1
|
Chatterjee O, Kaur GA, Shukla N, Balayan S, Singh PK, Chatterjee S, Tiwari A. Multifaceted arsenal in SELEX nanomedicine. Adv Colloid Interface Sci 2025; 342:103540. [PMID: 40344950 DOI: 10.1016/j.cis.2025.103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Aptamers, short oligonucleotide sequences that bind specifically to cellular proteins and receptors, are emerging as versatile tools in molecular nanomedicine. Unlike passive tumor targeting via the enhanced permeability and retention (EPR) effect, aptamers enable precise drug delivery, enhancing therapeutic efficacy while minimizing side effects. Developed through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process, aptamers offer compact size, robust structure, chemical versatility, and cost-effective synthesis. They serve as effective delivery vehicles for therapeutic molecules, including miRNA, siRNA, and small-molecule drugs, and function as antibody-like ligands for applications in cancer, diabetes, and autoimmune disorders. Since the approval of Macugen, the first aptamer targeting VEGF, aptamers have also shown promise as diagnostic sensors and theranostic agents. This review explores SELEX-derived aptamers in nanomedicine, focusing on their therapeutic and diagnostic roles, particularly in precision cancer therapies. It also addresses challenges such as degradation and clinical translation alongside prospects in vaccines, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Oishika Chatterjee
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 590 53, Sweden; Department of Biological Sciences, Bose Institute Unified Academic Campus EN 80, Sector 5, Bidhan Nagar (Salt Lake City) Kolkata 700 091, WB, India
| | - Gun Anit Kaur
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 590 53, Sweden
| | - Nutan Shukla
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 590 53, Sweden
| | - Sapna Balayan
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 590 53, Sweden
| | - Pravin Kumar Singh
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 590 53, Sweden
| | - Subhrangsu Chatterjee
- Department of Biological Sciences, Bose Institute Unified Academic Campus EN 80, Sector 5, Bidhan Nagar (Salt Lake City) Kolkata 700 091, WB, India.
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 590 53, Sweden.
| |
Collapse
|
2
|
Anwar AA, Jalan-Sakrikar N, Huebert RC. LncRNAs, RNA Therapeutics, and Emerging Technologies in Liver Pathobiology. Semin Liver Dis 2025; 45:1-14. [PMID: 39603269 DOI: 10.1055/a-2490-1921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The field of ribonucleic acid (RNA) biology has revealed an array of noncoding RNA species, particularly long noncoding RNAs (lncRNAs), which play crucial roles in liver disease pathogenesis. This review explores the diverse functions of lncRNAs in liver pathology, including metabolic-associated steatotic liver disease, hepatocellular carcinoma, alcohol-related liver disease, and cholangiopathies such as primary sclerosing cholangitis and cholangiocarcinoma. We highlight key lncRNAs that regulate lipid metabolism, inflammation, fibrosis, and oncogenesis in the liver, demonstrating their diagnostic and therapeutic potential. Emerging RNA-based therapies, such as mRNA therapy, RNA interference, and antisense oligonucleotides, offer approaches to modulate lncRNA activity and address liver disease at a molecular level. Advances in sequencing technologies and bioinformatics pipelines are simultaneously enabling the identification and functional characterization of novel lncRNAs, driving innovation in personalized medicine. In conclusion, this review highlights the potential of lncRNAs as biomarkers and therapeutic targets in liver disease and emphasizes the need for further research into their regulatory mechanisms and clinical applications.
Collapse
Affiliation(s)
- Abid A Anwar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
- Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota
| | - Robert C Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota
- Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic and Foundation, Rochester, Minnesota
| |
Collapse
|
3
|
Dilek ON, Arslan Kahraman Dİ, Kahraman G. Carcinoembryonic antigen in the diagnosis, treatment, and follow-up of focal liver lesions. World J Gastrointest Surg 2024; 16:999-1007. [PMID: 38690060 PMCID: PMC11056666 DOI: 10.4240/wjgs.v16.i4.999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/22/2024] Open
Abstract
In this editorial review, we comment on the article published in the recent issue of the World Journal of Gastrointestinal Surgery. Carcinoembryonic antigen (CEA) is a fetal glycoprotein and can be secreted in very small amounts from healthy adults after birth. CEA is widely used not only for diagnostic tumor markers but also importantly for the management of some gastrointestinal tumors. The most common clinical use is surveillance for the monitoring of colorectal carcinoma. However, CEA can become elevated in several malign or benign characterized pathologies. Serum CEA level may vary depending on the location of the lesion, whether it metastasizes or not, and its histopathological characteristics. It has been determined that cases with high preoperative CEA have a more aggressive course and the risk of metastasis to the lymph tissue and liver increases. In this editorial review, we focused on evaluating the role of CEA in clinical practice with a holistic approach, including the diagnostic and prognostic significance of CEA in patients with focal liver lesions, the role of CEA in follow-up after definitive surgery, and also hepatic resection for metastasis, and the management of all patients with raised CEA.
