1
|
Vlajic K, Bie W, Gilic MB, Tyner AL. Impaired activation of succinate-induced type 2 immunity and secretory cell production in the small intestines of Ptk6-/- male mice. Cell Death Dis 2024; 15:777. [PMID: 39461944 PMCID: PMC11513114 DOI: 10.1038/s41419-024-07149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is distantly related to the SRC family of tyrosine kinases. It is expressed in epithelial linings and regulates regeneration and repair of the intestinal epithelium. Analysis of publicly available datasets showed Ptk6 is upregulated in tuft cells upon activation of type 2 immunity. We found that disruption of Ptk6 influences gene expression involved in intestinal immune responses. Administration of succinate, which mimics infection and activates tuft cells, revealed PTK6-dependent activation of innate immune responses in male but not female mice. In contrast to all wild type and Ptk6-/- female mice, Ptk6-/- male mice do not activate innate immunity or upregulate differentiation of the tuft and goblet secretory cell lineages following succinate treatment. Mechanistically, we found that PTK6 regulates Il25 and Irag2, genes that are required for tuft cell effector functions and activation of type 2 innate immunity, in organoids derived from intestines of male but not female mice. In patients with Crohn's disease, PTK6 is upregulated in tuft cells in noninflamed regions of intestine. These data highlight roles for PTK6 in contributing to sex differences in intestinal innate immunity and provide new insights into the regulation of IL-25.
Collapse
Affiliation(s)
- Katarina Vlajic
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
- University of Washington, Seattle, WA, USA
| | - Wenjun Bie
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Milica B Gilic
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
- St Jude Children's Hospital, Memphis, TN, USA
| | - Angela L Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
2
|
Sinha S, Alcantara J, Perry K, Castillo V, Espinoza CR, Taheri S, Vidales E, Tindle C, Adel A, Amirfakhri S, Sawires JR, Yang J, Bouvet M, Sahoo D, Ghosh P. Machine-Learning Identifies a Strategy for Differentiation Therapy in Solid Tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.13.557628. [PMID: 37745574 PMCID: PMC10515918 DOI: 10.1101/2023.09.13.557628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Although differentiation therapy can cure some hematologic malignancies, its curative potential remains unrealized in solid tumors. This is because conventional computational approaches succumb to the thunderous noise of inter-/intratumoral heterogeneity. Using colorectal cancers (CRCs) as an example, here we outline a machine learning(ML)-based approach to track, differentiate, and selectively target cancer stem cells (CSCs). METHODS A transcriptomic network was built and validated using healthy colon and CRC tissues in diverse gene expression datasets (~5,000 human and >300 mouse samples). Therapeutic targets and perturbation strategies were prioritized using ML, with the goal of reinstating the expression of a transcriptional identifier of the differentiated colonocyte, CDX2, whose loss in poorly differentiated (CSC-enriched) CRCs doubles the risk of relapse/death. The top candidate target was then engaged with a clinical-grade drug and tested on 3 models: CRC lines in vitro, xenografts in mice, and in a prospective cohort of healthy (n = 3) and CRC (n = 23) patient-derived organoids (PDOs). RESULTS The drug shifts the network predictably, induces CDX2 and crypt differentiation, and shows cytotoxicity in all 3 models, with a high degree of selectivity towards all CDX2-negative cell lines, xenotransplants, and PDOs. The potential for effective pairing of therapeutic efficacy (IC50) and biomarker (CDX2-low state) is confirmed in PDOs using multivariate analyses. A 50-gene signature of therapeutic response is derived and tested on 9 independent cohorts (~1700 CRCs), revealing the impact of CDX2-reinstatement therapy could translate into a ~50% reduction in the risk of mortality/recurrence. CONCLUSIONS Findings not only validate the precision of the ML approach in targeting CSCs, and objectively assess its impact on clinical outcome, but also exemplify the use of ML in yielding clinical directive information for enhancing personalized medicine.
Collapse
|
3
|
Jerin S, Harvey AJ, Lewis A. Therapeutic Potential of Protein Tyrosine Kinase 6 in Colorectal Cancer. Cancers (Basel) 2023; 15:3703. [PMID: 37509364 PMCID: PMC10377740 DOI: 10.3390/cancers15143703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
PTK6, a non-receptor tyrosine kinase, modulates the pathogenesis of breast and prostate cancers and is recognized as a biomarker of breast cancer prognosis. There are over 30 known substrates of PTK6, including signal transducers, transcription factors, and RNA-binding proteins. Many of these substrates are known drivers of other cancer types, such as colorectal cancer. Colon and rectal tumors also express higher levels of PTK6 than the normal intestine suggesting a potential role in tumorigenesis. However, the importance of PTK6 in colorectal cancer remains unclear. PTK6 inhibitors such as XMU-MP-2 and Tilfrinib have demonstrated potency and selectivity in breast cancer cells when used in combination with chemotherapy, indicating the potential for PTK6 targeted therapy in cancer. However, most of these inhibitors are yet to be tested in other cancer types. Here, we discuss the current understanding of the function of PTK6 in normal intestinal cells compared with colorectal cancer cells. We review existing PTK6 targeting therapeutics and explore the possibility of PTK6 inhibitory therapy for colorectal cancer.
