1
|
He Y, Xiao D, Zhu H, Chen C, Liu Q, Xie J, Wei L, Dai Y, Ning Y, Li Y. Notch Signaling Aggravates Helicobacter pylori-Induced Inflammation by Promoting Macrophage Activation and Proinflammatory Th1/Th17 Responses. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00148-8. [PMID: 40316214 DOI: 10.1016/j.ajpath.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 05/04/2025]
Abstract
The role of Notch signaling in regulating the immune response in infectious and inflammatory diseases has been extensively reported. However, its specific involvement in Helicobacter pylori infection is yet to be fully understood. In this study, in vitro analysis utilizing real-time quantitative PCR and Western blot revealed that H. pylori triggers the activation of Notch signaling in murine bone marrow-derived macrophages (BMDMs) and co-cultured CD4+ T cells, a process mediated by the Notch ligand protein jagged-1 (Jag1). There was a reciprocal enhancement between Jag1-Notch signaling and NF-κB pathway in H. pylori-infected macrophages. Pretreatment with a Notch signaling inhibitor, DAPT, reduced the expression of inflammatory mediators in macrophages, modulated their phenotype, and inhibited Th1 differentiation. In vivo, after treatment with DAPT in H. pylori-infected mice, the differentiation of Th1 and Th17 was decreased on flow cytometry analysis. Hematoxylin and eosin staining revealed reduced gastric mucosa inflammation, and enzyme-linked immunosorbent assay results demonstrated decreased levels of serum inflammatory cytokines. Furthermore, the terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL) results showed that DAPT treatment improved the apoptosis of gastric mucosal cells. Collectively, the findings indicate that Notch signaling is implicated in exacerbating H. pylori-induced inflammation by promoting macrophage activation and Th1/Th17 responses, highlighting its potential as a therapeutic target for alleviating the progression of H. pylori-related diseases.
Collapse
Affiliation(s)
- Yunxuan He
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Danli Xiao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hongfei Zhu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chuxi Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qiaoyuan Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jinling Xie
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lvying Wei
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yueqi Dai
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Elbehiry A, Marzouk E, Abalkhail A, Sindi W, Alzahrani Y, Alhifani S, Alshehri T, Anajirih NA, ALMutairi T, Alsaedi A, Alzaben F, Alqrni A, Draz A, Almuzaini AM, Aljarallah SN, Almujaidel A, Abu-Okail A. Pivotal role of Helicobacter pylori virulence genes in pathogenicity and vaccine development. Front Med (Lausanne) 2025; 11:1523991. [PMID: 39850097 PMCID: PMC11756510 DOI: 10.3389/fmed.2024.1523991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025] Open
Abstract
One of the most prevalent human infections is Helicobacter pylori (H. pylori), which affects more than half of the global population. Although H. pylori infections are widespread, only a minority of individuals develop severe gastroduodenal disorders. The global resistance of H. pylori to antibiotics has reached concerning levels, significantly impacting the effectiveness of treatment. Consequently, the development of vaccines targeting virulence factors may present a viable alternative for the treatment and prevention of H. pylori infections. This review aims to provide a comprehensive overview of the current understanding of H. pylori infection, with a particular focus on its virulence factors, pathophysiology, and vaccination strategies. This review discusses various virulence factors associated with H. pylori, such as cytotoxin-associated gene A (cagA), vacuolating cytotoxin gene (vacA), outer membrane proteins (OMPs), neutrophil-activated protein (NAP), urease (ure), and catalase. The development of vaccines based on these virulence characteristics is essential for controlling infection and ensuring long-lasting protection. Various vaccination strategies and formulations have been tested in animal models; however, their effectiveness and reproducibility in humans remain uncertain. Different types of vaccines, including vector-based vaccines, inactivated whole cells, genetically modified protein-based subunits, and multiepitope nucleic acid (DNA) vaccines, have been explored. While some vaccines have demonstrated promising results in murine models, only a limited number have been successfully tested in humans. This article provides a thorough evaluation of recent research on H. pylori virulence genes and vaccination methods, offering valuable insights for future strategies to address this global health challenge.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Wael Sindi
- Department of Population, Public and Environmental Health, General Administration of Health Services, Ministry of Defense, Riyadh, Saudi Arabia
| | - Yasir Alzahrani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Salem Alhifani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Turki Alshehri
- Department of Dental, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Nuha Abdulaziz Anajirih
- Department of Medical Emergency Services, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Turki ALMutairi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ahmad Alsaedi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdullah Alqrni
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar N. Aljarallah
- Department of Pharmacy Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Abdulrahman Almujaidel
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
3
|
Jafarzadeh A, Jafarzadeh Z, Nemati M, Yoshimura A. The Interplay Between Helicobacter pylori and Suppressors of Cytokine Signaling (SOCS) Molecules in the Development of Gastric Cancer and Induction of Immune Response. Helicobacter 2024; 29:e13105. [PMID: 38924222 DOI: 10.1111/hel.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Helicobacter pylori (H. pylori) colonizes the stomach and leads to the secretion of a vast range of cytokines by infiltrated leukocytes directing immune/inflammatory response against the bacterium. To regulate immune/inflammatory responses, suppressors of cytokine signaling (SOCS) proteins bind to multiple signaling components located downstream of cytokine receptors, such as Janus kinase (JAK), signal transducers and activators of transcription (STAT). Dysfunctional SOCS proteins in immune cells may facilitate the immune evasion of H. pylori, allowing the bacteria to induce chronic inflammation. Dysregulation of SOCS expression and function can contribute to the sustained H. pylori-mediated gastric inflammation which can lead to gastric cancer (GC) development. Among SOCS molecules, dysregulated expression of SOCS1, SOCS2, SOCS3, and SOCS6 were indicated in H. pylori-infected individuals as well as in GC tissues and cells. H. pylori-induced SOCS1, SOCS2, SOCS3, and SOCS6 dysregulation can contribute to the GC development. The expression of SOCS molecules can be influenced by various factors, such as epigenetic DNA methylation, noncoding RNAs, and gene polymorphisms. Modulation of the expression of SOCS molecules in gastric epithelial cells and immune cells can be considered to control gastric carcinogenesis as well as regulate antitumor immune responses, respectively. This review aimed to explain the interplay between H. pylori and SOCS molecules in GC development and immune response induction as well as to provide insights regarding potential therapeutic strategies modulating SOCS molecules.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Fan J, Zhu J, Xu H. Strategies of Helicobacter pylori in evading host innate and adaptive immunity: insights and prospects for therapeutic targeting. Front Cell Infect Microbiol 2024; 14:1342913. [PMID: 38469348 PMCID: PMC10925771 DOI: 10.3389/fcimb.2024.1342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Cheng M, Zheng Y, Fan Y, Yan P, Zhao W. The contribution of IL-17A-dependent low LCN2 levels to Helicobacter pylori infection: Insights from clinical and experimental studies. Int Immunopharmacol 2023; 124:110960. [PMID: 37722259 DOI: 10.1016/j.intimp.2023.110960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is a common bacterial infection that is widespread globally. It is crucial to comprehend the molecular mechanisms that underlie the infection caused by H. pylori in order to devise successful therapeutic approaches. The objective of this study was to examine the involvement of Lipocalin-2 (LCN2) in the development of H. pylori infection. METHODS LCN2 expression levels in human gastric mucosa and H. pylori-infected mouse models were analyzed using quantitative PCR and immunohistochemistry methods. The effects of LCN2 on the attachment of H. pylori to gastric mucosa cells were assessed using bacterial culture and fluorescence intensity tests. To investigate the correlation between LCN2, CCL20, and IL-17A, we performed gene expression analysis and measured serum levels. RESULTS The findings indicated an increase in LCN2 levels in the gastric mucosa of both patients and mice infected with H. pylori. Blocking the natural LCN2 resulted in an increased attachment of H. pylori to cells in the gastric mucosa. In addition, we noticed that reduced levels of LCN2 promoted the attachment of H. pylori to cells in the gastric mucosa. Furthermore, H. pylori-infected patients exhibited increased expression of both LCN2 and CCL20, and there was a positive correlation between serum levels of CCL20 and LCN2. LCN2 expression was found to depend on the presence of IL-17A, and inhibiting IL-17A led to a higher H. pylori colonization. CONCLUSION The persistence of H. pylori infection is facilitated by the presence of low levels of LCN2, which is dependent on IL-17A. This finding offers valuable perspectives for the development of novel therapeutic approaches for H. pylori infection.
Collapse
Affiliation(s)
- Mingjing Cheng
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Yong Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Yujuan Fan
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Ping Yan
- Department of Gastroenterology, First Affiliated Hospital of Dali University, Dali, Yunnan, China.
| | - Weidong Zhao
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China; Department of Clinical Laboratory, Second Infectious Disease Hospital of Yunnan Province, Dali, Yunnan, China.
| |
Collapse
|
6
|
Zarei Z, Mohebali M, Dehghani H, Khamesipour A, Tavakkol-Afshari J, Akhoundi B, Abbaszadeh-Afshar MJ, Alizadeh Z, Skandari SE, Asl AD, Razmi GR. Live attenuated Leishmania infantum centrin deleted mutant (LiCen -/-) as a novel vaccine candidate: A field study on safety, immunogenicity, and efficacy against canine leishmaniasis. Comp Immunol Microbiol Infect Dis 2023; 97:101984. [PMID: 37119594 DOI: 10.1016/j.cimid.2023.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
This study was designed to evaluate the safety, immunogenicity, and efficacy of a single dose of L. infantum (LiCen-/-) live attenuated candidate vaccine against canine leishmaniasis (CanL). Eighteen healthy domestic dogs with no anti-Leishmania antibodies and negative leishmanin skin test (LST) were randomly inoculated intravenously with either L. infantum (LiCen-/-) vaccine candidate in 10 dogs or phosphate-buffered saline (PBS) in 8 dogs. The safety, immunogenicity, and efficacy rate of L. infantum (LiCen-/-) vaccine candidate against CanL were evaluated by different criteria, including clinical manifestations, injection-site lesion, hematology and biochemistry values, anti-Leishmania antibodies using direct agglutination test (DAT), delayed-type hypersensitivity (DTH) using LST, and CD4+ and CD8+ T-cells subsets, as well as by measuring interferon (IFN-γ), interleukin (IL-23), IL-17, and IL-10 cytokines. Spleen aspiration and detection of Leishmania parasite using parasitological examinations (microscopy and culture) were performed in both vaccinated and control groups. Two months after intervention, each dog was challenged intraperitoneally (IP) with wide type (WT) L. infantum. Two-month follow-up post vaccination showed no clinical signs and serious side effects associated with the vaccination. A significant increase was found in the expression of IL-17, CD4+, and CD8+ gene transcripts in PBMCs, as well as increased levels of Th1 cytokines, and reduction of Th2 cytokine. The efficacy of the vaccine candidate was calculated to be 42.85%. While the time window for assessing the vaccine's effectiveness was too limited to draw any real conclusions but the preliminary results showed a moderate efficacy rate due to inoculation a single dose of L. infantum (LiCen-/-) vaccine candidate. Further investigations with more sample sizes and multiple doses of the vaccine candidate using natural challenges in the endemic areas of CanL are recommended.