Collapse
Affiliation(s)
- Osman Nuri Dilek
- Department of Surgery, İzmir Katip Celebi University, School of Medicine, İzmir 35150, Turkey
| | | | - Gökhan Kahraman
- Department of Radiology, Suluova State Hospital, Amasya 5500, Turkey
| |
Collapse
|
4
|
Nguyen MN, Than VT. RNA therapeutics in cancer treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:197-223. [PMID: 38359999 DOI: 10.1016/bs.pmbts.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA therapeutics are a class of drugs that use RNA molecules to treat diseases, including cancer. RNA therapeutics work by targeting specific genes or proteins involved in the disease process, with the aim of blocking or altering their activity to ultimately halt or reverse the disease progression. The use of RNA therapeutics in cancer treatment has shown great potential, as they offer the ability to specifically target cancer cells while leaving healthy cells intact. This is in contrast to traditional chemotherapy and radiation treatments, which can damage healthy cells and cause unpleasant side effects. The field of RNA therapeutics is rapidly advancing, with several types of RNA molecules being developed for cancer treatment, including small interfering RNA, microRNA, mRNA, and RNA aptamers. Each type of RNA molecule has unique properties and mechanisms of action, allowing for targeted and personalized cancer treatments. In this chapter, we will explore the different types of RNA therapeutics used in cancer treatment, their mechanisms of action, and their potential applications in treating different types of cancer. We will also discuss the challenges and opportunities in the development and research of RNA therapeutics for cancer, as well as the future outlook for this promising field.
Collapse
Affiliation(s)
- Minh Nam Nguyen
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam; Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, National University HCMC, Ho Chi Minh City, Vietnam.
| | - Van Thai Than
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
5
|
Li H, Yao S, Wang C, Bai C, Zhou P. Diverse applications and development of aptamer detection technology. ANAL SCI 2023; 39:1627-1641. [PMID: 37700097 DOI: 10.1007/s44211-023-00409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/04/2023] [Indexed: 09/14/2023]
Abstract
Aptamers have received extensive attention in recent years because of their advantages of high specificity, high sensitivity and low immunogenicity. Aptamers can perform almost all functions of antibodies through the combination of spatial structure and target, which are called "chemical antibodies". At present, aptamers have been widely used in cell imaging, new drug development, disease treatment, microbial detection and other fields. Due to the diversity of modifications, aptamers can be combined with different detection technologies to construct aptasensors. This review focuses on the diversity of aptamers in the field of detection and the development of aptamer-based detection technology and proposes new challenges for aptamers in this field.
Collapse
Affiliation(s)
- Haozheng Li
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Shibo Yao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Cui Wang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Pingkun Zhou
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
6
|
Kara N, Ayoub N, Ilgu H, Fotiadis D, Ilgu M. Aptamers Targeting Membrane Proteins for Sensor and Diagnostic Applications. Molecules 2023; 28:molecules28093728. [PMID: 37175137 PMCID: PMC10180177 DOI: 10.3390/molecules28093728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Many biological processes (physiological or pathological) are relevant to membrane proteins (MPs), which account for almost 30% of the total of human proteins. As such, MPs can serve as predictive molecular biomarkers for disease diagnosis and prognosis. Indeed, cell surface MPs are an important class of attractive targets of the currently prescribed therapeutic drugs and diagnostic molecules used in disease detection. The oligonucleotides known as aptamers can be selected against a particular target with high affinity and selectivity by iterative rounds of in vitro library evolution, known as Systematic Evolution of Ligands by EXponential Enrichment (SELEX). As an alternative to antibodies, aptamers offer unique features like thermal stability, low-cost, reuse, ease of chemical modification, and compatibility with various detection techniques. Particularly, immobilized-aptamer sensing platforms have been under investigation for diagnostics and have demonstrated significant value compared to other analytical techniques. These "aptasensors" can be classified into several types based on their working principle, which are commonly electrochemical, optical, or mass-sensitive. In this review, we review the studies on aptamer-based MP-sensing technologies for diagnostic applications and have included new methodological variations undertaken in recent years.