Collapse
Affiliation(s)
- Samanta Jerin
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Amanda J Harvey
- Centre for Genome Engineering and Maintenance, Institute for Health Medicine and Environments, Brunel University London, Uxbridge UB8 3PH, UK
| | - Annabelle Lewis
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
4
|
Zhang J, Liu W, Feng S, Zhong B. The possible role of SRMS in colorectal cancer by bioinformatics analysis. World J Surg Oncol 2021; 19:326. [PMID: 34781983 PMCID: PMC8594183 DOI: 10.1186/s12957-021-02431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (SRMS) is a non-receptor tyrosine kinase that has been found to be overexpressed in various tumors. However, the role of SRMS in colorectal cancer (CRC) has not been well established. METHODS We evaluated the expression levels of SRMS in CRC using GEPIA, Oncomine, and HPA datasets. Survival information and gene expression data of CRC were obtained from The Cancer Genome Atlas (TCGA). Then, the association between SRMS and clinicopathological features was analyzed using UALCAN dataset. LinkedOmics was used to determine co-expression and functional networks associated with SRMS. Besides, we used TISIDB to assess the correlation between SRMS and immune signatures, including tumor-infiltrating immune cells and immunomodulators. Lastly, protein-protein interaction network (PPI) was established and the function enrichment analysis of the SRMS-associated immunomodulators and immune cell marker genes were performed using the STRING portal. RESULTS Compared to normal colorectal tissues, SRMS was found to be overexpressed in CRC tissues, which was correlated with a poor prognosis. In colon adenocarcinoma (COAD), the expression levels of SRMS are significantly correlated with pathological stages and nodal metastasis status. Functional network analysis suggested that SRMS regulates intermediate filament-based processes, protein autophosphorylation, translational initiation, and elongation signaling through pathways involving ribosomes, proteasomes, oxidative phosphorylation, and DNA replication. In addition, SRMS expression was correlated with infiltrating levels of CD4+ T cells, CD56dim, MEM B, Neutrophils, Th2, Th17, and Act DC. The gene ontology (GO) analysis of SRMS-associated immunomodulators and immune cell marker genes showed that they were mainly enriched in the immune microenvironment molecule-related signals. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these genes indicated that they are involved in multiple cancer-related pathways. CONCLUSIONS SRMS is a promising prognostic biomarker and potential therapeutic target for CRC patients. In particular, SRMS regulates CRC progression by modulating cytokine-cytokine receptor interaction, chemokines, IL-17, and intestinal immune networks for IgA production signaling pathways among others. However, more studies are needed to validate these findings.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Weidong Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Sisi Feng
- Department of Essential Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China.
| |
Collapse
|
5
|
Liu C, Pan Z, Chen Q, Chen Z, Liu W, Wu L, Jiang M, Lin W, Zhang Y, Lin W, Zhou R, Zhao L. Pharmacological targeting PTK6 inhibits the JAK2/STAT3 sustained stemness and reverses chemoresistance of colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:297. [PMID: 34551797 PMCID: PMC8456648 DOI: 10.1186/s13046-021-02059-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022]
Abstract
Background Chemoresistance is the major cause of chemotherapy failure in patients with colorectal cancer (CRC). Protein tyrosine kinase 6 (PTK6) is aberrantly overexpressed in clinical CRC tissues undergoing chemotherapy. We studied if PTK6 contributed to the chemoresistance of CRC in human and mice. Methods We obtained tissue samples from patients with CRC and measured the expression of PTK6 by immunohistochemistry. Gain- and loss-of-function assays were performed to study the biological functions of PTK6. We constructed the FLAG-tagged wild type (WT), kinase-dead, and inhibition-defective recombinant mutants of PTK6 to study the effect phosphorylated activation of PTK6 played on CRC cell stemness and chemoresistance. We used small molecule inhibitor XMU-MP-2 to test the influence of PTK6 on sensitivity of CRC cells to 5-FU/L-OHP in both nude mouse and patient-derived xenograft (PDX) animal models. Results PTK6 is overexpressed in CRC tissues and plays a stimulatory role in the proliferation and chemoresistance of CRC cells both in vitro and in vivo. PTK6, especially the phosphorylated PTK6, can promote the stemness of CRC cells through interacting with JAK2 and phosphorylating it to activate the JAK2/STAT3 signaling. Pharmacological inhibition of PTK6 using XMU-MP-2 effectively reduces the stemness property of CRC cells and improves its chemosensitivity to 5-FU/L-OHP in both nude mice subcutaneously implanted tumor model and PDX model constructed with NOD-SCID mice. Conclusions PTK6 interacts with JAK2 and phosphorylates it to activate JAK2/STAT3 signaling to promote the stemness and chemoresistance of CRC cells. Pharmacological inhibition of PTK6 by small molecule inhibitor dramatically enhances the sensitivity to chemotherapy in nude mice and PDX models. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02059-6.
