally, we discuss how a greater understanding of the ANS-HPA-immune network may lead to the development of novel therapeutic strategies that are focused on modulation of the sympathetic and parasympathetic nervous system.
Collapse
Affiliation(s)
- Bridget Mueller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5 East 98th Street, Box 1139, New York City, NY, 10029, USA.
| | - Alex Figueroa
- University of Texas at Southwestern Medical School, Dallas, TX, USA
| | - Jessica Robinson-Papp
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5 East 98th Street, Box 1139, New York City, NY, 10029, USA
| |
Collapse
|
32
|
Kanauchi Y, Yamamoto T, Yoshida M, Zhang Y, Lee J, Hayashi S, Kadowaki M. Cholinergic anti-inflammatory pathway ameliorates murine experimental Th2-type colitis by suppressing the migration of plasmacytoid dendritic cells. Sci Rep 2022; 12:54. [PMID: 34997096 PMCID: PMC8742068 DOI: 10.1038/s41598-021-04154-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/07/2021] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease. Several studies have demonstrated that α7 nicotinic acetylcholine receptors (α7nAChRs) exert anti-inflammatory effects on immune cells and nicotine suppress UC onset and relapse. Plasmacytoid dendritic cells (pDCs) reportedly accumulate in the colon of UC patients. Therefore, we investigated the pathophysiological roles of α7nAChRs on pDCs in the pathology of UC using oxazolone (OXZ)-induced Th2-type colitis with BALB/c mice. 2-deoxy-D-glucose, a central vagal stimulant suppressed OXZ colitis, and nicotine also ameliorated OXZ colitis with suppressing Th2 cytokines, which was reversed by α7nAChR antagonist methyllycaconitine. Additionally, α7nAChRs were expressed on pDCs, which were located very close to cholinergic nerve fibers in the colon of OXZ mice. Furthermore, nicotine suppressed CCL21-induced bone marrow-derived pDC migration due to Rac 1 inactivation, which was reversed by methyllycaconitine, a JAK2 inhibitor AG490 or caspase-3 inhibitor AZ-10417808. CCL21 was mainly expressed in the isolated lymphoid follicles (ILFs) of the colon during OXZ colitis. The therapeutic effect of cholinergic pathway on OXZ colitis probably through α7nAChRs on pDCs were attributed to the suppression of pDC migration toward the ILFs. Therefore, the activation of α7nAChRs has innovative therapeutic potential for the treatment of UC.
Collapse
Affiliation(s)
- Yuya Kanauchi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takeshi Yamamoto
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Minako Yoshida
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yue Zhang
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Jaemin Lee
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
33
|
Somatosensory and autonomic neuronal regulation of the immune response. Nat Rev Neurosci 2022; 23:157-171. [PMID: 34997214 DOI: 10.1038/s41583-021-00555-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
Bidirectional communication between the peripheral nervous system (PNS) and the immune system is a crucial part of an effective but balanced mammalian response to invading pathogens, tissue damage and inflammatory stimuli. Here, we review how somatosensory and autonomic neurons regulate immune cellular responses at barrier tissues and in peripheral organs. Immune cells express receptors for neuronal mediators, including neuropeptides and neurotransmitters, allowing neurons to influence their function in acute and chronic inflammatory diseases. Distinct subsets of peripheral sensory, sympathetic, parasympathetic and enteric neurons are able to signal to innate and adaptive immune cells to modulate their cellular functions. In this Review, we highlight recent studies defining the molecular mechanisms by which neuroimmune signalling mediates tissue homeostasis and pathology. Understanding the neural circuitry that regulates immune responses can offer novel targets for the treatment of a wide array of diseases.