Collapse
Affiliation(s)
- Nilufer Kara
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Nooraldeen Ayoub
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Huseyin Ilgu
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Muslum Ilgu
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
7
|
Li J, Xie S, Qu F, Tan W. Aptasensors for Cancerous Exosome Detection. Methods Mol Biol 2022; 2504:3-20. [PMID: 35467275 DOI: 10.1007/978-1-0716-2341-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancerous exosomes that carry multiple biomarkers are attractive targets for the early diagnosis and therapy of cancer. As one of the powerful molecular recognition tools, aptamers with excellent binding affinity and specificity toward biomarkers have been exploited to construct various aptamer-based biosensors (aptasensors) for exosome detection. Here, we review recent advances in aptasensors for the detection of cancerous exosomes. We first discuss the importance and potential of cancerous exosomes in cancer diagnosis and then summarize some conventional aptasensors from the perspective of biomarker recognition and signal collection strategies. Finally, we comment on the outlook for aptasensor research and new directions for cancerous exosome detection.
Collapse
Affiliation(s)
- Jin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Sitao Xie
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Fengli Qu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, China.
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Tsogtbaatar K, Sousa DA, Ferreira D, Tevlek A, Aydın HM, Çelik E, Rodrigues L. In vitro selection of DNA aptamers against human osteosarcoma. Invest New Drugs 2021; 40:172-181. [PMID: 34383183 DOI: 10.1007/s10637-021-01161-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/03/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Osteosarcoma is a highly malignant bone tumor, most frequently occurring in the rapid bone growth phase. Effective treatment of this disease is hindered by the lack of specific probes for early diagnosis and the fast cancer widespread. METHODS To find such probes, the cell-Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) methodology was implemented against the human osteosarcoma MG-63 cell line towards the selection of new specific aptamers. After 10 rounds of selection, the aptamer DNA pool was Sanger sequenced and the sequences were subjected to a bioinformatic analysis that included sequence alignment, phylogenetic relationship, and secondary structure prediction. RESULTS A DNA aptamer (OS-7.9), with a dissociation constant (Kd) value in the nanomolar range (12.8 ± 0.9 nM), revealed high affinity against the target cells at the physiological temperature. Furthermore, the selected aptamer also recognized lung carcinoma and colon colorectal adenocarcinoma cell lines, which are reported as common metastasis sites of osteosarcoma. CONCLUSIONS These results suggest that OS-7.9 could recognize a common protein expressed in these cancer cells, possibly becoming a potential molecular probe for early diagnosis and targeted therapies for metastatic disease. Moreover, to the best of our knowledge, this was the first attempt to generate a DNA aptamer (OS-7.9 aptamer) against the MG-63-cell line by cell-SELEX.
Collapse
Affiliation(s)
- Khaliunsarnai Tsogtbaatar
- Institute of Science, Hacettepe University, Bioengineering Division, 06800, Ankara, Turkey
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Diana A Sousa
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Debora Ferreira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Atakan Tevlek
- Institute of Science, Hacettepe University, Bioengineering Division, 06800, Ankara, Turkey
| | - Halil Murat Aydın
- Institute of Science, Hacettepe University, Bioengineering Division, 06800, Ankara, Turkey
- Centre for Bioengineering, Hacettepe University, 06800, Ankara, Turkey
| | - Eda Çelik
- Institute of Science, Hacettepe University, Bioengineering Division, 06800, Ankara, Turkey
- Department of Chemical Engineering, Hacettepe University, 06800, Ankara, Turkey
| | - Ligia Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
9
|
Varty K, O’Brien C, Ignaszak A. Breast Cancer Aptamers: Current Sensing Targets, Available Aptamers, and Their Evaluation for Clinical Use in Diagnostics. Cancers (Basel) 2021; 13:cancers13163984. [PMID: 34439139 PMCID: PMC8391819 DOI: 10.3390/cancers13163984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most commonly occurring cancer in women worldwide, and the rate of diagnosis continues to increase. Early detection and targeted treatment towards histological type is crucial to improving outcomes, but current screening methods leave some patients at risk of late diagnosis. The risk of late diagnosis and progressed disease is of particular concern for young women as current screening methods are not recommended early in life. Aptamers are oligonucleotides that can bind with high specificity to target molecules such as proteins, peptides, and other small molecules. They are relatively cheap to produce and are invariable from batch to batch, making them ideal for use in large-scale clinical or screening programs. The use of aptamers for breast cancer screening, diagnosis, and therapeutics is promising, but comparison of these aptamers and their corresponding biomarkers for use in breast cancer is significantly lacking. Here, we compare the currently available aptamers for breast cancer biomarkers and their respective biomarkers, as well as highlight the electrochemical sensors that are in development.