Collapse
Affiliation(s)
- Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhihua Pan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qian Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zetao Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiwei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Muhong Jiang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wandie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yujie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weihao Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China. .,Department of Pathology, Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Targeting protein tyrosine kinase 6 in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188432. [PMID: 32956764 DOI: 10.1016/j.bbcan.2020.188432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 11/21/2022]
Abstract
Protein tyrosine kinase 6 (PTK6) is the most well studied member of the PTK6 family of intracellular tyrosine kinases. While it is expressed at highest levels in differentiated cells in the regenerating epithelial linings of the gastrointestinal tract and skin, induction and activation of PTK6 is detected in several cancers, including breast and prostate cancer where high PTK6 expression correlates with worse outcome. PTK6 expression is regulated by hypoxia and cell stress, and its kinase activity is induced by several growth factor receptors implicated in cancer including members of the ERBB family, IGFR1 and MET. Activation of PTK6 at the plasma membrane has been associated with the epithelial mesenchymal transition and tumor metastasis. Several lines of evidence indicate that PTK6 has context dependent functions that depend on cell type, intracellular localization and kinase activation. Systemic disruption of PTK6 has been shown to reduce tumorigenesis in mouse models of breast and prostate cancer, and more recently small molecule inhibitors of PTK6 have exhibited efficacy in inhibiting tumor growth in animal models. Here we review data that suggest targeting PTK6 may have beneficial therapeutic outcomes in some cancers.
Collapse
|
7
|
PTEN is a protein phosphatase that targets active PTK6 and inhibits PTK6 oncogenic signaling in prostate cancer. Nat Commun 2017; 8:1508. [PMID: 29142193 PMCID: PMC5688148 DOI: 10.1038/s41467-017-01574-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/29/2017] [Indexed: 12/15/2022] Open
Abstract
PTEN activity is often lost in prostate cancer. We show that the tyrosine kinase PTK6 (BRK) is a PTEN substrate. Phosphorylation of PTK6 tyrosine 342 (PY342) promotes activation, while phosphorylation of tyrosine 447 (PY447) regulates auto-inhibition. Introduction of PTEN into a PTEN null prostate cancer cell line leads to dephosphorylation of PY342 but not PY447 and PTK6 inhibition. Conversely, PTEN knockdown promotes PTK6 activation in PTEN positive cells. Using a variety of PTEN mutant constructs, we show that protein phosphatase activity of PTEN targets PTK6, with efficiency similar to PTP1B, a phosphatase that directly dephosphorylates PTK6 Y342. Conditional disruption of Pten in the mouse prostate leads to tumorigenesis and increased phosphorylation of PTK6 Y342, and disruption of Ptk6 impairs tumorigenesis. In human prostate tumor tissue microarrays, loss of PTEN correlates with increased PTK6 PY342 and poor outcome. These data suggest PTK6 activation promotes invasive prostate cancer induced by PTEN loss. PTEN is often lost in prostate cancer. In this study, the authors show that PTEN can act as a protein phosphatase that targets active PTK6, thereby regulating its oncogenic signaling in prostate cancer progression.