Collapse
|
34
|
Martins DF, Viseux FJF, Salm DC, Ribeiro ACA, da Silva HKL, Seim LA, Bittencourt EB, Bianco G, Moré AOO, Reed WR, Mazzardo-Martins L. The role of the vagus nerve in fibromyalgia syndrome. Neurosci Biobehav Rev 2021; 131:1136-1149. [PMID: 34710514 DOI: 10.1016/j.neubiorev.2021.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/08/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022]
Abstract
Fibromyalgia (FM) syndrome is a common illness characterized by chronic widespread pain, sleep problems, fatigue, and cognitive difficulties. Dysfunctional neurotransmitter systems that influence the body's endogenous stress response systems are thought to underlie many of the major FM-related symptoms. A model of FM pathogenesis suggests biological and psychosocial variables interact to influence the genetic predisposition, but the precise mechanisms remain unclear. The Polyvagal Theory provides a theoretical framework from which to investigate potential biological mechanisms. The vagus nerve (VN) has anti-inflammatory properties via its afferent and efferent fibers. A low vagal tone (as assessed by low heart rate variability), has been observed in painful and inflammatory diseases, including FM, while the ventral branch of the VN is linked to emotional expression and social engagement. These anti-inflammatory and psychological (limbic system) properties of the VN may possess therapeutic potential in treating FM. This review paper summarizes the scientific literature regarding the potential role of the VN in transducing and/or therapeutically managing FM signs and symptoms.
Collapse
Affiliation(s)
- Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), Physiotherapy Graduate Course, University of Southern Santa Catarina, Palhoça, SC, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, SC, Brazil.
| | - Frederic J F Viseux
- Laboratoire d'Automatique, de Mécanique et d'Informatique industrielle et Humaine (LAMIH), UMR CNRS 8201, Université Polytechnique des Hauts-de-France, Valenciennes, France; Centre d'Evaluation et de Traitement de la Douleur (CETD), Hôpital Jean Bernard, Centre Hospitalier de Valenciennes, F-59322 Valenciennes, France
| | - Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), Physiotherapy Graduate Course, University of Southern Santa Catarina, Palhoça, SC, Brazil; Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Anny Caroline Avelino Ribeiro
- Experimental Neuroscience Laboratory (LaNEx), Physiotherapy Graduate Course, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Helen Kassiana Lopes da Silva
- Experimental Neuroscience Laboratory (LaNEx), Physiotherapy Graduate Course, University of Southern Santa Catarina, Palhoça, SC, Brazil
| | - Lynsey A Seim
- Hospital Internal Medicine, 4500 San Pablo Road, Mayo Clinic, Jacksonville, FL, USA
| | | | - Gianluca Bianco
- Research Laboratory of Posturology and Neuromodulation RELPON, Department of Human Neuroscience, Sapienza University, Rome, Italy; Istituto di Formazione in Agopuntura e Neuromodulazione IFAN, Rome, Italy
| | - Ari Ojeda Ocampo Moré
- Integrative Medicine and Acupuncture Service, University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - William R Reed
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, USA; Rehabilitation Science Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leidiane Mazzardo-Martins
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
35
|
Varenicline limits ischemia reperfusion injury following testicular torsion in mice. J Pediatr Urol 2021; 17:631.e1-631.e8. [PMID: 34366251 DOI: 10.1016/j.jpurol.2021.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/11/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Torsion of the spermatic cord and the resulting testicular ischemia leads to the production of inflammatory cytokines and cell death due to impaired aerobic metabolism. Following reperfusion of the testis, a robust innate inflammatory response furthers tissue injury due to the production of reactive oxygen species and disruption of normal capillary function. Blunting the innate immune response with antioxidants, anti-inflammatory medications and targeted genetic interventions reduces long term testicular injury in animal models of torsion, however these approaches have limited clinical applicability. Mediated via α7 nACh receptors, the cholinergic anti-inflammatory pathway limits NFKB signaling and prevents renal fibrosis following warm renal ischemia. We identified varenicline as an FDA approved α7 nAChR agonist and hypothesized that varenicline administration would decrease long-term testicular atrophy and fibrosis in a murine model of testicular torsion. METHODS Using an established model, unilateral testicular torsion was induced in mature male CD1 mice by rotating the right testicle 720° for 2 h. In the treatment group, 4 doses of varenicline (1mg/grm) were administered via intraperitoneal injection every 12 h, with the first dose given 1 h after the creation of testicular torsion. The acute inflammatory response was evaluated 48 h following reperfusion of the testis. Long term outcomes were evaluated 30 days following testicular perfusion. RESULTS 48 h following reperfusion, the testis of animals treated with varenicline demonstrated a significant reduction in the inflammatory response as measured by the acute immune cell infiltrate, myeloperoxidase activity, concentration of reduced glutathione and expression of downstream NF-KB targets. 30 days following reperfusion, animals treated with varenicline, demonstrated decreased testicular atrophy (Summary Figure), fibrosis and expression of pro-fibrotic genes. CONCLUSION Activation of a central immunosuppressive cascade with varenicline after the onset of testicular torsion reduces ischemia reperfusion injury and prevents long term testicular atrophy and fibrosis. Further studies are needed to define the optimum dose and varenicline administration regimen. Our results suggest that varenicline offers a novel, FDA approved, adjunct to the current management of testicular torsion.