Collapse
|
10
|
Li Z, Fu X, Huang J, Zeng P, Huang Y, Chen X, Liang C. Advances in Screening and Development of Therapeutic Aptamers Against Cancer Cells. Front Cell Dev Biol 2021; 9:662791. [PMID: 34095130 PMCID: PMC8170048 DOI: 10.3389/fcell.2021.662791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/21/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer has become the leading cause of death in recent years. As great advances in medical treatment, emerging therapies of various cancers have been developed. Current treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and targeted therapy. Aptamers are synthetic ssDNA or RNA. They can bind tightly to target molecules due to their unique tertiary structure. It is easy for aptamers to be screened, synthesized, programmed, and chemically modified. Aptamers are emerging targeted drugs that hold great potentials, called therapeutic aptamers. There are few types of therapeutic aptamers that have already been approved by the US Food and Drug Administration (FDA) for disease treatment. Now more and more therapeutic aptamers are in the stage of preclinical research or clinical trials. This review summarized the screening and development of therapeutic aptamers against different types of cancer cells.
Collapse
Affiliation(s)
- Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Peiyuan Zeng
- Department of Biochemistry, University of Victoria, Victoria, BC, Canada
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Yi K, Rong Y, Huang L, Tang X, Zhang Q, Wang W, Wu J, Wang F. Aptamer-Exosomes for Tumor Theranostics. ACS Sens 2021; 6:1418-1429. [PMID: 33755415 DOI: 10.1021/acssensors.0c02237] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As carriers of biomolecules (proteins, nucleic acids, and lipids) from parent cells, exosomes play a significant role in physiology and pathology. In any diseased state, the morphology of the released exosomes remained similar. The contents of exosomes change depending on the disease or its stage; thus, exosomes are generally considered as a "source of biomarkers". Therefore, they are considered promising biomarkers for the diagnosis and prognosis of tumors. As natural delivery vehicles, exosomes can protect their cargo from immune clearance and deliver them to other cells through membrane fusion. After being genetically edited at the cell or exosome level, exosomes can be used for treatment with aptamers. Aptamers are short stretches of oligonucleotide sequences or short polypeptides that have been selected in vitro or in vivo, and have a wide range of targets and show excellent binding affinity and specificity. Aptamers have been widely used as molecular probes, and the combination of aptamers with exosomes has become a new direction for exosome-related research and therapeutic development. Here, we summarized various applications of exosomes and aptamers in cancer research, and further analyzed their combination as an "aptamer-exosome". Finally, we propose future directions for the aptamer-exosome in the precise diagnosis or personalized treatment of cancer.
Collapse
Affiliation(s)
- Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Xuan Tang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Qian Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Wei Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Jianyuan Wu
- Clinical Trial Center of Zhongnan Hospital, Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, No. 169 Donghu Road, Wuchang District, Wuhan 430071, P.R. China
| |
Collapse
|
12
|
Clua A, Fàbrega C, García-Chica J, Grijalvo S, Eritja R. Parallel G-quadruplex Structures Increase Cellular Uptake and Cytotoxicity of 5-Fluoro-2'-deoxyuridine Oligomers in 5-Fluorouracil Resistant Cells. Molecules 2021; 26:molecules26061741. [PMID: 33804620 PMCID: PMC8003610 DOI: 10.3390/molecules26061741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Fluoropyrimidines, such as 5-fluorouracil (5-FU) and related prodrugs have been considered first-line chemotherapy agents for the treatment of colorectal cancer. However, poor specificity and tumor cell resistance remain major limiting bottlenecks. G-quadruplexes, have been suggested as preferred nanostructures for enhancing cellular uptake mediated by G-quadruplex binding proteins which are abundant at the membranes of some tumor cells. In the current study, we propose a new strategy to deliver 5-fluoro-2′-deoxyuridine (5-FdU) monophosphate, the main active drug from 5-FU derivatives that may circumvent the cellular mechanisms of FU-resistant cancer cells. Two G-quadruplexes delivery systems containing four and six G-tetrads ((TG4T) and (TG6T)) linked to a FdU oligonucleotide were synthesized. Biophysical studies show that the G-quadruplex parallel structures are not affected by the incorporation of the 5 units of FdU at the 5’-end. Internalization studies confirmed the ability of such G-quadruplex nanostructures to facilitate the transport of the FdU pentamer and increase its cytotoxic effect relative to conventional FU drug in FU-resistant colorectal cancer cells. These results suggest that FdU oligomers linked to G-quadruplex parallel sequences may be a promising strategy to deliver fluoropyrimidines to cancer cells.