Collapse
Affiliation(s)
- Zabihollah Zarei
- Department of Pathobiology, School Veterinary Medicine, Ferdowsi University of Mashhad, P.O. Box 91775-1793, Mashhad, Iran; Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran; Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran.
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalil Tavakkol-Afshari
- Immunogenetics and Tissue Culture Department, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behnaz Akhoundi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran
| | - Mohammad Javad Abbaszadeh-Afshar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran
| | - Zahra Alizadeh
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 14155-6446, Tehran, Iran
| | - Seyed Ebrahim Skandari
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolhossein Dalimi Asl
- Department of Parasitology and Entomology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholam Reza Razmi
- Department of Pathobiology, School Veterinary Medicine, Ferdowsi University of Mashhad, P.O. Box 91775-1793, Mashhad, Iran.
| |
Collapse
|
7
|
Sorini C, Tripathi KP, Wu S, Higdon SM, Wang J, Cheng L, Banerjee S, Reinhardt A, Kreslavsky T, Thorell A, Engstrand L, Du J, Villablanca EJ. Metagenomic and single-cell RNA-Seq survey of the Helicobacter pylori-infected stomach in asymptomatic individuals. JCI Insight 2023; 8:161042. [PMID: 36810249 PMCID: PMC9977493 DOI: 10.1172/jci.insight.161042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/11/2023] [Indexed: 02/23/2023] Open
Abstract
Helicobacter pylori colonization of the gastric niche can persist for years in asymptomatic individuals. To deeply characterize the host-microbiota environment in H. pylori-infected (HPI) stomachs, we collected human gastric tissues and performed metagenomic sequencing, single-cell RNA-Seq (scRNA-Seq), flow cytometry, and fluorescent microscopy. HPI asymptomatic individuals had dramatic changes in the composition of gastric microbiome and immune cells compared with noninfected individuals. Metagenomic analysis uncovered pathway alterations related to metabolism and immune response. scRNA-Seq and flow cytometry data revealed that, in contrast to murine stomachs, ILC2s are virtually absent in the human gastric mucosa, whereas ILC3s are the dominant population. Specifically, proportion of NKp44+ ILC3s out of total ILCs were highly increased in the gastric mucosa of asymptomatic HPI individuals, and correlated with the abundance of selected microbial taxa. In addition, CD11c+ myeloid cells and activated CD4+ T cells and B cells were expanded in HPI individuals. B cells of HPI individuals acquired an activated phenotype and progressed into a highly proliferating germinal-center stage and plasmablast maturation, which correlated with the presence of tertiary lymphoid structures within the gastric lamina propria. Our study provides a comprehensive atlas of the gastric mucosa-associated microbiome and immune cell landscape when comparing asymptomatic HPI and uninfected individuals.
Collapse
Affiliation(s)
- Chiara Sorini
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Kumar P Tripathi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Shengru Wu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Shawn M Higdon
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Jing Wang
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Liqin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Sanghita Banerjee
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Annika Reinhardt
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | - Taras Kreslavsky
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| | | | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Center of Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
8
|
Zhang J, Ning J, Fu W, Shi Y, Zhang J, Ding S. CMTM3 protects the gastric epithelial cells from apoptosis and promotes IL-8 by stabilizing NEMO during Helicobacter pylori infection. Gut Pathog 2023; 15:6. [PMID: 36782312 PMCID: PMC9924195 DOI: 10.1186/s13099-023-00533-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND CKLF-like MARVEL transmembrane domain containing 3 (CMTM3) plays an important role in cancer development. Although Helicobacter pylori (H. pylori) infection is a main cause of gastric cancer, the function of CMTM3 during H. pylori infection remains unclear. CMTM3 expression levels in tissues from H. pylori-infected patients and cells co-cultured with H. pylori were analyzed. qRT-PCR and ELISA were used to investigate the effects of CMTM3 on interleukin 8 (IL-8) expression. Annexin V/propidium iodide staining was performed to evaluate the function of CMTM3 in the apoptosis of gastric epithelial cells. Proteomic analysis was performed to explore the underlying mechanism of CMTM3 during H. pylori infection. The interaction between CMTM3 and NEMO was determined via co-immunoprecipitation, HA-ubiquitin pull-down assay, and immunofluorescence. RESULTS H. pylori induced a significant increase in CMTM3 expression. CMTM3 inhibited gastric mucosal epithelial cells from apoptosis and increased the expression level of IL-8 during H. pylori infection. KEGG pathway enrichment analysis revealed that differentially expressed proteins were involved in epithelial cell signaling in H. pylori infection. CMTM3 directly interacted with NEMO, which promoted protein stabilization by down-regulation of its ubiquitylation. CONCLUSIONS CMTM3 reduces apoptosis and promotes IL-8 expression in the gastric epithelial cells by stabilizing NEMO during H. pylori infection. These findings characterize a new role for CMTM3 in host-pathogen interactions and provide novel insight into the molecular regulation of NEMO.
Collapse
Affiliation(s)
- Jing Zhang
- grid.411642.40000 0004 0605 3760Department of Gastroenterology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191 People’s Republic of China
| | - Jing Ning
- grid.411642.40000 0004 0605 3760Department of Gastroenterology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191 People’s Republic of China
| | - Weiwei Fu
- grid.411642.40000 0004 0605 3760Department of Gastroenterology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191 People’s Republic of China
| | - Yanyan Shi
- grid.411642.40000 0004 0605 3760Research Center of Clinical Epidemiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191 People’s Republic of China
| | - Jing Zhang
- grid.411642.40000 0004 0605 3760Department of Gastroenterology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191 People’s Republic of China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
9
|
Fuchs S, Gong R, Gerhard M, Mejías-Luque R. Immune Biology and Persistence of Helicobacter pylori in Gastric Diseases. Curr Top Microbiol Immunol 2023; 444:83-115. [PMID: 38231216 DOI: 10.1007/978-3-031-47331-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori is a prevalent pathogen, which affects more than 40% of the global population. It colonizes the human stomach and persists in its host for several decades or even a lifetime, if left untreated. The persistent infection has been linked to various gastric diseases, including gastritis, peptic ulcers, and an increased risk for gastric cancer. H. pylori infection triggers a strong immune response directed against the bacterium associated with the infiltration of innate phagocytotic immune cells and the induction of a Th1/Th17 response. Even though certain immune cells seem to be capable of controlling the infection, the host is unable to eliminate the bacteria as H. pylori has developed remarkable immune evasion strategies. The bacterium avoids its killing through innate recognition mechanisms and manipulates gastric epithelial cells and immune cells to support its persistence. This chapter focuses on the innate and adaptive immune response induced by H. pylori infection, and immune evasion strategies employed by the bacterium to enable persistent infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Ruolan Gong
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany.
| |
Collapse
|
10
|
Zhang Y, Li X, Shan B, Zhang H, Zhao L. Perspectives from recent advances of Helicobacter pylori vaccines research. Helicobacter 2022; 27:e12926. [PMID: 36134470 DOI: 10.1111/hel.12926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is the main factor leading to some gastric diseases. Currently, H. pylori infection is primarily treated with antibiotics. However, with the widespread application of antibiotics, H. pylori resistance to antibiotics has also gradually increased year by year. Vaccines may be an alternative solution to clear H. pylori. AIMS By reviewing the recent progress on H. pylori vaccines, we expected it to lead to more research efforts to accelerate breakthroughs in this field. MATERIALS & METHODS We searched the research on H. pylori vaccine in recent years through PubMed®, and then classified and summarized these studies. RESULTS The study of the pathogenic mechanism of H. pylori has led to the development of vaccines using some antigens, such as urease, catalase, and heat shock protein (Hsp). Based on these antigens, whole-cell, subunit, nucleic acid, vector, and H. pylori exosome vaccines have been tested. DISCUSSION At present, researchers have developed many types of vaccines, such as whole cell vaccines, subunit vaccines, vector vaccines, etc. However, although some of these vaccines induced protective immunity in mouse models, only a few were able to move into human trials. We propose that mRNA vaccine may play an important role in preventing or treating H. pylori infection. The current study shows that we have developed various types of vaccines based on the virulence factors of H. pylori. However, only a few vaccines have entered human clinical trials. In order to improve the efficacy of vaccines, it is necessary to enhance T-cell immunity. CONCLUSION We should fully understand the pathogenic mechanism of H. pylori and find its core antigen as a vaccine target.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoya Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongtao Zhang
- University of Pennsylvania School of Medicine Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Disruption of sncRNA Improves the Protective Efficacy of Outer Membrane Vesicles against Helicobacter pylori Infection in a Mouse Model. Infect Immun 2022; 90:e0026722. [PMID: 35861532 PMCID: PMC9387243 DOI: 10.1128/iai.00267-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The outer membrane vesicles (OMVs) secreted by Helicobacter pylori contain various bacterial components, such as proteins, phospholipids, toxins, and nucleic acids, including small noncoding RNA (sncRNA), which have regulatory functions in cell envelope structure, metabolism, bacterial communication, biofilm formation, and virulence. We previously showed that knocking out sncRNAs sR-989262 and sR-2509025 at the cellular level increased interleukin 8 (IL-8) levels in mice exposed to OMVs. In this study, we show that immunization with ΔsR-989262 and ΔsR-2509025 OMVs intragastrically significantly increased immunoglobulin G (IgG) and secreted IgA levels in mice compared to wild-type OMVs and without weight changes, which indicated that sncRNA-deficient OMVs are relatively safe to immunize mice. The detection of IgG subtypes IgG1 and IgG2c showed that the sncRNA-deficient OMVs primarily stimulate the T helper 2 (Th2)-mediated immune response. Moreover, levels of the cytokines IL-4, IL-13, gamma interferon (IFN-γ), IL-12 (p40), IL-8, and IL-17 indicate that ΔsR-989262 and ΔsR-2509025 OMVs trigger the Th2-type immune response but primarily trigger a Th1-mediated and Th17-mediated immune response. These findings show that OMV-encapsulated sncRNA plays an important role in regulating the immune response in hosts infected by H. pylori at the animal level. Moreover, they show that knocking out of sR-989262 and sR-2509025 improves the immunogenicity and protective efficacy of OMVs, and this may be beneficial to the design of OMV-based H. pylori vaccines.