Collapse
|
8
|
Mathur PS, Gierut JJ, Guzman G, Xie H, Xicola RM, Llor X, Chastkofsky MI, Perekatt AO, Tyner AL. Kinase-Dependent and -Independent Roles for PTK6 in Colon Cancer. Mol Cancer Res 2016; 14:563-73. [PMID: 26983689 DOI: 10.1158/1541-7786.mcr-15-0450] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/07/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Disruption of the gene encoding Protein Tyrosine Kinase 6 (Ptk6) delayed differentiation and increased growth in the mouse intestine. However, Ptk6-null mice were also resistant to azoxymethane-induced colon tumorigenesis. To further explore functions of PTK6 in colon cancer, expression of epithelial and mesenchymal markers, as well as proliferation, migration, and xenograft tumor growth, was examined in human colon tumor cell lines with knockdown or overexpression of PTK6. PTK6 protein, transcript, and activation were also examined in a human colon tumor tissue array, using immunohistochemistry and qRT-PCR. Knockdown of PTK6 led to the epithelial-mesenchymal transition (EMT) in SW480 and HCT116 cells, whereas overexpression of PTK6 in SW620 cells restored an epithelial phenotype in a kinase-independent manner. PTK6 knockdown also increased xenograft tumor growth of SW480 cells, suggesting tumor suppressor functions. In clinical specimens, PTK6 expression was highest in normal differentiated epithelial cells and reduced in tumors. In contrast, overexpression of constitutively active PTK6 promoted STAT3 and ERK5 activation in colon cancer cells, and endogenous PTK6 promoted cell survival and oncogenic signaling in response to DNA-damaging treatments. These data indicate that PTK6 has complex, context-specific functions in colon cancer; PTK6 promotes the epithelial phenotype to antagonize the EMT in a kinase-independent manner, whereas activation of PTK6 promotes oncogenic signaling. IMPLICATIONS Understanding context-specific functions of PTK6 is important, because although it promotes cell survival and oncogenic signaling after DNA damage, expression of PTK6 in established tumors may maintain the epithelial phenotype, preventing tumor progression. Mol Cancer Res; 14(6); 563-73. ©2016 AACR.
Collapse
Affiliation(s)
- Priya S Mathur
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Jessica J Gierut
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Hui Xie
- Department of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois
| | - Rosa M Xicola
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Xavier Llor
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Michael I Chastkofsky
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Ansu O Perekatt
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Angela L Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
9
|
PTK6/BRK is expressed in the normal mammary gland and activated at the plasma membrane in breast tumors. Oncotarget 2015; 5:6038-48. [PMID: 25153721 PMCID: PMC4171611 DOI: 10.18632/oncotarget.2153] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein Tyrosine kinase 6 (PTK6/BRK) is overexpressed in the majority of human breast tumors and breast tumor cell lines. It is also expressed in normal epithelial linings of the gastrointestinal tract, skin, and prostate. To date, expression of PTK6 has not been extensively examined in the normal human mammary gland. We detected PTK6 mRNA and protein expression in the immortalized normal MCF-10A human mammary gland epithelial cell line, and examined PTK6 expression and activation in a normal human breast tissue microarray, as well as in human breast tumors. Phosphorylation of tyrosine residue 342 in the PTK6 activation loop corresponds with its activation. Similar to findings in the prostate, we detect nuclear and cytoplasmic PTK6 in normal mammary gland epithelial cells, but no phosphorylation of tyrosine residue 342. However, in human breast tumors, striking PTK6 expression and phosphorylation of tyrosine 342 is observed at the plasma membrane. PTK6 is expressed in the normal human mammary gland, but does not appear to be active and may have kinase-independent functions that are distinct from its cancer promoting activities at the membrane. Understanding consequences of PTK6 activation at the plasma membrane may have implications for developing novel targeted therapies against this kinase.
Collapse
|
10
|
Peng M, Ball-Kell SM, Tyner AL. Protein tyrosine kinase 6 promotes ERBB2-induced mammary gland tumorigenesis in the mouse. Cell Death Dis 2015; 6:e1848. [PMID: 26247733 PMCID: PMC4558503 DOI: 10.1038/cddis.2015.210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 12/13/2022]
Abstract
Protein tyrosine kinase 6 (PTK6) expression, activation, and amplification of the PTK6 gene have been reported in ERBB2/HER2-positive mammary gland cancers. To explore contributions of PTK6 to mammary gland tumorigenesis promoted by activated ERBB2, we crossed Ptk6−/− mice with the mouse mammary tumor virus-ERBB2 transgenic mouse line expressing activated ERBB2 and characterized tumor development and progression. ERBB2-induced tumorigenesis was significantly delayed and diminished in mice lacking PTK6. PTK6 expression was induced in the mammary glands of ERBB2 transgenic mice before tumor development and correlated with activation of signal transducer and activator of transcription 3 (STAT3) and increased proliferation. Disruption of PTK6 impaired STAT3 activation and proliferation. Phosphorylation of the PTK6 substrates focal adhesion kinase (FAK) and breast cancer anti-estrogen resistance 1 (BCAR1; p130CAS) was decreased in Ptk6−/− mammary gland tumors. Reduced numbers of metastases were detected in the lungs of Ptk6−/− mice expressing activated ERBB2, compared with wild-type ERBB2 transgenic mice. PTK6 activation was detected at the edges of ERBB2-positive tumors. These data support roles for PTK6 in both ERBB2-induced mammary gland tumor initiation and metastasis, and identify STAT3, FAK, and BCAR1 as physiologically relevant PTK6 substrates in breast cancer. Including PTK6 inhibitors as part of a treatment regimen could have distinct benefits in ERBB2/HER2-positive breast cancers.