Collapse
Affiliation(s)
- Anna Clua
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Carme Fàbrega
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Jesús García-Chica
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
| | - Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), ) Jordi Girona 18-26, E-08034 Barcelona, Spain; (A.C.); (C.F.); (J.G.-C.); (S.G.)
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-006-145
| |
Collapse
|
13
|
Lin M, Zhang J, Wan H, Yan C, Xia F. Rationally Designed Multivalent Aptamers Targeting Cell Surface for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9369-9389. [PMID: 33146988 DOI: 10.1021/acsami.0c15644] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Specific interactions between ligands and receptors on cell surface play an important role in the cell biological process. Nucleic acid aptamers as commonly used ligands enable specific recognition and tight binding to membrane protein receptors for modulation of cell fate. Therefore, molecular probes with aptamers can be applied for cancer diagnosis and targeted therapy by targeting overexpression membrane proteins of cancer cells. However, because of their fast degradation and rapid glomerulus clearance in vivo, the applications of aptamers in physiological conditions remain challenged. Inspired by natural multivalent interactions, many approaches have been developed to construct multivalent aptamers to improve the performance of aptamers in complex matrices with higher binding affinity, more stability, and longer circulation time. In this review, we first introduce the aptamer generation from purified protein-based SELEX and whole cell-based SELEX for targeting the cell surface. We then highlight the approaches to fabricate multivalent aptamers and discuss their properties. By integrating different materials (including inorganic nanomaterials, diacyllipid, polymeric nanoparticles, and DNA nanostructures) as scaffolds with an interface modification technique, we have summarized four kinds of multivalent aptamers. After that, representative applications in biosensing and targeted therapy are illustrated to show the elevated performance of multivalent aptamers. In addition, we analyze the challenges and opportunities for the clinical practices of multivalent aptamers.
Collapse
Affiliation(s)
- Meihua Lin
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jian Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hao Wan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chengyang Yan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
14
|
Shi X, Chen L, Chen S, Sun D. Electrochemical aptasensors for the detection of hepatocellular carcinoma-related biomarkers. NEW J CHEM 2021. [DOI: 10.1039/d1nj01042e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent progress in electrochemical aptasensors for the detection of HCC-related biomarkers, including cancer cells, proteins, cell-derived exosomes, and nucleic acids, is reviewed.
Collapse
Affiliation(s)
- Xianhua Shi
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Linxi Chen
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Siyi Chen
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
- Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| |
Collapse
|
15
|
Cai Q, Zhou W, Li J, Ou X, Chen C, Cai S, He W, Xu J, He Y. Association of Preoperative Serum Carcinoembryonic Antigen and Gastric Cancer Recurrence: A Large Cohort Study. J Cancer 2021; 12:397-403. [PMID: 33391436 PMCID: PMC7738990 DOI: 10.7150/jca.47899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023] Open
Abstract
Background and Aim: Measuring postoperative carcinoembryonic antigen (CEA) is recommended by guidelines to help detecting recurrence of gastric cancer patients. However, the prognostic significance of elevated preoperative CEA is unclear. This study aims to investigate whether patients with elevated preoperative CEA have a higher risk of recurrence than patients with normal preoperative CEA. Methods: We conducted a retrospective cohort study at a gastric cancer center in South China. Consecutive patients with stage I to III gastric adenocarcinoma who underwent curative resection at the center from January 2001 to February 2016 were identified. Patients were grouped into two cohorts: normal preoperative CEA (≤ 5 ng/ml), and elevated preoperative CEA (> 5 ng/ml). 3-year recurrence-free survival (RFS) and hazard function curves over time were estimated. Results: A total of 1,596 patients (1,063 {66.6%} male; median {Interquartile range, IQR} age, 59 {50-66} years) were identified. Patients with elevated preoperative CEA had 15.5% lower 3-year RFS (n=222 {70.4%}) than the cohorts with normal preoperative CEA (n=1,374 {85.9%}). The hazard function of recurrence for the two cohorts peaked at the similar time (around 10 months after surgery). Multivariate Cox analyses confirmed that elevated preoperative CEA was independently associated with shorter RFS (Hazard Ratio {HR}, 1.69; 95% confidence interval {CI}, 1.26-2.27; P = 0.001). Conclusions: Patients with elevated preoperative CEA are at increased risk for recurrence, especially within the first 24 months after surgery.