Collapse
|
12
|
Vaillant L, Oster P, McMillan B, Orozco Fernandez E, Velin D. GM-CSF is key in the efficacy of vaccine-induced reduction of Helicobacter pylori infection. Helicobacter 2022; 27:e12875. [PMID: 35092634 PMCID: PMC9285700 DOI: 10.1111/hel.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/22/2021] [Accepted: 01/16/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) colonizes the human gastric mucosa with a high worldwide prevalence. Currently, H. pylori is eradicated by the use of antibiotics. However, elevated antibiotic resistance suggests new therapeutic strategies need to be envisioned: one approach being prophylactic vaccination. Pre-clinical and clinical data show that a urease-based vaccine is efficient in decreasing H. pylori infection through the mobilization of T helper (Th) cells, especially Th17 cells. Th17 cells produce interleukins such as IL-22 and IL-17, among others, and are key players in vaccine efficacy. Recently, granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing Th17 cells have been identified. AIM This study explores the possibility that GM-CSF plays a role in the reduction of H. pylori infection following vaccination. RESULTS We demonstrate that GM-CSF+ IL-17+ Th17 cells accumulate in the stomach mucosa of H. pylori infected mice during the vaccine-induced reduction of H. pylori infection. Secondly, we provide evidence that vaccinated GM-CSF deficient mice only modestly reduce H. pylori infection. Conversely, we observe that an increase in GM-CSF availability reduces H. pylori burden in chronically infected mice. Thirdly, we show that GM-CSF, by acting on gastric epithelial cells, promotes the production of βdefensin3, which exhibits H. pylori bactericidal activities. CONCLUSION Taken together, we demonstrate a key role of GM-CSF, most probably originating from Th17 cells, in the vaccine-induced reduction of H. pylori infection.
Collapse
Affiliation(s)
- Laurie Vaillant
- Service of Gastroenterology and HepatologyCentre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| | - Paul Oster
- Service of Gastroenterology and HepatologyCentre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| | - Brynn McMillan
- Service of Gastroenterology and HepatologyCentre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| | - Eulalia Orozco Fernandez
- Service of Gastroenterology and HepatologyCentre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| | - Dominique Velin
- Service of Gastroenterology and HepatologyCentre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
13
|
Hoft SG, Noto CN, DiPaolo RJ. Two Distinct Etiologies of Gastric Cancer: Infection and Autoimmunity. Front Cell Dev Biol 2021; 9:752346. [PMID: 34900999 PMCID: PMC8661534 DOI: 10.3389/fcell.2021.752346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a leading cause of mortality worldwide. The risk of developing gastric adenocarcinoma, which comprises >90% of gastric cancers, is multifactorial, but most associated with Helicobacter pylori infection. Autoimmune gastritis is a chronic autoinflammatory syndrome where self-reactive immune cells are activated by gastric epithelial cell autoantigens. This cause of gastritis is more so associated with the development of neuroendocrine tumors. However, in both autoimmune and infection-induced gastritis, high risk metaplastic lesions develop within the gastric mucosa. This warrants concern for carcinogenesis in both inflammatory settings. There are many similarities and differences in disease progression between these two etiologies of chronic gastritis. Both diseases have an increased risk of gastric adenocarcinoma development, but each have their own unique comorbidities. Autoimmune gastritis is a primary cause of pernicious anemia, whereas chronic infection typically causes gastrointestinal ulceration. Both immune responses are driven by T cells, primarily CD4+ T cells of the IFN-γ producing, Th1 phenotype. Neutrophilic infiltrates help clear H. pylori infection, but neutrophils are not necessarily recruited in the autoimmune setting. There have also been hypotheses that infection with H. pylori initiates autoimmune gastritis, but the literature is far from definitive with evidence of infection-independent autoimmune gastric disease. Gastric cancer incidence is increasing among young women in the United States, a population at higher risk of developing autoimmune disease, and H. pylori infection rates are falling. Therefore, a better understanding of these two chronic inflammatory diseases is needed to identify their roles in initiating gastric cancer.
Collapse
Affiliation(s)
- Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Christine N Noto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
14
|
Noto CN, Hoft SG, Bockerstett KA, Jackson NM, Ford EL, Vest LS, DiPaolo RJ. IL13 Acts Directly on Gastric Epithelial Cells to Promote Metaplasia Development During Chronic Gastritis. Cell Mol Gastroenterol Hepatol 2021; 13:623-642. [PMID: 34587523 PMCID: PMC8715193 DOI: 10.1016/j.jcmgh.2021.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS It is well established that chronic inflammation promotes gastric cancer-associated metaplasia, but little is known regarding the mechanisms by which immune cells and cytokines regulate metaplastic cellular changes. The goals of this study were to identify interleukin 13 (IL13)-producing immune cells, determine the gastric epithelial cell response(s) to IL13, and establish the role(s) of IL13 in metaplasia development. METHODS Experiments used an established mouse model of autoimmune gastritis (TxA23), TxA23×Il4ra-/- mice, which develop gastritis but do not express the IL4/IL13-receptor subunit IL4Rα, and TxA23×Il13-Yfp mice, which express yellow fluorescent protein in IL13-producing cells. Flow cytometry was used to measure IL13 secretion and identify IL13-producing immune cells. Mouse and human gastric organoids were cultured with IL13 to determine epithelial cell response(s) to IL13. Single-cell RNA sequencing was performed on gastric epithelial cells from healthy and inflamed mouse stomachs. Mice with gastritis were administered IL13-neutralizing antibodies and stomachs were analyzed by histopathology and immunofluorescence. RESULTS We identified 6 unique subsets of IL13-producing immune cells in the inflamed stomach. Organoid cultures showed that IL13 acts directly on gastric epithelium to induce a metaplastic phenotype. IL4Rα-deficient mice did not progress to metaplasia. Single-cell RNA sequencing determined that gastric epithelial cells from IL4Rα-deficient mice up-regulated inflammatory genes but failed to up-regulate metaplasia-associated transcripts. Neutralization of IL13 significantly reduced and reversed metaplasia development in mice with gastritis. CONCLUSIONS IL13 is made by a variety of immune cell subsets during chronic gastritis and promotes gastric cancer-associated metaplastic epithelial cell changes. Neutralization of IL13 reduces metaplasia severity during chronic gastritis.
Collapse
Affiliation(s)
- Christine N Noto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kevin A Bockerstett
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Nicholas M Jackson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Eric L Ford
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Luke S Vest
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
15
|
Dos Santos Viana I, Cordeiro Santos ML, Santos Marques H, Lima de Souza Gonçalves V, Bittencourt de Brito B, França da Silva FA, Oliveira E Silva N, Dantas Pinheiro F, Fernandes Teixeira A, Tanajura Costa D, Oliveira Souza B, Lima Souza C, Vasconcelos Oliveira M, Freire de Melo F. Vaccine development against Helicobacter pylori: from ideal antigens to the current landscape. Expert Rev Vaccines 2021; 20:989-999. [PMID: 34139141 DOI: 10.1080/14760584.2021.1945450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
Introduction: The interest of the world scientific community for an effective vaccine against Helicobacter pylori infection arises from its high prevalence and association with many diseases. Moreover, with an immunological response that is not always effective for the eradication of the bacteria and an increasing antibiotic resistance in the treatment of this infection, the search for a vaccine and new therapeutic modalities to control this infection is urgent.Areas covered: We bring an overview of the infection worldwide, discussing its prevalence, increasing resistance to antibiotics used in its therapy, in addition to the response of the immune system to the infection registered so far. Moreover, we address the most used antigens and their respective immunological responses expected or registered up to now. Finally, we address the trials and their partial results in development for such vaccines.Expert opinion: Although several studies for the development of an effective vaccine against this pathogen are taking place, many are still in the preclinical phase or even without updated information. In this sense, taking into account the high prevalence and association with important comorbidities, the interest of the pharmaceutical industry in developing an effective vaccine against this pathogen is questioned.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Davi Tanajura Costa
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Briza Oliveira Souza
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | - Cláudio Lima Souza
- Instituto Multidisciplinar Em Saúde, Universidade Federal da Bahia, Bahia, Brazil
| | | | | |
Collapse
|
16
|
Vaillant L, Oster P, McMillan B, Velin D. Gastric eosinophils are detrimental for Helicobacter pylori vaccine efficacy. Vaccine 2021; 39:3590-3601. [PMID: 34049736 DOI: 10.1016/j.vaccine.2021.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori (Hp) colonizes the human gastric mucosa with a high worldwide prevalence. Currently, Hp can be eradicated by the use of antibiotics. Due to the increase of antibiotic resistance, new therapeutic strategies need to be devised: one such approach being prophylactic vaccination. Pre-clinical and clinical data showed that a urease-based vaccine is efficient in decreasing Hp infection through the mobilization of T helper (Th)-dependent immune effectors, including eosinophils. Preliminary data have shown that upon vaccination and subsequent Hp infection, eosinophils accumulate in the gastric mucosa, suggesting a possible implication of this granulocyte subset in the vaccine-induced reduction of Hp infection. In our study, we confirm that activated eosinophils, expressing CD63, CD40, MHCII and PD-L1 at their cell surface, infiltrate the gastric mucosa during vaccine-induced reduction of Hp infection. Strikingly, we provide evidence that bone marrow derived eosinophils efficiently kill Hp in vitro, suggesting that eosinophils may participate to the vaccine-induced reduction of Hp infection. However, conversely to our expectations, the absence of eosinophils does not decrease the efficacy of this Hp vaccine in vivo. Indeed, vaccinated mice that have been genetically ablated of the eosinophil lineage or that have received anti-Sialic acid-binding immunoglobulin-like lectin F eosinophil-depleting antibodies, display a lower Hp colonization when compared to their eosinophil sufficient counterparts. Although the vaccine induces similar urease-specific humoral and Th responses in both eosinophil sufficient and deficient mice, a decreased production of anti-inflammatory cytokines, such as IL-10, TGFβ, and calgranulin B, was specifically observed in eosinophil depleted mice. Taken together, our results suggest that gastric eosinophils maintain an anti-inflammatory environment, thus sustaining chronic Hp infection. Because eosinophils are one of the main immune effectors mobilized by Th2 responses, our study strongly suggests that the formulation of an Hp vaccine needs to include an adjuvant that preferentially primes Hp-specific Th1/Th17 responses.
Collapse
Affiliation(s)
- Laurie Vaillant
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Paul Oster
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Brynn McMillan
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
17
|
The Roles of IL-17, IL-21, and IL-23 in the Helicobacter pylori Infection and Gastrointestinal Inflammation: A Review. Toxins (Basel) 2021; 13:toxins13050315. [PMID: 33924897 PMCID: PMC8147029 DOI: 10.3390/toxins13050315] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Although millions of people have been infected by Helicobacter pylori (H. pylori), only a small proportion of infected individuals will develop adverse outcomes, ranging from chronic gastritis to gastric cancer. Advanced development of the disease has been well-linked with chronic inflammation, which is significantly impacted by the adaptive and humoral immunity response. From the perspective of cellular immunity, this review aims to clarify the intricate axis between IL-17, IL-21, and IL-23 in H. pylori-related diseases and the pathogenesis of inflammatory gastrointestinal diseases. CD4+ helper T (Th)-17 cells, with the hallmark pleiotropic cytokine IL-17, can affect antimicrobial activity and the pathogenic immune response in the gut environment. These circumstances cannot be separated, as the existence of affiliated cytokines, including IL-21 and IL-23, help maintain Th17 and accommodate humoral immune cells. Comprehensive understanding of the dynamic interaction between molecular host responses in H. pylori-related diseases and the inflammation process may facilitate further development of immune-based therapy.