Collapse
Affiliation(s)
- M Peng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - S M Ball-Kell
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - A L Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Ono H, Basson MD, Ito H. PTK6 Potentiates Gemcitabine-Induced Apoptosis by Prolonging S-phase and Enhancing DNA Damage in Pancreatic Cancer. Mol Cancer Res 2015; 13:1174-1184. [PMID: 26013168 DOI: 10.1158/1541-7786.mcr-15-0034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Protein Tyrosine Kinase 6 (PTK6) is a non-receptor-type tyrosine kinase known to be expressed in various cancers, including pancreatic cancer. The role of PTK6 in cancer chemoresistance remains unclear. Therefore, it was hypothesized that PTK6 mechanistically regulates gemcitabine resistance in pancreatic cancer. Gemcitabine treatment stimulated endogenous PTK6 overexpression in MIAPaCa2 and Panc1 cells. PTK6 gene silencing increased cell survival after gemcitabine treatment and decreased apoptosis, whereas PTK6 overexpression decreased cell survival and increased apoptosis. Selection for gemcitabine resistance revealed substantially lower PTK6 expression in the gemcitabine-resistant subclones compared with the parental lines, while restoring PTK6 rescued gemcitabine sensitivity. Gemcitabine induced phosphorylation of H2AX (γ-H2AX) and ataxia-telangiectasia mutated kinase (pATM), specific markers for DNA double-strand breaks. Both gemcitabine-induced phosphorylation of H2AX and ATM were reduced by PTK6 knockdown and increased by PTK6 overexpression. PTK6 overexpression also increased the S-phase fraction 48 hours after gemcitabine treatment. Although gemcitabine activated both caspase-8 (CASP8) and caspase-9 (CASP9), the effect of PTK6 on gemcitabine-induced apoptosis required CASP8 but not CASP9. In mouse xenografts, PTK6 overexpression in subcutaneous tumors attenuated tumor growth after gemcitabine treatment. In conclusion, PTK6 prolongs S-phase and increases the ability of gemcitabine to cause DNA damage in vitro and in vivo. IMPLICATIONS PTK6 affects cell cycle and DNA damage, thus making it an important therapeutic target to improve the outcomes of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hiroaki Ono
- Department of Surgery, Michigan State University, College of Human Medicine, Lansing, Michigan
| | - Marc D Basson
- Department of Surgery, Michigan State University, College of Human Medicine, Lansing, Michigan
| | - Hiromichi Ito
- Department of Surgery, Michigan State University, College of Human Medicine, Lansing, Michigan.
| |
Collapse
|
12
|
Goel RK, Lukong KE. Tracing the footprints of the breast cancer oncogene BRK - Past till present. Biochim Biophys Acta Rev Cancer 2015; 1856:39-54. [PMID: 25999240 DOI: 10.1016/j.bbcan.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 04/22/2015] [Accepted: 05/09/2015] [Indexed: 02/07/2023]
Abstract
Twenty years have passed since the non-receptor tyrosine kinase, Breast tumor kinase (BRK) was cloned. While BRK is evolutionarily related to the Src family kinases it forms its own distinct sub-family referred here to as the BRK family kinases. The detection of BRK in over 60% of breast carcinomas two decades ago and more remarkably, its absence in the normal mammary gland attributed to its recognition as a mammary gland-specific potent oncogene and led BRK researchers on a wild chase to characterize the role of the enzyme in breast cancer. Where has this chase led us? An increasing number of studies have been focused on understanding the cellular roles of BRK in breast carcinoma and normal tissues. A majority of such studies have proposed an oncogenic function of BRK in breast cancers. Thus far, the vast evidence gathered highlights a regulatory role of BRK in critical cellular processes driving tumor formation such as cell proliferation, migration and metastasis. Functional characterization of BRK has identified several signaling proteins that work in concert with the enzyme to sustain such a malignant phenotype. As such targeting the non-receptor tyrosine kinase has been proposed as an attractive approach towards therapeutic intervention. Yet much remains to be explored about (a) the discrepant expression levels of BRK in cancer versus normal conditions, (b) the dependence on the enzymatic activity of BRK to promote oncogenesis and (c) an understanding of the normal physiological roles of the enzyme. This review outlines the advances made towards understanding the cellular and physiological roles of BRK, the mechanisms of action of the protein and its therapeutic significance, in the context of breast cancer.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
13
|
Protein Tyrosine Kinase 6 Regulates UVB-Induced Signaling and Tumorigenesis in Mouse Skin. J Invest Dermatol 2015; 135:2492-2501. [PMID: 25938342 PMCID: PMC4567952 DOI: 10.1038/jid.2015.166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/06/2015] [Accepted: 04/21/2015] [Indexed: 12/12/2022]
Abstract
Protein Tyrosine Kinase 6 (PTK6, also called BRK) is an intracellular tyrosine kinase expressed in the epithelial linings of the gastrointestinal tract and skin, where it is expressed in nondividing differentiated cells. We found PTK6 expression increases in the epidermis following UVB treatment. To evaluate the roles of PTK6 in the skin following UVB-induced damage, we exposed back skin of Ptk6 +/+ and Ptk6−/− SENCAR mice to incremental doses of UVB for thirty weeks. Wild type mice were more sensitive to UVB and exhibited increased inflammation and greater activation of STAT3 than Ptk6−/− mice. Disruption of Ptk6 did not have an impact on proliferation, although PTK6 was expressed and activated in basal epithelial cells in wild type mice following UVB treatment. However, wild type mice exhibited shortened tumor latency and increased tumor load compared with Ptk6−/− mice, and STAT3 activation was increased in these tumors. PTK6 activation was detected in UVB-induced tumors, and this correlated with increased activating phosphorylation of FAK and BCAR1. Activation of PTK6 was also detected in human squamous cell carcinomas of the skin. Although PTK6 plays roles in normal differentiation, it also contributes to UVB induced injury and tumorigenesis in vivo.