Collapse
|
36
|
Sanhueza N, Fuentes R, Aguilar A, Carnicero B, Vega K, Muñoz D, Contreras D, Moreno N, Troncoso E, Mercado L, Morales-Lange B, Boltana S. Behavioural Fever Promotes an Inflammatory Reflex Circuit in Ectotherms. Int J Mol Sci 2021; 22:ijms22168860. [PMID: 34445566 PMCID: PMC8396262 DOI: 10.3390/ijms22168860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The communication between the brain and the immune system is a cornerstone in animal physiology. This interaction is mediated by immune factors acting in both health and pathogenesis, but it is unclear how these systems molecularly and mechanistically communicate under changing environmental conditions. Behavioural fever is a well-conserved immune response that promotes dramatic changes in gene expression patterns during ectotherms’ thermoregulatory adaptation, including those orchestrating inflammation. However, the molecular regulators activating the inflammatory reflex in ectotherms remain unidentified. Methods: We revisited behavioural fever by providing groups of fish a thermal gradient environment during infection. Our novel experimental setup created temperature ranges in which fish freely moved between different thermal gradients: (1) wide thermoregulatory range; T° = 6.4 °C; and (2) restricted thermoregulatory range; T° = 1.4 °C. The fish behaviour was investigated during 5-days post-viral infection. Blood, spleen, and brain samples were collected to determine plasmatic pro- and anti-inflammatory cytokine levels. To characterize genes’ functioning during behavioural fever, we performed a transcriptomic profiling of the fish spleen. We also measured the activity of neurotransmitters such as norepinephrine and acetylcholine in brain and peripheral tissues. Results: We describe the first set of the neural components that control inflammatory modulation during behavioural fever. We identified a neuro-immune crosstalk as a potential mechanism promoting the fine regulation of inflammation. The development of behavioural fever upon viral infection triggers a robust inflammatory response in vivo, establishing an activation threshold after infection in several organs, including the brain. Thus, temperature shifts strongly impact on neural tissue, specifically on the inflammatory reflex network activation. At the molecular level, behavioural fever causes a significant increase in cholinergic neurotransmitters and their receptors’ activity and key anti-inflammatory factors such as cytokine Il10 and Tgfβ in target tissues. Conclusion: These results reveal a cholinergic neuronal-based mechanism underlying anti-inflammatory responses under induced fever. We performed the first molecular characterization of the behavioural fever response and inflammatory reflex activation in mobile ectotherms, identifying the role of key regulators of these processes. These findings provide genetic entry points for functional studies of the neural–immune adaptation to infection and its protective relevance in ectotherm organisms.
Collapse
Affiliation(s)
- Nataly Sanhueza
- Centro de Biotecnología, Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (N.S.); (A.A.); (B.C.); (K.V.); (D.M.)
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Andrea Aguilar
- Centro de Biotecnología, Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (N.S.); (A.A.); (B.C.); (K.V.); (D.M.)
| | - Beatriz Carnicero
- Centro de Biotecnología, Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (N.S.); (A.A.); (B.C.); (K.V.); (D.M.)
| | - Karina Vega
- Centro de Biotecnología, Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (N.S.); (A.A.); (B.C.); (K.V.); (D.M.)
| | - David Muñoz
- Centro de Biotecnología, Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (N.S.); (A.A.); (B.C.); (K.V.); (D.M.)
| | - David Contreras
- Biotechnology Center, Renewable Resources Laboratory, University Campus, Universidad de Concepción, Concepción 4030000, Chile; (D.C.); (N.M.); (E.T.)
| | - Nataly Moreno
- Biotechnology Center, Renewable Resources Laboratory, University Campus, Universidad de Concepción, Concepción 4030000, Chile; (D.C.); (N.M.); (E.T.)
| | - Eduardo Troncoso
- Biotechnology Center, Renewable Resources Laboratory, University Campus, Universidad de Concepción, Concepción 4030000, Chile; (D.C.); (N.M.); (E.T.)