Collapse
|
18
|
Zhu Y, Xu Y, Hong L, Zhou C, Chen J. Immunization With a DNA Vaccine Encoding the Toxoplasma gondii' s GRA39 Prolongs Survival and Reduce Brain Cyst Formation in a Murine Model. Front Microbiol 2021; 12:630682. [PMID: 33995293 PMCID: PMC8113873 DOI: 10.3389/fmicb.2021.630682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii, an obligate intracellular protozoan parasite, can cause infect almost all warm-blooded animals and humans. To evaluate the immunogenicity and protective efficacy of T. gondii GRA39 (TgGRA39) in mice by using DNA immunization, we constructed a recombinant eukaryotic plasmid pVAX-TgGRA39. The specific immune responses in immunized mice were analyzed by serum antibody and cytokine measurements, lymphocyte proliferation assays and flow cytometry of T lymphocyte subclasses. Also, protective efficacy against acute and chronic T. gondii infection was assessed by observing the survival time after challenge with the highly virulent T. gondii RH strain (Genotype I) and counting the number of cyst-forming in brain at 4 weeks post-infection with the cyst-forming PRU strain of T. gondii (Genotype II), respectively. Our results showed that DNA immunization with pVAX-GRA39 via intramuscular injection three times, at 2-week intervals could elicit humoral and cellular immune response, indicated by enhanced levels of IgG and IgG2a antibodies (a slightly elevated IgG2a to IgG1 ratio), and increased levels of cytokines IFN-γ, IL-2, IL-12, IL-17A, IL-17F, IL-22 and IL-23 and percentages of CD3+ CD4+ CD8- and CD3+ CD8+ CD4– T cells, in contrast to non-immunized mice. The significant increase in the expression levels of IL-6, TGF-β1, IL-1β, and the transcription factor factors RORγt, RORα, and STAT3 involved in the activation and pathway of Th17 and Tc17 cells, were also observed. However, no significant difference was detected in level of IL-4 and IL-10 (p > 0.05). These effective immune responses had mounted protective immunity against T. gondii infection, with a prolonged survival time (16.80 ± 3.50 days) and reduced cyst numbers (44.5%) in comparison to the control mice. Our data indicated that pVAX-TgGRA39 could induce effective humoral, and Th1-type, Th17, and Tc17 cellular immune responses, and may represent a promising vaccine candidate against both acute and chronic T. gondii infection.
Collapse
Affiliation(s)
- Yuchao Zhu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yanan Xu
- The Ningbo Women and Children's Hospital, Ningbo, China
| | - Lu Hong
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Chunxue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jia Chen
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China.,The Ningbo Women and Children's Hospital, Ningbo, China
| |
Collapse
|
19
|
Banga Ndzouboukou JL, Lei Q, Ullah N, Zhang Y, Hao L, Fan X. Helicobacter pylori adhesins: HpaA a potential antigen in experimental vaccines for H. pylori. Helicobacter 2021; 26:e12758. [PMID: 33259676 DOI: 10.1111/hel.12758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Helicobacter pylori is a gram-negative bacterium involved in many gastric pathologies such as ulcers and cancers. Although the treatment for this infection has existed for several years, the development of a vaccine is nevertheless necessary to reduce the severe forms of the disease. For more than three decades, many advances have been made particularly in the understanding of virulence factors as well as the pathogenesis of gastric diseases caused by H. pylori. Among these key virulence factors, specific antigens have been identified: Urease, Vacuolating cytotoxin A (VacA), Cytotoxin-associated gene A (CagA), Blood group antigen-binding adhesin (BabA), H. pylori adhesin A (HpaA), and others. OBJECTIVES This review will focus on H. pylori adhesins, in particular, on HpaA and on the current knowledge of H. pylori vaccines. METHODS All of the information included in this review was retrieved from published studies on H. pylori adhesins in H. pylori infections. RESULTS These proteins, used in their native or recombinant forms, induce protection against H. pylori in experimental animal models. CONCLUSION H. pylori adhesins are known to be promising candidate vaccines against H. pylori. Future research should be carried out on adhesins, in particular, on HpaA.
Collapse
Affiliation(s)
- Jo-Lewis Banga Ndzouboukou
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nadeem Ullah
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yandi Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Expanding the role of bacterial vaccines into life-course vaccination strategies and prevention of antimicrobial-resistant infections. NPJ Vaccines 2020; 5:84. [PMID: 32963814 PMCID: PMC7486369 DOI: 10.1038/s41541-020-00232-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022] Open
Abstract
A crisis in bacterial infections looms as ageing populations, increasing rates of bacteraemia and healthcare-associated infections converge with increasing antimicrobial resistance and a paucity of new antimicrobial classes. New initiatives are needed to develop bacterial vaccines for older adults in whom immune senescence plays a critical role. Novel vaccines require an expanded repertoire to prevent mucosal diseases such as pneumonia, skin and soft tissue infections and urinary tract infections that are major causes of morbidity and mortality in the elderly, and key drivers of antimicrobial resistance. This review considers the challenges inherent to the prevention of bacterial diseases, particularly mucosal infections caused by major priority bacterial pathogens against which current vaccines are sub-optimal. It has become clear that prevention of many lung, urinary tract and skin infections requires more than circulating antibodies. Induction of Th1/Th17 cellular responses with tissue-resident memory (Trm) cells homing to mucosal tissues may be a pre-requisite for success.
Collapse
|
21
|
Zhao J, Chen X, Herjan T, Li X. The role of interleukin-17 in tumor development and progression. J Exp Med 2020; 217:jem.20190297. [PMID: 31727782 PMCID: PMC7037244 DOI: 10.1084/jem.20190297] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/21/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
IL-17, a potent proinflammatory cytokine, has been shown to intimately contribute to the formation, growth, and metastasis of a wide range of malignancies. Recent studies implicate IL-17 as a link among inflammation, wound healing, and cancer. While IL-17-mediated production of inflammatory mediators mobilizes immune-suppressive and angiogenic myeloid cells, emerging studies reveal that IL-17 can directly act on tissue stem cells to promote tissue repair and tumorigenesis. Here, we review the pleotropic impacts of IL-17 on cancer biology, focusing how IL-17-mediated inflammatory response and mitogenic signaling are exploited to equip its cancer-promoting function and discussing the implications in therapies.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
22
|
Song Z, Li B, Zhang Y, Li R, Ruan H, Wu J, Liu Q. Outer Membrane Vesicles of Helicobacter pylori 7.13 as Adjuvants Promote Protective Efficacy Against Helicobacter pylori Infection. Front Microbiol 2020; 11:1340. [PMID: 32733396 PMCID: PMC7358646 DOI: 10.3389/fmicb.2020.01340] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori(H. pylori), a gram-negative bacterium in the human stomach with global prevalence, is relevant to chronic gastrointestinal diseases. Due to its increasing drug resistance and the low protective efficacy of some anti-H. pylori vaccines, it is necessary to find a suitable adjuvant to improve antigen efficiency. In our previous study, we determined that outer membrane vesicles (OMVs), a multicomponent secretion generated by gram-negative bacteria, of H. pylori were safe and could induce long-term and robust immune responses against H. pylori in mice. In this study, we employed two common vaccines, outer membrane proteins (OMPs) and whole cell vaccine (WCV) to assess the adjuvanticity of OMVs in mice. A standard adjuvant, cholera toxin (CT), was used as a control. Purified H. pylori OMVs used as adjuvants generated lasting anti-H. pylori resistance for 12 weeks. Additionally, both systematic and gastric mucosal immunity, as well as humoral immunity, of mice immunized with vaccine and OMVs combinations were significantly enhanced. Moreover, OMVs efficiently promoted Th1 immune response, but the response was skewed toward Th2 and Th17 immunity when compared with that induced by the CT adjuvant. Most importantly, OMVs as adjuvants enhanced the eradication of H. pylori. Thus, OMVs have potential applications as adjuvants in the development of a new generation of vaccines to treat H. pylori infection.
Collapse
Affiliation(s)
- Zifan Song
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Biaoxian Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yingxuan Zhang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Ruizhen Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Huan Ruan
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Jing Wu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Gastric cancer: genome damaged by bugs. Oncogene 2020; 39:3427-3442. [PMID: 32123313 PMCID: PMC7176583 DOI: 10.1038/s41388-020-1241-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. The role of the microorganisms in gastric tumorigenesis attracts much attention in recent years. These microorganisms include bacteria, virus, and fungi. Among them, Helicobacter pylori (H. pylori) infection is by far the most important risk factor for GC development, with special reference to the early-onset cases. H. pylori targets multiple cellular components by utilizing various virulence factors to modulate the host proliferation, apoptosis, migration, and inflammatory response. Epstein–Barr virus (EBV) serves as another major risk factor in gastric carcinogenesis. The virus protein, EBER noncoding RNA, and EBV miRNAs contribute to the tumorigenesis by modulating host genome methylation and gene expression. In this review, we summarized the related reports about the colonized microorganism in the stomach and discussed their specific roles in gastric tumorigenesis. Meanwhile, we highlighted the therapeutic significance of eradicating the microorganisms in GC treatment.
Collapse
|
24
|
Stackowicz J, Jönsson F, Reber LL. Mouse Models and Tools for the in vivo Study of Neutrophils. Front Immunol 2020; 10:3130. [PMID: 32038641 PMCID: PMC6985372 DOI: 10.3389/fimmu.2019.03130] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human blood and critical actors of the immune system. Many neutrophil functions and facets of their activity in vivo were revealed by studying genetically modified mice or by tracking fluorescent neutrophils in animals using imaging approaches. Assessing the roles of neutrophils can be challenging, especially when exact molecular pathways are questioned or disease states are interrogated that alter normal neutrophil homeostasis. This review discusses the main in vivo models for the study of neutrophils, their advantages and limitations. The side-by-side comparison underlines the necessity to carefully choose the right model(s) to answer a given scientific question, and exhibit caveats that need to be taken into account when designing experimental procedures. Collectively, this review suggests that at least two models should be employed to legitimately conclude on neutrophil functions.