Collapse
Affiliation(s)
- Qinbo Cai
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China.,Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangzhou, P. R. China.,Laboratory of General Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Wen Zhou
- Laboratory of General Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Jin Li
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China.,Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangzhou, P. R. China.,Laboratory of General Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China.,Center for Digestive Disease, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, P. R. China
| | - Xinde Ou
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China.,Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangzhou, P. R. China.,Laboratory of General Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Chuangqi Chen
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China.,Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shirong Cai
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China.,Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangzhou, P. R. China
| | - Weiling He
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China.,Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianbo Xu
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China.,Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yulong He
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China.,Center for Diagnosis and Treatment of Gastric Cancer, Sun Yat-sen University, Guangzhou, P. R. China.,Center for Digestive Disease, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, P. R. China
| |
Collapse
|
16
|
Izabella Abreu de Melo M, Rodrigues Correa C, da Silva Cunha P, Miranda de Góes A, Assis Gomes D, Silva Ribeiro de Andrade A. DNA aptamers selection for carcinoembryonic antigen (CEA). Bioorg Med Chem Lett 2020; 30:127278. [PMID: 32527457 DOI: 10.1016/j.bmcl.2020.127278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022]
Abstract
Carcinoembryonic antigen (CEA) is a glycoprotein antigen generally used for diagnosis, prognosis and treatment monitoring of several types of tumors, including colorectal cancer. Nucleic acid aptamers are DNA or RNA oligonucleotides capable of binding with high specificity and affinity to a molecular target. The aim of this study was to obtain aptamers specific to CEA for use as radiopharmaceuticals in colorectal cancer diagnosis. Five aptamers were selected through the Systematic Evolution of Ligands by EXponencial Enrichment (SELEX) and tested using T84 (CEA+) and Hela (CEA-) cells. Apta 3 and Apta 5 showed the best results presenting high specificity and affinity for T84 cells, with dissociation constants (Kd) of 60.4 ± 5.7 nM and 37.8 ± 5.8 nM, respectively. These results indicate that Apta 3 and Apta 5 are promising candidates for identifying tumor cells that overexpress CEA.
Collapse
Affiliation(s)
- Mariane Izabella Abreu de Melo
- Centro de Desenvolvimento da Tecnologia Nuclear, Comissão Nacional de Energia Nuclear, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Cristiane Rodrigues Correa
- Centro de Desenvolvimento da Tecnologia Nuclear, Comissão Nacional de Energia Nuclear, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Pricila da Silva Cunha
- Centro de Desenvolvimento da Tecnologia Nuclear, Comissão Nacional de Energia Nuclear, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Alfredo Miranda de Góes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Antero Silva Ribeiro de Andrade
- Centro de Desenvolvimento da Tecnologia Nuclear, Comissão Nacional de Energia Nuclear, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil.
| |
Collapse
|
17
|
Liu J, Guo B. RNA-based therapeutics for colorectal cancer: Updates and future directions. Pharmacol Res 2019; 152:104550. [PMID: 31866285 DOI: 10.1016/j.phrs.2019.104550] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/12/2019] [Accepted: 11/16/2019] [Indexed: 01/20/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer death worldwide. While standard chemotherapy and new targeted therapy have been improved recently, problems such as multidrug resistance (MDR) and severe side effects remain unresolved. RNAs are essential to all biological processes including cell proliferation and differentiation, cell cycle, apoptosis, activation of tumor suppressor genes, suppression of oncogenes. Therefore, there are various potential approaches to address genetic disease like CRC at the RNA level. In contrast to conventional treatments, RNA-based therapeutics such as RNA interference, antisense oligonucleotides, RNA aptamer, ribozymes, have the advantages of high specificity, high potency and low toxicity. It has gained more and more attention due to the flexibility in modulating a wide range of targets. Here, we highlight recent advances and clinical studies involving RNA-based therapeutics and CRC. We also discuss their advantages and limitations that remain to be overcome for the treatment of human CRC.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, United States.
| | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, United States.