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Facultad de Ciencias, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (L.M.); (B.M.-L.)
| | - Byron Morales-Lange
- Grupo de Marcadores Inmunológicos, Facultad de Ciencias, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (L.M.); (B.M.-L.)
| | - Sebastian Boltana
- Centro de Biotecnología, Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (N.S.); (A.A.); (B.C.); (K.V.); (D.M.)
- Correspondence: ; Fax: +56-41-266-16-17
| |
Collapse
|
37
|
Pinheiro NM, Banzato R, Tibério I, Prado MAM, Prado VF, Hamouda AK, Prado CM. Acute Lung Injury in Cholinergic-Deficient Mice Supports Anti-Inflammatory Role of α7 Nicotinic Acetylcholine Receptor. Int J Mol Sci 2021; 22:ijms22147552. [PMID: 34299169 PMCID: PMC8303767 DOI: 10.3390/ijms22147552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The lung cholinergic pathway is important for controlling pulmonary inflammation in acute lung injury, a condition that is characterized by a sudden onset and intense inflammation. This study investigated changes in the expression levels of nicotinic and muscarinic acetylcholine receptors (nAChR and mAChR) in the lung during acute lung injury. (2) Methods: acute lung injury (ALI) was induced in wild-type and cholinergic-deficient (VAChT-KDHOM) mice using intratracheal lipopolysaccharide (LPS) instillation with or without concurrent treatment with nicotinic ligands. Bronchoalveolar lavage fluid was collected to evaluate markers of inflammation, and then the lung was removed and processed for isolation of membrane fraction and determination of acetylcholine receptors level using radioligand binding assays. (3) Results: LPS-induced increase in lung inflammatory markers (e.g., neutrophils and IL-1β) was significantly higher in VAChT-KDHOM than wild-type mice. In contrast, LPS treatment resulted in a significant increase in lung’s α7 nicotinic receptor level in wild-type, but not in VAChT-KDHOM mice. However, treatment with PNU 282987, a selective α7 nicotinic receptor agonist, restored VAChT-KDHOM mice’s ability to increase α7 nicotinic receptor levels in response to LPS-induced acute lung injury and reduced lung inflammation. LPS also increased muscarinic receptors level in VAChT-KDHOM mice, and PNU 282987 treatment reduced this response. (4) Conclusions: Our data indicate that the anti-inflammatory effects of the lung cholinergic system involve an increase in the level of α7 nicotinic receptors. Pharmacological agents that increase the expression or the function of lung α7 nicotinic receptors have potential clinical uses for treating acute lung injury.
Collapse
Affiliation(s)
- Nathalia M. Pinheiro
- Department of Bioscience, Federal University of Sao Paulo, Santos 11015-020, SP, Brazil;
- College of Pharmacy, University of Texas at Tyler, Tyler, TX 75799, USA;
| | - Rosana Banzato
- Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo 01246-903, SP, Brazil; (R.B.); (I.T.); (V.F.P.)
| | - Iolanda Tibério
- Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo 01246-903, SP, Brazil; (R.B.); (I.T.); (V.F.P.)
| | - Marco A. M. Prado
- Molecular Medicine Group, Robarts Research Institute, London, ON N6A 5B7, Canada;
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Vânia F. Prado
- Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo 01246-903, SP, Brazil; (R.B.); (I.T.); (V.F.P.)