Collapse
Affiliation(s)
- Julien Stackowicz
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, UMR INSERM 1222, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, UMR INSERM 1222, Paris, France
| | - Laurent L Reber
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, UMR INSERM 1222, Paris, France.,Center for Pathophysiology Toulouse-Purpan (CPTP), UMR 1043, University of Toulouse, INSERM, CNRS, Toulouse, France
| |
Collapse
|
25
|
Zhao J, Chen X, Herjan T, Li X. The role of interleukin-17 in tumor development and progression. J Exp Med 2020; 217:e20190297. [PMID: 31727782 DOI: 10.1084/jem_20190297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/21/2019] [Accepted: 10/08/2019] [Indexed: 01/03/2025] Open
Abstract
IL-17, a potent proinflammatory cytokine, has been shown to intimately contribute to the formation, growth, and metastasis of a wide range of malignancies. Recent studies implicate IL-17 as a link among inflammation, wound healing, and cancer. While IL-17-mediated production of inflammatory mediators mobilizes immune-suppressive and angiogenic myeloid cells, emerging studies reveal that IL-17 can directly act on tissue stem cells to promote tissue repair and tumorigenesis. Here, we review the pleotropic impacts of IL-17 on cancer biology, focusing how IL-17-mediated inflammatory response and mitogenic signaling are exploited to equip its cancer-promoting function and discussing the implications in therapies.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
26
|
Wiese-Szadkowska M, Helmin-Basa A, Eljaszewicz A, Gackowska L, Januszewska M, Motyl I, Andryszczyk M, Wieczynska J, Michalkiewicz J. Selected commensal bacteria change profiles of Helicobacter pylori-induced T cells via dendritic cell modulation. Helicobacter 2019; 24:e12614. [PMID: 31328382 DOI: 10.1111/hel.12614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The mechanisms of downregulation of protective immunity against Helicobacter pylori (Hp) infection strongly depend on dendritic cell (DC)-induced T-lymphocyte differentiation pattern. Lactic acid bacteria (LAB) strains can modulate Hp-induced immunoresponse by changes in DC activation profiles. Here, we want to find out if the LAB-pulsed DCs will change Hp-induced T-cell responsiveness patterns. MATERIALS AND METHODS The naive peripheral CD4+ T cells were co-cultured with Hp CagA + pulsed monocyte-derived DCs (DC/CD4+ T cell) in the presence/absence of the feces-derived probiotics: antagonistic or non-antagonistic to Hp (Lactobacillus rhamnosus 900, Lr, Lactobacillus paracasei 915, Lp, respectively), as assessed by the agar slab method. The regulatory T-cell (Treg) population was assessed by flow cytometry, and IFN-γ, IL-12p70, IL-10, and IL-17A levels were evaluated by ELISA method. RESULTS The Hp-pulsed DC/CD4+ T-cell co-cultures were characterized by high IL-10, decreased IL-12p70 and IFN-γ levels, and elevated Treg population. In contrast, Lr-pulsed DC/CD4+ T-cell co-cultures expressed low IL-10, high IL-12p70 and IFN-γ levels and declined Treg population; this responsiveness pattern was not changed by Hp. The responsiveness pattern of the Lp/Hp-pulsed DC/CD4+ T-cell co-cultures did not differ from those pulsed with Hp alone. CONCLUSION In contrast to Lp, Lr probiotic strain overcomes Hp-mediated immune profile in the DC/T-cell co-cultures toward Th1 pattern and limited generation of Tregs in vitro. Lr may therefore be used as a component of anti-Hp treatment.
Collapse
Affiliation(s)
| | - Anna Helmin-Basa
- Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Lidia Gackowska
- Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Ilona Motyl
- Faculty of Biotechnology and Food Sciences, The Institute of Technology Fermentation and Microbiology, Technical University of Lodz, Łodz, Poland
| | - Marek Andryszczyk
- Faculty of Mechanical Engineering, University of Technology and Sciences in Bydgoszcz, Bydgoszcz, Poland
| | - Jolanta Wieczynska
- Department of Clinical Microbiology and Immunology, Children's Memorial Hospital, Warsaw, Poland
| | - Jacek Michalkiewicz
- Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Clinical Microbiology and Immunology, Children's Memorial Hospital, Warsaw, Poland
| |
Collapse
|
27
|
Walduck AK, Raghavan S. Immunity and Vaccine Development Against Helicobacter pylori. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:257-275. [PMID: 31016627 DOI: 10.1007/5584_2019_370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori is a highly-adapted gastrointestinal pathogen of humans and the immunology of this chronic infection is extremely complex. Despite the availability of antibiotic therapy, the global incidence of H. pylori infection remains high, particularly in low to middle-income nations. Failure of therapy and the spread of antibiotic resistance among the bacteria are significant problems and provide impetus for the development of new therapies and vaccines to treat or prevent gastric ulcer, and gastric carcinoma. The expansion of knowledge on gastric conventional and regulatory T cell responses, and the role of TH17 in chronic gastritis from studies in mouse models and patients have provided valuable insights into how gastritis is initiated and maintained. The development of human challenge models for testing candidate vaccines has meant a unique opportunity to study acute infection, but the field of vaccine development has not progressed as rapidly as anticipated. One clear lesson learned from previous studies is that we need a better understanding of the immune suppressive mechanisms in vivo to be able to design vaccine strategies. There is still an urgent need to identify practical surrogate markers of protection that could be deployed in future field vaccine trials. Important developments in our understanding of the chronic inflammatory response, progress and problems arising from human studies, and an outlook for the future of clinical vaccine trials will be discussed.
Collapse
Affiliation(s)
- Anna K Walduck
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Sukanya Raghavan
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects the gastric epithelia of its human host. Everyone who is colonized with these pathogenic bacteria can develop gastric inflammation, termed gastritis. Additionally, a small proportion of colonized people develop more adverse outcomes, including gastric ulcer disease, gastric adenocarcinoma, or gastric mucosa-associated lymphoid tissue lymphoma. The development of these adverse outcomes is dependent on the establishment of a chronic inflammatory response. The development and control of this chronic inflammatory response are significantly impacted by CD4+ T helper cell activity. Noteworthy, T helper 17 (Th17) cells, a proinflammatory subset of CD4+ T cells, produce several proinflammatory cytokines that activate innate immune cell antimicrobial activity, drive a pathogenic immune response, regulate B cell responses, and participate in wound healing. Therefore, this review was written to take an intricate look at the involvement of Th17 cells and their affiliated cytokines (interleukin-17A [IL-17A], IL-17F, IL-21, IL-22, and IL-26) in regulating the immune response to H. pylori colonization and carcinogenesis.
Collapse
|
29
|
Broad and Effective Protection against Staphylococcus aureus Is Elicited by a Multivalent Vaccine Formulated with Novel Antigens. mSphere 2019; 4:4/5/e00362-19. [PMID: 31484738 PMCID: PMC6731528 DOI: 10.1128/msphere.00362-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The demand for a prophylactic vaccine against methicillin-resistant Staphylococcus aureus (MRSA) has motivated numerous dedicated research groups to design and develop such a vaccine. In this study, we have developed a multivalent vaccine, Sta-V5, composed of five conserved antigens involved in three important virulence mechanisms. This prototype vaccine conferred up to 100% protection against multiple epidemiologically relevant S. aureus isolates in five different murine disease models. The vaccine not only elicits functional antibodies that mediate opsonophagocytic killing of S. aureus but also mounts robust antigen-specific T-cell responses. In addition, our data implied that γδ T cells contribute to the protection induced by Sta-V5 in a murine skin infection model.IMPORTANCE Staphylococcus aureus infections, especially MRSA infections, are becoming a major global health issue and are resulting in mortality rates that are increasing every year. However, an effective vaccine is lacking due to the complexity of the infection process of S. aureus In this study, we found that the addition of two novel protein components to three well-studied vaccine candidates significantly improved the efficacy of the combined vaccine. Furthermore, the five-component vaccine not only elicits a robust antibody response but also induces cytokine secretion by T cells, making it a promising vaccine candidate to fill the void.
Collapse
|
30
|
Ikuse T, Blanchard TG, Czinn SJ. Inflammation, Immunity, and Vaccine Development for the Gastric Pathogen Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:1-19. [PMID: 31123883 DOI: 10.1007/978-3-030-15138-6_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been over 30 years since a link was established between H. pylori infection of the gastric mucosa and the development of chronic gastric diseases. Research in rodent models supported by data from human tissue demonstrated that the host immune response to H. pylori is limited by host regulatory T cells. Immunization has been shown to induce a potent Th1- and Th17-mediated immune response capable of eradicating or at least significantly reducing the bacterial load of H. pylori in the stomach in small animal models. These results have not translated well to humans. Clinical trials employing many of the strategies used in rodents for oral immunization including the use of a mucosal adjuvant such as Escherichia coli LT or delivery by attenuated enteric bacteria have failed to limit H. pylori infection and have highlighted the potential toxicity of exotoxin-based mucosal adjuvants. A recent study, however, utilizing a recombinant fusion protein of H. pylori urease and the subunit B of E. coli LT, was performed on over 4000 children. Efficacy of over 70% was demonstrated against naturally acquired infection compared to control volunteers one year post-immunization. Efficacy was reduced, but still above 50% at three years. This study provided new insight into the strategies for developing an improved vaccine for widespread use in countries with high infection rates and where gastric cancer (GC) remains one of the most common causes of death due to cancer.
Collapse
Affiliation(s)
- Tamaki Ikuse
- Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, 13-015 Bressler Research Building, 655 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, 13-015 Bressler Research Building, 655 West Baltimore Street, Baltimore, MD, 21201, USA
| |
Collapse
|
31
|
Guo L, Hong D, Wang S, Zhang F, Tang F, Wu T, Chu Y, Liu H, He M, Yang H, Yin R, Liu K. Therapeutic Protection Against H. pylori Infection in Mongolian Gerbils by Oral Immunization With a Tetravalent Epitope-Based Vaccine With Polysaccharide Adjuvant. Front Immunol 2019; 10:1185. [PMID: 31191547 PMCID: PMC6546824 DOI: 10.3389/fimmu.2019.01185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Urease is an effective target for design of a therapeutic epitope vaccine against Helicobacter pylori (H. pylori). In our previous studies, an epitope vaccine CTB-UE containing Th and B epitopes from H. pylori urease was constructed, and the CTB-UE vaccine could provide therapeutic effect on H. pylori infection in mice. However, a multivalent vaccine, combining different antigens participating in different aspects of H. pylori colonization and pathogenesis, may be more effective as a therapeutic vaccine than a univalent vaccine targetting urease. Therefore, a multivalent epitope vaccine FVpE, containing Th1-type immune adjuvant NAP, three selected functional fragments from CagA and VacA, and an urease multi-epitope peptide (UE) from CTB-UE, was constructed in this study and expected to obtain better sterilizing immunity than the univalent epitope vaccine CTB-UE. The therapeutic effect of multivalent epitope vaccine FVpE with polysaccharide adjuvant (PA) was evaluated in H. pylori-infected Mongolian gerbil model. The results showed that both FvpE and CTB-UE vaccine could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect on H. pylori urease activity. However, only FVpE could induce high levels of specific antibodies to CagA, VacA, and NAP. In addition, oral therapeutic immunization with FVpE plus PA significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils compared with oral immunization with CTB-UE plus PA, or FVpE only, and the FVpE vaccine with PA even exhibited sterilizing immunity. The protection of FVpE was related to the mixed CD4+ T cell responses and epitope-specific antibodies against various H. pylori antigens. These results indicate that a multivalent epitope vaccine targetting various H. pylori antigens could be a promising candidate against H. pylori infection.