Collapse
|
14
|
Jha P, Lu D, Yuan Y, Xu S. Signature of positive selection of PTK6 gene in East Asian populations: a cross talk for Helicobacter pylori invasion and gastric cancer endemicity. Mol Genet Genomics 2015; 290:1741-52. [PMID: 25838168 DOI: 10.1007/s00438-015-1032-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/20/2015] [Indexed: 01/22/2023]
Abstract
Analysis of natural selection events is an attractive strategy for identification of functional variants shaped by gene-environmental interactions and human adaptation. Here, we identified PTK6, a Src-related tyrosine kinase gene, underlying positive selection in East Asian populations. Interestingly, PTK6 variant showed significant correlation with gastric cancer incidences which was the highest in East Asian populations. The high prevalence of gastric cancer in East Asians was also believed to be strongly affected by Helicobacter pylori infection and dietary habit. Therefore, we speculated a competitive interaction of cancer-associated molecules for activation/reduction, where PTK6 likely plays a role through CagA-driven signaling pathway after H. pylori infection. This hypothesis was also supported by our gene expression analysis and the dating of the selective event which was estimated to be ~16,500 years ago, much later than H. pylori invasion in human 50,000 years ago. Establishment of cross talk between PTK6 and CagA by functional studies may further elucidate the underlying biology of H. pylori-mediated gastric cancer.
Collapse
Affiliation(s)
- Pankaj Jha
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dongsheng Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuan Yuan
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTec University, Shanghai, 200031, China.
- Collaborative Innovation Center of Genetics and Development, Shanghai, 200438, China.
| |
Collapse
|
15
|
Hussain HA, Harvey AJ. Evolution of breast cancer therapeutics: Breast tumour kinase’s role in breast cancer and hope for breast tumour kinase targeted therapy. World J Clin Oncol 2014; 5:299-310. [PMID: 25114846 PMCID: PMC4127602 DOI: 10.5306/wjco.v5.i3.299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/25/2014] [Accepted: 06/03/2014] [Indexed: 02/06/2023] Open
Abstract
There have been significant improvements in the detection and treatment of breast cancer in recent decades. However, there is still a need to develop more effective therapeutic techniques that are patient specific with reduced toxicity leading to further increases in patients’ overall survival; the ongoing progress in understanding recurrence, resistant and spread also needs to be maintained. Better understanding of breast cancer pathology, molecular biology and progression as well as identification of some of the underlying factors involved in breast cancer tumourgenesis and metastasis has led to the identification of novel therapeutic targets. Over a number of years interest has risen in breast tumour kinase (Brk) also known as protein tyrosine kinase 6; the research field has grown and Brk has been described as a desirable therapeutic target in relation to tyrosine kinase inhibition as well as disruption of its kinase independent activity. This review will outline the current “state of play” with respect to targeted therapy for breast cancer, as well as discussing Brk’s role in the processes underlying tumour development and metastasis and its potential as a therapeutic target in breast cancer.