- Molecular Medicine Group, Robarts Research Institute, London, ON N6A 5B7, Canada;
| | - Ayman K. Hamouda
- College of Pharmacy, University of Texas at Tyler, Tyler, TX 75799, USA;
| | - Carla M. Prado
- Department of Bioscience, Federal University of Sao Paulo, Santos 11015-020, SP, Brazil;
- Correspondence: ; Tel.: +55-13-3229-0118
| |
Collapse
|
38
|
Abstract
The α7-type nicotinic acetylcholine receptor is one of the most unique and interesting of all the members of the cys-loop superfamily of ligand-gated ion channels. Since it was first identified initially as a binding site for α-bungarotoxin in mammalian brain and later as a functional homomeric receptor with relatively high calcium permeability, it has been pursued as a potential therapeutic target for numerous indications, from Alzheimer disease to asthma. In this review, we discuss the history and state of the art for targeting α7 receptors, beginning with subtype-selective agonists and the basic pharmacophore for the selective activation of α7 receptors. A key feature of α7 receptors is their rapid desensitization by standard "orthosteric" agonist, and we discuss insights into the conformational landscape of α7 receptors that has been gained by the development of ligands binding to allosteric sites. Some of these sites are targeted by positive allosteric modulators that have a wide range of effects on the activation profile of the receptors. Other sites are targeted by direct allosteric agonist or antagonists. We include a perspective on the potential importance of α7 receptors for metabotropic as well as ionotropic signaling. We outline the challenges that exist for future development of drugs to target this important receptor and approaches that may be considered to address those challenges. SIGNIFICANCE STATEMENT: The α7-type nicotinic acetylcholine receptor (nAChR) is acknowledged as a potentially important therapeutic target with functional properties associated with both ionotropic and metabotropic signaling. The functional properties of α7 nAChR can be regulated in diverse ways with the variety of orthosteric and allosteric ligands described in this review.
Collapse
Affiliation(s)
- Roger L Papke
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| |
Collapse
|
39
|
Datta-Chaudhuri T. Closed-loop neuromodulation will increase the utility of mouse models in Bioelectronic Medicine. Bioelectron Med 2021; 7:10. [PMID: 34193309 PMCID: PMC8244222 DOI: 10.1186/s42234-021-00071-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/01/2021] [Indexed: 01/16/2023] Open
Abstract
Mouse models have been of tremendous benefit to medical science for the better part of a century, yet bioelectronic medicine research using mice has been limited to mostly acute studies because of a lack of tools for chronic stimulation and sensing. A wireless neuromodulation platform small enough for implantation in mice will significantly increase the utility of mouse models in bioelectronic medicine. This perspective examines the necessary functionality of such a system and the technical challenges needed to be overcome for its development. Recent progress is examined and the outlook for the future of implantable devices for mice is discussed.
Collapse
Affiliation(s)
- Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA. .,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY, 11549, USA.
| |
Collapse
|
40
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
41
|
Hellysaz A, Hagbom M. Understanding the Central Nervous System Symptoms of Rotavirus: A Qualitative Review. Viruses 2021; 13:v13040658. [PMID: 33920421 PMCID: PMC8069368 DOI: 10.3390/v13040658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/08/2023] Open
Abstract
This qualitative review on rotavirus infection and its complications in the central nervous system (CNS) aims to understand the gut–brain mechanisms that give rise to CNS driven symptoms such as vomiting, fever, feelings of sickness, convulsions, encephalitis, and encephalopathy. There is substantial evidence to indicate the involvement of the gut–brain axis in symptoms such as vomiting and diarrhea. The underlying mechanisms are, however, not rotavirus specific, they represent evolutionarily conserved survival mechanisms for protection against pathogen entry and invasion. The reviewed studies show that rotavirus can exert effects on the CNS trough nervous gut–brain communication, via the release of mediators, such as the rotavirus enterotoxin NSP4, which stimulates neighboring enterochromaffin cells in the intestine to release serotonin and activate both enteric neurons and vagal afferents to the brain. Another route to CNS effects is presented through systemic spread via lymphatic pathways, and there are indications that rotavirus RNA can, in some cases where the blood brain barrier is weakened, enter the brain and have direct CNS effects. CNS effects can also be induced indirectly as a consequence of systemic elevation of toxins, cytokines, and/or other messenger molecules. Nevertheless, there is still no definitive or consistent evidence for the underlying mechanisms of rotavirus-induced CNS complications and more in-depth studies are required in the future.