Collapse
Affiliation(s)
- Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Dantong Hong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Shue Wang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Fan Zhang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Tao Wu
- Clinical Laboratory, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yuankui Chu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hongpeng Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Meng He
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hua Yang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Runting Yin
- Center for Cell Therapy, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kunmei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
32
|
Liu W, Zeng Z, Luo S, Hu C, Xu N, Huang A, Zheng L, Sundberg EJ, Xi T, Xing Y. Gastric Subserous Vaccination With Helicobacter pylori Vaccine: An Attempt to Establish Tissue-Resident CD4+ Memory T Cells and Induce Prolonged Protection. Front Immunol 2019; 10:1115. [PMID: 31156652 PMCID: PMC6533896 DOI: 10.3389/fimmu.2019.01115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/01/2019] [Indexed: 12/22/2022] Open
Abstract
Tissue-resident memory T (Trm) cells are enriched at the sites of previous infection and required for enhanced protective immunity. However, the emergence of Trm cells and their roles in providing protection are unclear in the field of Helicobacter pylori (H. pylori) vaccinology. Here, our results suggest that conventional vaccine strategies are unable to establish a measurable antigen (Ag)-specific memory cell pool in stomach; in comparison, gastric subserous injection of mice with micro-dose of Alum-based H. pylori vaccine can induce a pool of local CD4+ Trm cells. Regional recruitment of Ag-specific CD4+ T cells depends on the engagement of Ag and adjuvant-induced inflammation. Prior subcutaneous vaccination enhanced this recruitment. A stable pool of Ag-specific CD4+ T cells can be detected for 240 days. Two weeks of FTY720 administration in immune mice suggests that these cells do not experience the recirculation. Immunohistochemistry results show that close to the vaccination site, abundant CD4+T cells locate on epithelial niches, independent of lymphocyte cluster. Paradigmatically, Ag-specific CD4+ T cells with a phenotype of CD69+CD103- are preferential on lymphocytes isolated from epithelium. Upon Helicobacter infection, CD4+ Trm cells orchestrate a swift recall response with the recruitment of circulating antigen-specific Th1/Th17 cells to trigger a tissue-wide pathogen clearance. This study investigates the vaccine-induced gastric CD4+ Trm cells in a mice model, and highlights the need for designing a vaccine strategy against H. pylori by establishing the protective CD4+ Trm cells.
Collapse
Affiliation(s)
- Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Zhiqin Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Shuanghui Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Chupeng Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Ningyin Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - An Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Eric J. Sundberg
- Institute of Human Virology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
33
|
Liu C, Luo J, Xue RY, Guo L, Nie L, Li S, Ji L, Ma CJ, Chen DQ, Miao K, Zou QM, Li HB. The mucosal adjuvant effect of plant polysaccharides for induction of protective immunity against Helicobacter pylori infection. Vaccine 2019; 37:1053-1061. [DOI: 10.1016/j.vaccine.2018.12.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/22/2018] [Accepted: 12/31/2018] [Indexed: 12/26/2022]
|
34
|
Reyes VE, Peniche AG. Helicobacter pylori Deregulates T and B Cell Signaling to Trigger Immune Evasion. Curr Top Microbiol Immunol 2019; 421:229-265. [PMID: 31123892 DOI: 10.1007/978-3-030-15138-6_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a prevalent human pathogen that successfully establishes chronic infection, which leads to clinically significant gastric diseases including chronic gastritis, peptic ulcer disease (PUD), and gastric cancer (GC). H. pylori is able to produce a persistent infection due in large part to its ability to hijack the host immune response. The host adaptive immune response is activated to strategically and specifically attack pathogens and normally clears them from the infected host. Since B and T lymphocytes are central mediators of adaptive immunity, in this chapter we review their development and the fundamental mechanisms regulating their activation in order to understand how some of the normal processes are subverted by H. pylori. In this review, we place particular emphasis on the CD4+ T cell responses, their subtypes, and regulatory mechanisms because of the expanding literature in this area related to H. pylori. T lymphocyte differentiation and function are finely orchestrated through a series of cell-cell interactions, which include immune checkpoint receptors. Among the immune checkpoint receptor family, there are some with inhibitory properties that are exploited by tumor cells to facilitate their immune evasion. Gastric epithelial cells (GECs), which act as antigen-presenting cells (APCs) in the gastric mucosa, are induced by H. pylori to express immune checkpoint receptors known to sway T lymphocyte function and thus circumvent effective T effector lymphocyte responses. This chapter reviews these and other mechanisms used by H. pylori to interfere with host immunity in order to persist.
Collapse
Affiliation(s)
- Victor E Reyes
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Alex G Peniche
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
35
|
Gang Liu Y, Teng YS, Cheng P, Kong H, Lv PY, Mao FY, Wu XL, Hao CJ, Chen W, Yang SM, Zhang JY, Peng LS, Wang TT, Han B, Ma Q, Zou QM, Zhuang AY. Abrogation of cathepsin C by
Helicobacter pylori
impairs neutrophil activation to promote gastric infection. FASEB J 2018; 33:5018-5033. [DOI: 10.1096/fj.201802016rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yu Gang Liu
- Department of Microbiology and Biochemical PharmacyNational Engineering Research Centre of Immunological ProductsCollege of Pharmacy Chongqing China
| | - Yong Sheng Teng
- Department of Microbiology and Biochemical PharmacyNational Engineering Research Centre of Immunological ProductsCollege of Pharmacy Chongqing China
| | - Ping Cheng
- Department of Microbiology and Biochemical PharmacyNational Engineering Research Centre of Immunological ProductsCollege of Pharmacy Chongqing China
| | - Hui Kong
- Department of Microbiology and Biochemical PharmacyNational Engineering Research Centre of Immunological ProductsCollege of Pharmacy Chongqing China
| | - Pin Yi Lv
- Department of Microbiology and Biochemical PharmacyNational Engineering Research Centre of Immunological ProductsCollege of Pharmacy Chongqing China
| | - Fang Yuan Mao
- Department of Microbiology and Biochemical PharmacyNational Engineering Research Centre of Immunological ProductsCollege of Pharmacy Chongqing China
| | - Xiao Long Wu
- Department of Microbiology and Biochemical PharmacyNational Engineering Research Centre of Immunological ProductsCollege of Pharmacy Chongqing China
| | - Chuan Jie Hao
- Department of Microbiology and Biochemical PharmacyNational Engineering Research Centre of Immunological ProductsCollege of Pharmacy Chongqing China
| | - Weisan Chen
- La Trobe Institute of Molecular ScienceLa Trobe University Bundoora Victoria Australia
| | - Shi Ming Yang
- Department of GastroenterologyXinQiao HospitalThird Military Medical University Chongqing China
| | - Jin Yu Zhang
- Department of Microbiology and Biochemical PharmacyNational Engineering Research Centre of Immunological ProductsCollege of Pharmacy Chongqing China
| | - Liu Sheng Peng
- Department of Microbiology and Biochemical PharmacyNational Engineering Research Centre of Immunological ProductsCollege of Pharmacy Chongqing China
| | - Ting Ting Wang
- Department of Microbiology and Biochemical PharmacyNational Engineering Research Centre of Immunological ProductsCollege of Pharmacy Chongqing China
| | - Bin Han
- Department of PharmacyAffiliated Hospital of North Sichuan Medical College Nanchong China
| | - Qiang Ma
- Department of Clinical LaboratoryAffiliated Hospital of North Sichuan Medical College Nanchong China
| | - Quan Ming Zou
- Department of Microbiology and Biochemical PharmacyNational Engineering Research Centre of Immunological ProductsCollege of Pharmacy Chongqing China
| | - And Yuan Zhuang
- Department of Microbiology and Biochemical PharmacyNational Engineering Research Centre of Immunological ProductsCollege of Pharmacy Chongqing China
| |
Collapse
|
36
|
Preclinical immunogenicity and protective efficacy of an oral Helicobacter pylori inactivated whole cell vaccine and multiple mutant cholera toxin: A novel and non-toxic mucosal adjuvant. Vaccine 2018; 36:6223-6230. [DOI: 10.1016/j.vaccine.2018.07.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/07/2018] [Accepted: 07/29/2018] [Indexed: 01/18/2023]
|
37
|
Liu H, Liu W, Tan Z, Zeng Z, Yang H, Luo S, Wang L, Xi T, Xing Y. Promoting Immune Efficacy of the Oral Helicobacter pylori Vaccine by HP55/PBCA Nanoparticles against the Gastrointestinal Environment. Mol Pharm 2018; 15:3177-3186. [PMID: 30011213 DOI: 10.1021/acs.molpharmaceut.8b00251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immunogenicity of oral subunit vaccines is poor partly as a result of the harsh milieu of the gastrointestinal (GI) tract. For some pathogens that restrictedly inhabit the GI tract, a vaccine that works in situ may provide more potent protection than vaccines that operate parenterally. Yet, no appropriate delivery system is available for oral subunit vaccines. In this study, we designed HP55/poly( n-butylcyanoacrylate) (PBCA) nanoparticles (NPs) to carry Helicobacter pylori ( H. pylori) subunit vaccine CCF for oral administration in a prophylactic mice model. These NPs, which are synthesized using an interfacial polymerization method, protected the CCF antigen not only from the acidic pH in simulated gastric fluid (SGF, pH 1.2) but also from the proteolysis in simulated intestinal fluid (SIF, pH 7.4). Oral vaccination of mice with HP55/PBCA-CCF NPs promoted the production of serum antigen-specific antibodies, mucosal secretory IgA, and proinflammatory cytokines. Moreover, a Th1/Th17 response and augmented lymphocytes were found in the gastric tissue of HP55/PBCA-CCF NP-immunized mice, which might eventually limit H. pylori colonization. Collectively, these results indicate that HP55/PBCA NPs are promising carriers against the severe situation of the GI tract and thereby may be further utilized for other orally administrated vaccines or drugs.