| |
Collapse
|
18
|
Enhancement of chemosensitivity in 5-fluorouracil-resistant colon cancer cells with carcinoembryonic antigen-specific RNA aptamer. Mol Biol Rep 2019; 46:3835-3842. [PMID: 31028570 DOI: 10.1007/s11033-019-04826-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers, and rates of incidence and diagnosis of CRC have gradually increased. Carcinoembryonic antigen (CEA) is overexpressed in patients with CRC and is associated with cell adhesion, anoikis resistance, and promotion of metastasis to the liver. 5-Fluorouracil (5-FU) is a chemotherapeutic drug used to treat cancer, including CRC. However, a major issue of 5-FU therapy is the occurrence of chemoresistance, and the fact that 5-FU induces CEA overexpression, which may induce the 5-FU resistance. We previously isolated a CEA-specific RNA aptamer that was able to inhibit hepatic metastasis of colon cancer cells in a mouse model. In the present study, we tested whether protecting CEA using the CEA aptamer could enhance 5-FU sensitivity in chemoresistant LS174T colon cancer cells. We observed that the CEA aptamer sensitized the 5-FU-resistant colon cancer cell line to 5-FU more than five-fold (IC50 ~ 5.995 μM), compared with cells treated with 5-FU alone (IC50 ~ 31.46 μM). Moreover, treatment with CEA aptamer combined with 5-FU synergistically regressed growth of chemoresistant tumors in mouse xenografted models. Combinatorial treatment of 5-FU and CEA aptamer augmented caspase-8 activity in the 5-FU-resistant colon cancer cell line via aptamer-mediated disruption of CEA interaction with death receptor 5 and in mouse xenograft tumors. In conclusion, CEA-specific aptamer improved 5-FU sensitivity in chemoresistant colon cancer cells in vitro and in vivo, and thus represents a novel 5-FU adjuvant to overcome the chemoresistance in CRC patients.
Collapse
|
19
|
Pan Q, Law COK, Yung MMH, Han KC, Pon YL, Lau TCK. Novel RNA aptamers targeting gastrointestinal cancer biomarkers CEA, CA50 and CA72-4 with superior affinity and specificity. PLoS One 2018; 13:e0198980. [PMID: 30303958 PMCID: PMC6179186 DOI: 10.1371/journal.pone.0198980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022] Open
Abstract
Gastric cancer is the third most common cause of death from cancer in the world and it remains difficult to cure in Western countries, primarily because most patients present with advanced disease. Currently, CEA, CA50 and CA72-4 are commonly used as tumor markers for gastric cancer by immunoassays. However, the drawback and conundrum of immunoassay are the unceasing problem in standardization of quality of antibodies and time/effort for the intensive production. Therefore, there is an urgent need for the development of a standardized assay to detect gastric cancer at the early stage. Aptamers are DNA or RNA oligonucleotides with structural domain which recognize ligands such as proteins with superior affinity and specificity when compared to antibodies. In this study, SELEX (Systematic Evolution of Ligands by Exponential enrichment) technique was adopted to screen a random 30mer RNA library for aptamers targeting CEA, CA50 and CA72-4 respectively. Combined with high-throughput sequencing, we identified 6 aptamers which specifically target for these three biomarkers of gastrointestinal cancer. Intriguingly, the predicted secondary structures of RNA aptamers from each antigen showed significant structural similarity, suggesting the structural recognition between the aptamers and the antigens. Moreover, we determined the dissociation constants of all the aptamers to their corresponding antigens by fluorescence spectroscopy, which further demonstrated high affinities between the aptamers and the antigens. In addition, immunostaining of gastric adenocarcinoma cell line AGS using CEA Aptamer probe showed positive fluorescent signal which proves the potential of the aptamer as a detection tool for gastric cancer. Furthermore, substantially decreased cell viability and growth were observed when human colorectal cell line LS-174T was transfected with each individual aptamers. Taking together, these novel RNA aptamers targeting gastrointestinal cancer biomarker CEA, CA50 and CA72-4 will aid further development and standardization of clinical diagnostic method with better sensitivity and specificity, and potentially future therapeutics development of gastric cancer.
Collapse
Affiliation(s)
- Qing Pan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Carmen O. K. Law
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Mingo M. H. Yung
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - K. C. Han
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Yuen Lam Pon
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Terrence Chi Kong Lau
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| |
Collapse
|
20
|
Park JY, Cho YL, Chae JR, Moon SH, Cho WG, Choi YJ, Lee SJ, Kang WJ. Gemcitabine-Incorporated G-Quadruplex Aptamer for Targeted Drug Delivery into Pancreas Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:543-553. [PMID: 30195790 PMCID: PMC6077122 DOI: 10.1016/j.omtn.2018.06.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/07/2023]
Abstract
Gemcitabine has been considered a first-line chemotherapy agent for the treatment of pancreatic cancer. However, the initial response rate of gemcitabine is low and chemoresistance occurs frequently. Aptamers can be effectively internalized into cancer cells via binding to target molecules with high affinity and specificity. In the current study, we constructed an aptamer-based gemcitabine delivery system, APTA-12, and assessed its therapeutic effects on pancreatic cancer cells in vitro and in vivo. APTA-12 was effective in vitro and in vivo in pancreatic cancer cells with high expression of nucleolin. The results of in vitro cytotoxicity assays indicated that APTA-12 inhibited the growth of pancreatic cancer cell lines. In vivo evaluation showed that APTA-12 effectively inhibited the growth of pancreatic cancer in Capan-1 tumor-bearing mice compared to mice that received gemcitabine alone or vehicle. These results suggest that the gemcitabine-incorporated APTA-12 aptamer may be a promising targeted therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Ye Lim Cho
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Ri Chae
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | | | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yun Jung Choi
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jin Lee
- Aptabio Therapeutics Inc., Gyeonggi-do, Korea.