Collapse
|
42
|
Bonaz B, Sinniger V, Pellissier S. Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases. Front Neurosci 2021; 15:650971. [PMID: 33828455 PMCID: PMC8019822 DOI: 10.3389/fnins.2021.650971] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
The vagus nerve is a mixed nerve, comprising 80% afferent fibers and 20% efferent fibers. It allows a bidirectional communication between the central nervous system and the digestive tract. It has a dual anti-inflammatory properties via activation of the hypothalamic pituitary adrenal axis, by its afferents, but also through a vago-vagal inflammatory reflex involving an afferent (vagal) and an efferent (vagal) arm, called the cholinergic anti-inflammatory pathway. Indeed, the release of acetylcholine at the end of its efferent fibers is able to inhibit the release of tumor necrosis factor (TNF) alpha by macrophages via an interneuron of the enteric nervous system synapsing between the efferent vagal endings and the macrophages and releasing acetylcholine. The vagus nerve also synapses with the splenic sympathetic nerve to inhibit the release of TNF-alpha by splenic macrophages. It can also activate the spinal sympathetic system after central integration of its afferents. This anti-TNF-alpha effect of the vagus nerve can be used in the treatment of chronic inflammatory bowel diseases, represented by Crohn’s disease and ulcerative colitis where this cytokine plays a key role. Bioelectronic medicine, via vagus nerve stimulation, may have an interest in this non-drug therapeutic approach as an alternative to conventional anti-TNF-alpha drugs, which are not devoid of side effects feared by patients.
Collapse
Affiliation(s)
- Bruno Bonaz
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Valérie Sinniger
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Sonia Pellissier
- Laboratoire Inter-Universitaire de Psychologie Personnalité, Cognition, Changement Social, University Grenoble Alpes, University Savoie Mont Blanc, Grenoble, France
| |
Collapse
|
43
|
Hilderman M, Bruchfeld A. The cholinergic anti-inflammatory pathway in chronic kidney disease-review and vagus nerve stimulation clinical pilot study. Nephrol Dial Transplant 2021; 35:1840-1852. [PMID: 33151338 PMCID: PMC7643692 DOI: 10.1093/ndt/gfaa200] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/17/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation and autonomic dysfunction are common findings in chronic and end-stage kidney disease and contribute to a markedly increased risk of mortality in this patient population. The cholinergic anti-inflammatory pathway (CAP) is a vagal neuro-immune circuit that upholds the homoeostatic balance of inflammatory activity in response to cell injury and pathogens. CAP models have been examined in preclinical studies to investigate its significance in a range of clinical inflammatory conditions and diseases. More recently, cervical vagus nerve stimulation (VNS) implants have been shown to be of potential benefit for patients with chronic autoimmune diseases such as rheumatoid arthritis and inflammatory bowel disease. We have previously shown that dialysis patients have a functional CAP ex vivo. Here we review the field and the potential role of the CAP in acute kidney injury and chronic kidney disease (CKD) as well as in hypertension. We also present a VNS pilot study in haemodialysis patients. Controlling inflammation by neuroimmune modulation may lead to new therapeutic modalities for improved treatment, outcome, prognosis and quality of life for patients with CKD.
Collapse
Affiliation(s)
- Marie Hilderman
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
44
|
Possible Therapeutic Role of Cholinergic Agonists on COVID-19 related inflammatory response. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2021. [DOI: 10.30621/jbachs.869857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Pan WX, Fan AY, Chen S, Alemi SF. Acupuncture modulates immunity in sepsis: Toward a science-based protocol. Auton Neurosci 2021; 232:102793. [PMID: 33684727 DOI: 10.1016/j.autneu.2021.102793] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is a serious medical condition in which immune dysfunction plays a key role. Previous treatments focused on chemotherapy to control immune function; however, a recognized effective compound or treatment has yet to be developed. Recent advances indicate that a neuromodulation approach with nerve stimulation allows developing a therapeutic strategy to control inflammation and improve organ functions in sepsis. As a quick, non-invasive technique of peripheral nerve stimulation, acupuncture has emerged as a promising therapy to provide significant advantages for immunomodulation in acute inflammation. Acupuncture obtains its regulatory effect by activating the somatic-autonomic-immune reflexes, including the somatic-sympathetic-splenic reflex, the somatic-sympathetic-adrenal reflex, the somatic-vagal-splenic reflex and the somatic-vagal-adrenal reflex, which produces a systemic effect. The peripheral nerve stimulation also induces local reflexes such as the somatic-sympathetic-lung-reflex, which then produces local effects. These mechanisms offer scientific guidance to design acupuncture protocols for immunomodulation and inflammation control, leading to an evidence-based comprehensive therapy recommendation.