Collapse
Affiliation(s)
- Hai Liu
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Wei Liu
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Zhoulin Tan
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Zhiqin Zeng
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Huimin Yang
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Shuanghui Luo
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Linlin Wang
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Tao Xi
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| | - Yingying Xing
- School of Life Science and Technology and Jiangsu Key Laboratory of Carcinogenesis and Intervention , China Pharmaceutical University , No.24 Tongjia xiang , Nanjing 210009 , PR China
| |
Collapse
|
38
|
Ghasemi A, Mohammad N, Mautner J, Taghipour Karsabet M, Amani J, Ardjmand A, Vakili Z. Immunization with a recombinant fusion protein protects mice against Helicobacter pylori infection. Vaccine 2018; 36:5124-5132. [PMID: 30041879 DOI: 10.1016/j.vaccine.2018.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
More than 50% of the world's population is infected with the bacterium Helicobacter pylori. If left untreated, infection with H. pylori can cause chronic gastritis and peptic ulcer disease, which may progress into gastric cancer. Owing to the limited efficacy of anti-H. pylori antibiotic therapy in clinical practice, the development of a protective vaccine to combat this pathogen has been a tempting goal for several years. In this study, a chimeric gene coding for the antigenic parts of H. pylori FliD, UreB, VacA, and CagL was generated and expressed in bacteria and the potential of the resulting fusion protein (rFUVL) to induce humoral and cellular immune responses and to provide protection against H. pylori infection was evaluated in mice. Three different immunization adjuvants were tested along with rFUVL: CpG oligodeoxynucleotides (CpG ODN), Addavax, and Cholera toxin subunit B. Compared to the control group that had received PBS, vaccinated mice showed significantly higher cellular recall responses and antigen-specific IgG2a, IgG1, and gastric IgA antibody titers. Importantly, rFUVL immunized mice exhibited a reduction of about three orders of magnitude in their stomach bacterial loads. Thus, adjuvanted rFUVL might be considered as a promising vaccine candidate for the control of H. pylori infection.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, FL, USA.
| | - Nazanin Mohammad
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Josef Mautner
- Technische Universität München & Helmholtz Zentrum München, Munich, Germany
| | - Mehrnaz Taghipour Karsabet
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Ardjmand
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Zarichehr Vakili
- Department of Pathology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
39
|
Tr1 responses are elevated in asymptomatic H. pylori-infected individuals and are functionally impaired in H. pylori-gastric cancer patients. Exp Cell Res 2018; 367:251-256. [DOI: 10.1016/j.yexcr.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023]
|
40
|
Immunization with recombinant FliD confers protection against Helicobacter pylori infection in mice. Mol Immunol 2018; 94:176-182. [DOI: 10.1016/j.molimm.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/27/2017] [Accepted: 01/04/2018] [Indexed: 12/23/2022]
|
41
|
Banerjee A, Ahmed H, Yang P, Czinn SJ, Blanchard TG. Endoplasmic reticulum stress and IRE-1 signaling cause apoptosis in colon cancer cells in response to andrographolide treatment. Oncotarget 2018; 7:41432-41444. [PMID: 27166181 PMCID: PMC5173070 DOI: 10.18632/oncotarget.9180] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/23/2016] [Indexed: 12/13/2022] Open
Abstract
The plant metabolite andrographolide induces cell cycle arrest and apoptosis in cancer cells. The mechanism(s) by which andrographolide induces apoptosis however, have not been elucidated. The present study was performed to determine the molecular events that promote apoptosis in andrographolide treated cells using T84, HCT116 and COLO 205 colon cancer cell lines. Andrographolide was determined to limit colony formation and Ki67 expression, alter nuclear morphology, increase cytoplasmic histone-associated-DNA-fragments, and increase cleaved caspase-3 levels. Andrographolide also induced significantly higher expression of endoplasmic reticulum (ER) stress proteins GRP-78 and IRE-1 by 48 h but not PERK or ATF6. Apoptosis signaling molecules BAX, spliced XBP-1 and CHOP were also significantly increased. Moreover, chemical inhibition of ER stress or IRE-1 depletion with siRNA in andrographolide treated cells significantly limited expression of IRE-1 and CHOP as determined by immunofluorescence staining, real time PCR, or immunobloting. This was accompanied by a decreased BAX/Bcl-2 ratio. Andrographolide significantly promotes cancer cell death compared to normal cells. These data demonstrate that andrographolide associated ER stress contributes to apoptosis through the activation of a pro-apoptotic GRP-78/IRE-1/XBP-1/CHOP signaling pathway.
Collapse
Affiliation(s)
- Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
| | | | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, U.S.A
| |
Collapse
|
42
|
Sun H, Yuan H, Tan R, Li B, Guo G, Zhang J, Jing H, Qin Y, Zhao Z, Zou Q, Wu C. Immunodominant antigens that induce Th1 and Th17 responses protect mice against Helicobacter pylori infection. Oncotarget 2018; 9:12050-12063. [PMID: 29552292 PMCID: PMC5844728 DOI: 10.18632/oncotarget.23927] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori has infected more than half of the world's population, causing gastritis, gastric ulcers, gastric mucosa-associated lymphoid tissue lymphoma and gastric cancer. The oral recombinant Helicobacter pylori vaccine currently used has made great progress in addressing this problem, however, its efficacy and longevity still need to be improved. Th1 and Th17 cells play essential roles in local protection against Helicobacter pylori in the stomach mucosa. Additionally, protective immunodominant antigens are the preferred for a vaccine. In this work, Helicobacter pylori whole cell lysate was separated into 30 groups based on molecular weight by molecular sieve chromatography. The group best promoting CD4 T cells proliferation was selected and evaluated by immunization. The detail proteins were then analyzed by LC-MS/MS and expressed in Escherichia coli. Eleven proteins were selected and the dominant ones were demonstrated. As a result, three protective immunodominant antigens, inosine 5'-monophosphate dehydrogenase, type II citrate synthase, and urease subunit beta, were selected from Helicobacter pylori whole cell. Two of them (inosine 5'-monophosphate dehydrogenase and type II citrate synthase) were newly identified, and one (urease subunit beta) was confirmed as previously reported. The mixture of the three antigens showed satisfactory protective efficiency, with significant lower H. pylori colonization level (P < 0.001) and stronger Th1 (P < 0.001) and Th17 (P < 0.001) responses than PBS control group. Thus, inosine 5'-monophosphate dehydrogenase, type II citrate synthase, and urease subunit beta are three protective antigens inducing dominant Th1 and Th17 responses to defend against Helicobacter pylori infection.
Collapse
Affiliation(s)
- Heqiang Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Hanmei Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Ranjing Tan
- Department of Dermatology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Bin Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Gang Guo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Yi Qin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
43
|
Interleukin-17A Promotes Parietal Cell Atrophy by Inducing Apoptosis. Cell Mol Gastroenterol Hepatol 2018; 5:678-690.e1. [PMID: 29930985 PMCID: PMC6009015 DOI: 10.1016/j.jcmgh.2017.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Atrophic gastritis caused by chronic inflammation in the gastric mucosa leads to the loss of gastric glandular cells, including acid-secreting parietal cells. Parietal cell atrophy in a setting of chronic inflammation induces spasmolytic polypeptide expressing metaplasia, a critical step in gastric carcinogenesis. However, the mechanisms by which inflammation causes parietal cell atrophy and spasmolytic polypeptide expressing metaplasia are not well defined. We investigated the role of interleukin-17A (IL-17A) in causing parietal cell atrophy. METHODS A mouse model of autoimmune atrophic gastritis was used to examine IL-17A production during early and late stages of disease. Organoids derived from corpus glands were used to determine the direct effects of IL-17A on gastric epithelial cells. Immunofluorescent staining was used to examine IL-17A receptors and the direct effect of signaling on parietal cells. Mice were infected with an IL-17A-producing adenovirus to determine the effects of IL-17A on parietal cells in vivo. Finally, IL-17A neutralizing antibodies were administered to mice with active atrophic gastritis to evaluate the effects on parietal cell atrophy and metaplasia. RESULTS Increased IL-17A correlated with disease severity in mice with chronic atrophic gastritis. IL-17A caused caspase-dependent gastric organoid degeneration, which could not be rescued with a necroptosis inhibitor. Parietal cells expressed IL-17A receptors and IL-17A treatment induced apoptosis in parietal cells. Overexpressing IL-17A in vivo induced caspase-3 activation and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining in parietal cells. Finally, IL-17A neutralizing antibody decreased parietal cell atrophy and metaplasia in mice with chronic atrophic gastritis. CONCLUSIONS These data identify IL-17A as a cytokine that promotes parietal cell apoptosis during atrophic gastritis, a precursor lesion for gastric cancer.
Collapse
|
44
|
Guo L, Yin R, Xu G, Gong X, Chang Z, Hong D, Liu H, Ding S, Han X, Li Y, Tang F, Liu K. Immunologic properties and therapeutic efficacy of a multivalent epitope-based vaccine against four Helicobacter pylori adhesins (urease, Lpp20, HpaA, and CagL) in Mongolian gerbils. Helicobacter 2017; 22. [PMID: 28851031 DOI: 10.1111/hel.12428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Therapeutic vaccination is a desirable alternative for controlling Helicobacter pylori (H. pylori) infection. Attachment to the gastric mucosa is the first step in establishing bacterial colonization, and adhesins, which are on the surface of H. pylori, play a pivotal role in binding to human gastric mucosa. MATERIALS AND METHODS In the present study, we constructed a multivalent epitope-based vaccine named CFAdE with seven carefully selected antigenic fragments from four H. pylori adhesins (urease, Lpp20, HpaA and CagL). The specificity, immunogenicity and ability to produce neutralizing antibodies of CFAdE were evaluated in BALB/c mice. After that, its therapeutic efficacy and protective immune mechanisms were explored in H. pylori-infected Mongolian gerbils. RESULTS The results indicated that CFAdE could induce comparatively high levels of specific antibodies against urease, Lpp20, HpaA and CagL. Additionally, oral therapeutic immunization with CFAdE plus polysaccharide adjuvant (PA) significantly decreased H. pylori colonization compared with oral immunization with urease plus PA, and the protection was correlated with IgG and sIgA antibody and antigen-specific CD4+ T cells. CONCLUSIONS This study indicated that the multivalent epitope-based vaccine, which targeted multiple adhesins in adherence of H. pylori to the gastric mucosa, is more effective than the univalent vaccine targeting urease only. This multivalent epitope-based vaccine may be a promising therapeutic candidate vaccine against H. pylori infection.