Collapse
|
16
|
Protein tyrosine kinase 6 regulates mammary gland tumorigenesis in mouse models. Oncogenesis 2013; 2:e81. [PMID: 24323291 PMCID: PMC3940860 DOI: 10.1038/oncsis.2013.43] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 12/26/2022] Open
Abstract
Protein tyrosine kinase 6 (PTK6, also called BRK) is an intracellular tyrosine kinase expressed in the majority of human breast tumors and breast cancer cell lines, but its expression has not been reported in normal mammary gland. To study functions of PTK6 in vivo, we generated and characterized several transgenic mouse lines with expression of human PTK6 under control of the mouse mammary tumor virus (MMTV) long terminal repeat. Ectopic active PTK6 was detected in luminal epithelial cells of mature transgenic mammary glands. Lines expressing the MMTV-PTK6 transgene exhibited more than a two-fold increase in mammary gland tumor formation compared with nontransgenic control animals. PTK6 activates signal transducer and activator of transcription 3 (STAT3), and active STAT3 was detected in PTK6-positive mammary gland epithelial cells. Endogenous mouse PTK6 was not detected in the normal mouse mammary gland, but it was induced in mouse mammary gland tumors of different origin, including spontaneous tumors that developed in control mice, and tumors that formed in PTK6, H-Ras, ERBB2 and PyMT transgenic models. MMTV-PTK6 and MMTV-ERBB2 transgenic mice were crossed to explore crosstalk between PTK6 and ERBB2 signaling in vivo. We found no significant increase in tumor incidence, size or metastasis in ERBB2/PTK6 double transgenic mice. Although we detected increased proliferation in ERBB2/PTK6 double transgenic tumors, an increase in apoptosis was also observed. MMTV-PTK6 clearly promotes mammary gland tumorigenesis in vivo, but its impact may be underrepresented in our transgenic models because of induction of endogenous PTK6 expression.
Collapse
|
17
|
Zheng Y, Wang Z, Bie W, Brauer PM, White BEP, Li J, Nogueira V, Raychaudhuri P, Hay N, Tonetti DA, Macias V, Kajdacsy-Balla A, Tyner AL. PTK6 activation at the membrane regulates epithelial-mesenchymal transition in prostate cancer. Cancer Res 2013; 73:5426-5437. [PMID: 23856248 PMCID: PMC3766391 DOI: 10.1158/0008-5472.can-13-0443] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The intracellular tyrosine kinase protein tyrosine kinase 6 (PTK6) lacks a membrane-targeting SH4 domain and localizes to the nuclei of normal prostate epithelial cells. However, PTK6 translocates from the nucleus to the cytoplasm in human prostate tumor cells. Here, we show that while PTK6 is located primarily within the cytoplasm, the pool of active PTK6 in prostate cancer cells localizes to membranes. Ectopic expression of membrane-targeted active PTK6 promoted epithelial-mesenchymal transition in part by enhancing activation of AKT, thereby stimulating cancer cell migration and metastases in xenograft models of prostate cancer. Conversely, siRNA-mediated silencing of endogenous PTK6 promoted an epithelial phenotype and impaired tumor xenograft growth. In mice, PTEN deficiency caused endogenous active PTK6 to localize at membranes in association with decreased E-cadherin expression. Active PTK6 was detected at membranes in some high-grade human prostate tumors, and PTK6 and E-cadherin expression levels were inversely correlated in human prostate cancers. In addition, high levels of PTK6 expression predicted poor prognosis in patients with prostate cancer. Our findings reveal novel functions for PTK6 in the pathophysiology of prostate cancer, and they define this kinase as a candidate therapeutic target. Cancer Res; 73(17); 5426-37. ©2013 AACR.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Zebin Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Wenjun Bie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Patrick M. Brauer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Bethany E. Perez White
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Jing Li
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Veronique Nogueira
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| | - Debra A. Tonetti
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Virgilia Macias
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60607
| | | | - Angela L. Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
18
|
Zheng Y, Tyner AL. Context-specific protein tyrosine kinase 6 (PTK6) signalling in prostate cancer. Eur J Clin Invest 2013; 43:397-404. [PMID: 23398121 PMCID: PMC3602132 DOI: 10.1111/eci.12050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is distantly related to SRC family kinases. PTK6 is nuclear in normal prostate epithelia, but nuclear localization is lost in prostate tumours. Increased expression of PTK6 is detected in human prostate cancer, especially at metastatic stages, and in other types of cancers, including breast, colon, head and neck cancers, and serous carcinoma of the ovary. MATERIALS AND METHODS Potential novel substrates of PTK6 identified by mass spectrometry were validated in vitro. The significance of PTK6-induced phosphorylation of these substrates was addressed using human prostate cell lines by knockdown of