Collapse
Affiliation(s)
- Wei-Xing Pan
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Arthur Yin Fan
- American TCM Association, Vienna, VA 22182, USA; McLean Center for Complementary and Alternative Medicine, PLC, Vienna, VA 22182, USA.
| | - Shaozong Chen
- Acupuncture Research Institute, Shandong University of Chinese Medicine, Jinan 250355, China.
| | - Sarah Faggert Alemi
- American TCM Association, Vienna, VA 22182, USA; Eastern Roots Wellness, PLC, McLean, VA 22101, USA
| |
Collapse
|
46
|
Embregts CWE, Begeman L, Voesenek CJ, Martina BEE, Koopmans MPG, Kuiken T, GeurtsvanKessel CH. Street RABV Induces the Cholinergic Anti-inflammatory Pathway in Human Monocyte-Derived Macrophages by Binding to nAChr α7. Front Immunol 2021; 12:622516. [PMID: 33679766 PMCID: PMC7933221 DOI: 10.3389/fimmu.2021.622516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Rabies virus (RABV) is able to reach the central nervous system (CNS) without triggering a strong immune response, using multiple mechanisms to evade and suppress the host immune system. After infection via a bite or scratch from a rabid animal, RABV comes into contact with macrophages, which are the first antigen-presenting cells (APCs) that are recruited to the area and play an essential role in the onset of a specific immune response. It is poorly understood how RABV affects macrophages, and if the interaction contributes to the observed immune suppression. This study was undertaken to characterize the interactions between RABV and human monocyte-derived macrophages (MDMs). We showed that street RABV does not replicate in human MDMs. Using a recombinant trimeric RABV glycoprotein (rRABV-tG) we showed binding to the nicotinic acetylcholine receptor alpha 7 (nAChr α7) on MDMs, and confirmed the specificity using the nAChr α7 antagonist alpha-bungarotoxin (α-BTX). We found that this binding induced the cholinergic anti-inflammatory pathway (CAP), characterized by a significant decrease in tumor necrosis factor α (TNF-α) upon LPS challenge. Using confocal microscopy we found that induction of the CAP is associated with significant cytoplasmic retention of nuclear factor κB (NF-κB). Co-cultures of human MDMs exposed to street RABV and autologous T cells further revealed that the observed suppression of MDMs might affect their function as T cell activators as well, as we found a significant decrease in proliferation of CD8+ T cells and an increased production of the anti-inflammatory cytokine IL-10. Lastly, using flow cytometric analysis we observed a significant increase in expression of the M2-c surface marker CD163, hinting that street RABV might be able to affect macrophage polarization. Taken together, these results show that street RABV is capable of inducing an anti-inflammatory state in human macrophages, possibly affecting T cell functioning.
Collapse
Affiliation(s)
| | - Lineke Begeman
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | | | | | | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
47
|
Nicotinic Acetylcholine Receptor Involvement in Inflammatory Bowel Disease and Interactions with Gut Microbiota. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031189. [PMID: 33572734 PMCID: PMC7908252 DOI: 10.3390/ijerph18031189] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
The gut-brain axis describes a complex interplay between the central nervous system and organs of the gastrointestinal tract. Sensory neurons of dorsal root and nodose ganglia, neurons of the autonomic nervous system, and immune cells collect and relay information about the status of the gut to the brain. A critical component in this bi-directional communication system is the vagus nerve which is essential for coordinating the immune system’s response to the activities of commensal bacteria in the gut and to pathogenic strains and their toxins. Local control of gut function is provided by networks of neurons in the enteric nervous system also called the ‘gut-brain’. One element common to all of these gut-brain systems is the expression of nicotinic acetylcholine receptors. These ligand-gated ion channels serve myriad roles in the gut-brain axis including mediating fast synaptic transmission between autonomic pre- and postganglionic neurons, modulation of neurotransmitter release from peripheral sensory and enteric neurons, and modulation of cytokine release from immune cells. Here we review the role of nicotinic receptors in the gut-brain axis with a focus on the interplay of these receptors with the gut microbiome and their involvement in dysregulation of gut function and inflammatory bowel diseases.