Collapse
Affiliation(s)
- Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| | - Runting Yin
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Guangxian Xu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaojuan Gong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Zisong Chang
- Dr. Notghi Contract Research GmbH, Berlin, Germany
| | - Dantong Hong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Hongpeng Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Shuqin Ding
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xuebo Han
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yuan Li
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Kunmei Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
45
|
Banerjee A, Bhattacharya P, Dagur PK, Karmakar S, Ismail N, Joshi AB, Akue AD, KuKuruga M, McCoy JP, Dey R, Nakhasi HL. Live Attenuated Leishmania donovani Centrin Gene-Deleted Parasites Induce IL-23-Dependent IL-17-Protective Immune Response against Visceral Leishmaniasis in a Murine Model. THE JOURNAL OF IMMUNOLOGY 2017; 200:163-176. [PMID: 29187586 DOI: 10.4049/jimmunol.1700674] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022]
Abstract
No vaccine exists against visceral leishmaniasis. To develop effective vaccines, we have previously reported protective role of live attenuated centrin gene-deleted Leishmania donovani (LdCen-/- ) parasites through induction of Th1 type immune response in mice, hamsters, and dogs. In this study, we specifically explored the role of Th17 cells in LdCen-/- -induced host protection in mice. Our results showed that compared with wild-type L. donovani infection, LdCen-/- parasites induce significantly higher expression of Th17 differentiation cytokines in splenic dendritic cells. There was also induction of IL-17 and its promoting cytokines in total splenocytes and in both CD4 and CD8 T cells following immunization with LdCen-/- Upon challenge with wild-type parasites, IL-17 and its differentiating cytokines were significantly higher in LdCen-/- -immunized mice compared with nonimmunized mice that resulted in parasite control. Alongside IL-17 induction, we observed induction of IFN-γ-producing Th1 cells as reported earlier. However, Th17 cells are generated before Th1 cells. Neutralization of either IL-17 or IFN-γ abrogated LdCen-/- -induced host protection further confirming the essential role of Th17 along with Th1 cytokines in host protection. Treatment with recombinant IL-23, which is required for stabilization and maintenance of IL-17, heightened Th17, and Tc17 responses in immunized mice splenocytes. In contrast, Th17 response was absent in immunized IL-23R-/- mice that failed to induce protection upon virulent Leishmania challenge suggesting that IL-23 plays an essential role in IL-17-mediated protection by LdCen-/- parasites. This study unveiled the role of IL-23-dependent IL-17 induction in LdCen-/- parasite-induced immunity and subsequent protection against visceral leishmaniasis.
Collapse
Affiliation(s)
- Antara Banerjee
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993.,Department of Zoology, Bangabasi College, Kolkata, 700016 West Bengal, India
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Pradeep K Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Subir Karmakar
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Amritanshu B Joshi
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Adovi D Akue
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Mark KuKuruga
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - John Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993;
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993;
| |
Collapse
|
46
|
Liu W, Tan Z, Liu H, Zeng Z, Luo S, Yang H, Zheng L, Xi T, Xing Y. Nongenetically modified Lactococcus lactis-adjuvanted vaccination enhanced innate immunity against Helicobacter pylori. Helicobacter 2017; 22. [PMID: 28805287 DOI: 10.1111/hel.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Gram-positive enhancer matrix particles (GEM) produced by Lactococcus lactis can enhance vaccine-induced immune response. However, the mechanism under which this adjuvant mounts the efficacy of orally administered vaccines remains unexplored. MATERIALS AND METHODS We used a prophylactic mice model to investigate the mechanism of GEM-adjuvanted vaccination. Helicobacter pylori urease-specific antibody response was monitored and detected in murine serum by ELISA. Urease-specific splenic cytokine profile was examined. Gastric inflammatory responses were measured on day 43 or 71 by quantitative real-time PCR, flow cytometry and histology. RESULTS We found that GEM enhanced the efficiency of oral H. pylori vaccine by promoting innate immunity. The vaccine CUE-GEM composed of GEM particles and recombinant antigen CTB-UE provided protection of immunized mice against H. pylori insult. The protective response was associated with induction of postimmunization gastritis and local Th1/Th17 cell-medicated immune response. We showed that innate inflammatory responses including neutrophil chemokines CXCL1-2, neutrophils, and antimicrobial proteins S100A8 and MUC1 were significantly elevated. Within all infected mice, S100A8 and MUC1 levels were negatively correlated with H. pylori burden. Strikingly, mice receiving GEM also show reduction of colonization, possibly through natural host response pathways to recruit CD4+ T cells and promote S100A8 expression. CONCLUSIONS These findings suggest that GEM-based vaccine may impact Th1/Th17 immunity to orchestrate innate immune response against H. pylori infection.
Collapse
Affiliation(s)
- Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Zhoulin Tan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Hai Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Zhiqin Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Shuanghui Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Huimin Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
47
|
Guo L, Yang H, Tang F, Yin R, Liu H, Gong X, Wei J, Zhang Y, Xu G, Liu K. Oral Immunization with a Multivalent Epitope-Based Vaccine, Based on NAP, Urease, HSP60, and HpaA, Provides Therapeutic Effect on H. pylori Infection in Mongolian gerbils. Front Cell Infect Microbiol 2017; 7:349. [PMID: 28824883 PMCID: PMC5543039 DOI: 10.3389/fcimb.2017.00349] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori, remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA27–53, UreA183–203, HpaA132–141, and HSP60189–203), and also the epitope-rich regions of urease B subunit (UreB158–251 and UreB321–385) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori-infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB158–172, UreB181–195, UreB211–225, UreB349–363, HpaA132–141, and HSP60189–203). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4+ T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori. These results indic ate that a multivalent epitope-based vaccine including Th and B cell epitopes from various H. pylori antigens could be a promising candidate against H. pylori infection.
Collapse
Affiliation(s)
- Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical UniversityYinchuan, China
| | - Hua Yang
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai UniversityXining, China
| | - Runting Yin
- Medical School of Nantong University, Nantong UniversityNantong, China
| | - Hongpeng Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Xiaojuan Gong
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Jun Wei
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins UniversityBaltimore, MD, United States
| | - Guangxian Xu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical UniversityYinchuan, China.,Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China
| | - Kunmei Liu
- Department of Medical Laboratory, School of Clinical Medicine, Ningxia Medical UniversityYinchuan, China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical UniversityYinchuan, China
| |
Collapse
|
48
|
Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc Natl Acad Sci U S A 2017; 114:E751-E760. [PMID: 28096401 DOI: 10.1073/pnas.1614958114] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Macrophage activation is a critical step in host responses during bacterial infections. Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine metabolism, has been well studied in epithelial cells and is known to have essential roles in many different cellular functions. However, its role in regulating macrophage function during bacterial infections is not well characterized. We demonstrate that macrophage-derived ODC is a critical regulator of M1 macrophage activation during both Helicobacter pylori and Citrobacter rodentium infection. Myeloid-specific Odc deletion significantly increased gastric and colonic inflammation, respectively, and enhanced M1 activation. Add-back of putrescine, the product of ODC, reversed the increased macrophage activation, indicating that ODC and putrescine are regulators of macrophage function. Odc-deficient macrophages had increased histone 3, lysine 4 (H3K4) monomethylation, and H3K9 acetylation, accompanied by decreased H3K9 di/trimethylation both in vivo and ex vivo in primary macrophages. These alterations in chromatin structure directly resulted in up-regulated gene transcription, especially M1 gene expression. Thus, ODC in macrophages tempers antimicrobial, M1 macrophage responses during bacterial infections through histone modifications and altered euchromatin formation, leading to the persistence and pathogenesis of these organisms.
Collapse
|
49
|
Zhou S, Huang Y, Liang B, Dong H, Yao S, Chen Y, Xie Y, Long Y, Gong S, Zhou Z. Systemic and mucosal pre-administration of recombinant Helicobacter pylori neutrophil-activating protein prevents ovalbumin-induced allergic asthma in mice. FEMS Microbiol Lett 2017; 364:fnw288. [PMID: 28087613 DOI: 10.1093/femsle/fnw288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/18/2016] [Accepted: 01/11/2017] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Previous epidemiologic studies have demonstrated an inverse association between Helicobacter pylori infection and the frequency of allergic asthma. The neutrophil-activating protein (NAP) of H. pylori has been identified as a modulator possessing anti-Th2 inflammation activity. Here, we sought to determine whether systemic or mucosal pre-administration of recombinant H. pylori NAP (rNAP) could prevent ovalbumin (OVA)-induced allergic asthma in mice. METHODS Mice were exposed to purified rNAP through intraperitoneal injection or inhalation and then sensitized with OVA. Following a challenge with aerosolized OVA, the bronchoalveolar lavage fluid (BALF) cell count, lung tissue histology, BALF cytokines and serum IgE were evaluated. RESULTS Both intraperitoneal injection and inhalation of rNAP prior to OVA sensitization significantly reduced eosinophil accumulation and inflammatory infiltration in lung tissue in OVA-induced asthma mice; eosinophils were reduced in the BALF of rNAP-treated mice. In addition, IL-4 and IL-13 levels were lower (P < 0.01), IL-10 and IFN-γ levels were higher (P < 0.01) and IgE serum levels were lower (P < 0.01) in the treated groups compared to the control group. CONCLUSIONS Systemic and mucosal pre-administration of rNAP could suppress the development of OVA-induced asthma in mice; rNAP may be utilized as part of novel strategies for the prevention or treatment of allergic diseases.
Collapse
Affiliation(s)
- Shuai Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China.,Translational Medicine Center, Guangdong Women and Children Hospital, No. 521 Xingnan Avenue, Panyu district, Guangzhou, Guangdong 511400, People's Republic of China
| | - Yanmei Huang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Bingshao Liang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Hui Dong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Shuwen Yao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yinshuang Chen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yongqiang Xie
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yan Long
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Sitang Gong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| | - Zhenwen Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong 510120, People's Republic of China
| |
Collapse
|
50
|
Moyat M, Bouzourene H, Ouyang W, Iovanna J, Renauld JC, Velin D. IL-22-induced antimicrobial peptides are key determinants of mucosal vaccine-induced protection against H. pylori in mice. Mucosal Immunol 2017; 10:271-281. [PMID: 27143303 DOI: 10.1038/mi.2016.38] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/16/2016] [Indexed: 02/06/2023]
Abstract
Despite the recent description of the mucosal vaccine-induced reduction of Helicobacter pylori natural infection in a phase 3 clinical trial, the absence of immune correlates of protection slows the final development of the vaccine. In this study, we evaluated the role of interleukin (IL)-22 in mucosal vaccine-induced protection. Gastric IL-22 levels were increased in mice intranasally immunized with urease+cholera toxin and challenged with H. felis, as compared with controls. Flow cytometry analysis showed that a peak of CD4+IL-22+IL-17+ T cells infiltrating the gastric mucosa occurred in immunized mice in contrast to control mice. The inhibition of the IL-22 biological activity prevented the vaccine-induced reduction of H. pylori infection. Remarkably, anti-microbial peptides (AMPs) extracted from the stomachs of vaccinated mice, but not from the stomachs of non-immunized or immunized mice, injected with anti-IL-22 antibodies efficiently killed H. pylori in vitro. Finally, H. pylori infection in vaccinated RegIIIβ-deficient mice was not reduced as efficiently as in wild-type mice. These results demonstrate that IL-22 has a critical role in vaccine-induced protection, by promoting the expression of AMPs, such as RegIIIβ, capable of killing Helicobacter. Therefore, it can be concluded that urease-specific memory Th17/Th22 cells could constitute immune correlates of vaccine protection in humans.
Collapse
Affiliation(s)
- M Moyat
- Service of Gastroenterology and Hepatology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - H Bouzourene
- UNISciences, University of Lausanne, UniLabs, Lausanne, Switzerland
| | - W Ouyang
- Department of Immunology, Genentech, South San Francisco, California, USA
| | - J Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - J-C Renauld
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
| | - D Velin
- Service of Gastroenterology and Hepatology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|