endogenous PTK6 or overexpression of targeted PTK6 to different intracellular compartments. RESULTS We identified AKT, p130CAS and focal adhesion kinase (FAK) as novel PTK6 substrates and demonstrated their roles in promoting cell proliferation, migration and resistance to anoikis. In prostate cancer cells, active PTK6 is primarily associated with membrane compartments, although the majority of total PTK6 is localized within the cytoplasm. Ectopic expression of membrane-targeted PTK6 transforms immortalized fibroblasts. Knockdown of endogenous cytoplasmic PTK6 in PC3 prostate cancer cells impairs proliferation, migration and anoikis resistance. However, re-introduction of PTK6 into the nucleus significantly decreases cell proliferation, suggesting context-specific functions for nuclear PTK6. CONCLUSIONS In human prostate cancer, elevated PTK6 expression, translocation of PTK6 from the nucleus to the cytoplasm and its activation at the plasma membrane contribute to increased phosphorylation and activation of its substrates such as AKT, p130CAS and FAK, thereby promoting prostate cancer progression.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
19
|
Zheng Y, Gierut J, Wang Z, Miao J, Asara JM, Tyner AL. Protein tyrosine kinase 6 protects cells from anoikis by directly phosphorylating focal adhesion kinase and activating AKT. Oncogene 2012; 32:4304-12. [PMID: 23027128 PMCID: PMC3940264 DOI: 10.1038/onc.2012.427] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/24/2012] [Accepted: 08/04/2012] [Indexed: 01/18/2023]
Abstract
Protein tyrosine kinase 6 (PTK6) is a non-receptor tyrosine kinase expressed in epithelial cancers. Disruption of Ptk6 decreases AOM-induced colon tumorigenesis in mice by preventing STAT3 activation. Relocalization of PTK6 in prostate cancers contributes to increased growth. Although not expressed in normal breast or ovary, PTK6 promotes anchorage-independent survival of breast and ovarian tumor cells. We identified several potential PTK6 substrates in the human SW620 colon cancer cell line using mass spectrometry, including FAK (focal adhesion kinase). We show that FAK is a direct substrate of PTK6 in vitro and in vivo. Expression of membrane targeted active PTK6 (Palm-PTK6-YF) induces constitutive activation of FAK and cell morphology changes, which are independent of SRC family kinases in Src−/−, Yes−/−, Fyn−/− (SYF) mouse embryonic fibroblasts (MEFs). Palm-PTK6-YF expressing SYF cells are transformed and overcome contact inhibition, form colonies in transformation assays, proliferate in suspension, and form tumors in a xenograft model. Expression of FAK and Palm-PTK6-YF in Fak−/− MEFs synergistically activates AKT and protects cells against anoikis. However, expression of Palm-PTK6-YF in Akt1/2−/− MEFs fails to protect cells from anoikis, indicating AKT is critical in PTK6 and FAK mediated survival signaling. In a conditional Pten knockout murine prostate cancer model, we identify prostate epithelial cells with enhanced activation of endogenous PTK6 and FAK at the plasma membrane. Knockdown of PTK6 in the PC3 human prostate cancer cell line disrupts FAK and AKT activation and promotes anoikis, which can be rescued by exogenous expression of FAK. Our data reveal important roles for a PTK6-FAK-AKT signaling axis in promoting anchorage-independent cell survival.
Collapse
Affiliation(s)
- Y Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607, USA
| | | | | | | | | | | |
Collapse
|
20
|
Gierut JJ, Mathur PS, Bie W, Han J, Tyner AL. Targeting protein tyrosine kinase 6 enhances apoptosis of colon cancer cells following DNA damage. Mol Cancer Ther 2012; 11:2311-20. [PMID: 22989419 DOI: 10.1158/1535-7163.mct-12-0009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that has distinct functions in normal epithelia and cancer. It is expressed primarily in nondividing epithelial cells in the normal intestine, where it promotes differentiation. However, after DNA damage, PTK6 is induced in proliferating progenitor cells, where it contributes to apoptosis. We examined links between PTK6 and the tumor suppressor p53 in the isogenic p53(+/+) and p53(-/-) HCT116 colon tumor cell lines. We found that p53 promotes expression of PTK6 in HCT116 cells, and short hairpin RNA-mediated knockdown of PTK6 leads to reduced induction of the cyclin-dependent kinase inhibitor p21. Knockdown of PTK6 enhances apoptosis in HCT116 cells with wild-type p53, following treatment of cells with γ-radiation, doxorubicin, or 5-fluorouracil. No differences in the activation of AKT, ERK1/2, or ERK5, known PTK6-regulated prosurvival signaling proteins, were detected. However, activity of STAT3, a PTK6 substrate, was impaired in cells with knockdown of PTK6 following DNA damage. In contrast to its role in the normal epithelium following DNA damage, PTK6 promotes survival of cancer cells with wild-type p53 by promoting p21 expression and STAT3 activation. Targeting PTK6 in combination with use of chemotherapeutic drugs or radiation may enhance death of colon tumor cells with wild-type p53.
Collapse
Affiliation(s)
- Jessica J Gierut
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, M/C 669, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|