Collapse
|
48
|
Zhang L, Wu Z, Tong Z, Yao Q, Wang Z, Li W. Vagus Nerve Stimulation Decreases Pancreatitis Severity in Mice. Front Immunol 2021; 11:595957. [PMID: 33519809 PMCID: PMC7840568 DOI: 10.3389/fimmu.2020.595957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background Vagus nerve stimulation (VNS) is effective in reducing inflammation in various diseases, such as rheumatoid arthritis, colitis and acute kidney injury. The anti-inflammatory effect of vagus nerve in these diseases necessitates the interactions of neural activation and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. In this study, we aimed to investigate the effect of VNS on severity in experimental acute pancreatitis (AP). Methods Two independent AP models were used, which induced in ICR mice with caerulein or pancreatic duct ligation (PDL). Thirty minutes after modeling, the left cervical carotid sheath containing the vagus nerve was electrically stimulated for 2 min. Plasma lipase and amylase activities, TNF-α levels and pancreas histologic damage were evaluated. In caerulein mice, the percentages of α7nAChR+ macrophage in pancreas and spleen were assessed by flow cytometry. Furthermore, splenectomy and adoptive transfer of VNS-conditioned α7nAChR splenocytes were performed in caerulein mice to evaluate the role of spleen in the protective effect of VNS. Results VNS reduced plasma lipase and amylase activities, blunted the concentrations of TNF-α and protected against pancreas histologic damage in two AP models. Survival rates were improved in the PDL model after VNS. In caerulein AP mice, VNS increased the percentages of α7nAChR+ macrophages in pancreas and spleen. Adoptive transfer of VNS-treated α7nAChR splenocytes provided protection against pancreatitis in recipient mice. However, splenectomy did not abolish the protective effect of VNS. Conclusions VNS reduces disease severity and attenuates inflammation in AP mice. This effect is independent of spleen and is probably related to α7nAChR on macrophage.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyang Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qi Yao
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziyu Wang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiqin Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
49
|
Abstract
At the time of Ivan Pavlov, pancreatic innervation was studied by looking at pancreas secretions in response to electrical stimulation of nerves. Nowadays we have ways to visualize neuronal activity in real time thanks to advances in fluorescent reporters and imaging techniques. We also have very precise optogenetic and pharmacogenetic approaches that allow neuronal manipulations in a very specific manner. These technological advances have been extensively employed for studying the central nervous system and are just beginning to be incorporated for studying visceral innervation. Pancreatic innervation is complex, and the role it plays in physiology and pathophysiology of the organ is still not fully understood. In this review we highlight anatomical aspects of pancreatic innervation, techniques for pancreatic neuronal labeling, and approaches for imaging pancreatic innervation in vitro and in vivo.
Collapse
|
50
|
Ingegnoli F, Buoli M, Antonucci F, Coletto LA, Esposito CM, Caporali R. The Link Between Autonomic Nervous System and Rheumatoid Arthritis: From Bench to Bedside. Front Med (Lausanne) 2020; 7:589079. [PMID: 33365319 PMCID: PMC7750536 DOI: 10.3389/fmed.2020.589079] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022] Open
Abstract
Neuronal stimulation is an emerging field of research focused on the management and treatment of various diseases through the reestablishment of physiological homeostasis. Electrical vagus nerve stimulation has recently been proposed as a revolutionary therapeutic option for rheumatoid arthritis (RA) in combination with or even as a replacement for conventional and biological drugs. In the past few years, disruption of the autonomic system has been linked to RA onset and activity. Novel research on the link between the autonomic nervous system and the immune system (immune-autonomics) has paved the way for the development of innovative RA management strategies. Clinical evidence supports this approach. Cardiovascular involvement, in terms of reduced baroreflex sensitivity and heart rate variability-derived indices, and mood disorders, common comorbidities in patients with RA, have been linked to autonomic nervous system dysfunction, which in turn is influenced by increased levels of circulating pro-inflammatory cytokines. This narrative review provides an overview of the autonomic nervous system and RA connection, discussing most of the common cardiac and mental health-related RA comorbidities and their potential relationships to systemic and joint inflammation.
Collapse
Affiliation(s)
- Francesca Ingegnoli
- Division of Clinical Rheumatology, Gaetano Pini Hospital, Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Buoli
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Lavinia Agra Coletto
- Division of Clinical Rheumatology, Gaetano Pini Hospital, Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Maria Esposito
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Roberto Caporali
- Division of Clinical Rheumatology, Gaetano Pini Hospital, Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|