| | - Won Jun Kang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
21
|
Keirsse J, Van Damme H, Geeraerts X, Beschin A, Raes G, Van Ginderachter JA. The role of hepatic macrophages in liver metastasis. Cell Immunol 2018; 330:202-215. [PMID: 29661474 DOI: 10.1016/j.cellimm.2018.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The liver is a major target organ for metastasis of both gastrointestinal and extra-gastrointestinal cancers. Due to its frequently inoperable nature, liver metastasis represents a leading cause of cancer-associated death worldwide. In the past years, the pivotal role of the immune system in this process is being increasingly recognised. In particular, the role of the hepatic macrophages, both recruited monocyte-derived macrophages (Mo-Mfs) and tissue-resident Kupffer cells (KCs), has been shown to be more versatile than initially imagined. However, the lack of tools to easily distinguish between these two macrophage populations has hampered the assignment of particular functionalities to specific hepatic macrophage subsets. In this Review, we highlight the most remarkable findings regarding the origin and functions of hepatic macrophage populations, and we provide a detailed description of their distinct roles in the different phases of the liver metastatic process.
Collapse
Affiliation(s)
- Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Helena Van Damme
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Xenia Geeraerts
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alain Beschin
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Raes
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
22
|
Morita Y, Leslie M, Kameyama H, Volk DE, Tanaka T. Aptamer Therapeutics in Cancer: Current and Future. Cancers (Basel) 2018; 10:cancers10030080. [PMID: 29562664 PMCID: PMC5876655 DOI: 10.3390/cancers10030080] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Aptamer-related technologies represent a revolutionary advancement in the capacity to rapidly develop new classes of targeting ligands. Structurally distinct RNA and DNA oligonucleotides, aptamers mimic small, protein-binding molecules and exhibit high binding affinity and selectivity. Although their molecular weight is relatively small—approximately one-tenth that of monoclonal antibodies—their complex tertiary folded structures create sufficient recognition surface area for tight interaction with target molecules. Additionally, unlike antibodies, aptamers can be readily chemically synthesized and modified. In addition, aptamers’ long storage period and low immunogenicity are favorable properties for clinical utility. Due to their flexibility of chemical modification, aptamers are conjugated to other chemical entities including chemotherapeutic agents, siRNA, nanoparticles, and solid phase surfaces for therapeutic and diagnostic applications. However, as relatively small sized oligonucleotides, aptamers present several challenges for successful clinical translation. Their short plasma half-lives due to nuclease degradation and rapid renal excretion necessitate further structural modification of aptamers for clinical application. Since the US Food and Drug Administration (FDA) approval of the first aptamer drug, Macugen® (pegaptanib), which treats wet-age-related macular degeneration, several aptamer therapeutics for oncology have followed and shown promise in pre-clinical models as well as clinical trials. This review discusses the advantages and challenges of aptamers and introduces therapeutic aptamers under investigation and in clinical trials for cancer treatments.
Collapse
Affiliation(s)
- Yoshihiro Morita
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - Macall Leslie
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - Hiroyasu Kameyama
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
| | - David E Volk
- McGovern Medical School, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston, TX 77030, USA.
| | - Takemi Tanaka
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 975 NE 10th, BRC-W, Rm 1415, Oklahoma City, OK 73104, USA.
- Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, 940 SL Young Blvd, Oklahoma City, OK 73104, USA.
| |
Collapse
|
23
|
Prusty DK, Adam V, Zadegan RM, Irsen S, Famulok M. Supramolecular aptamer nano-constructs for receptor-mediated targeting and light-triggered release of chemotherapeutics into cancer cells. Nat Commun 2018; 9:535. [PMID: 29416033 PMCID: PMC5803212 DOI: 10.1038/s41467-018-02929-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/09/2018] [Indexed: 12/01/2022] Open
Abstract
Platforms for targeted drug-delivery must simultaneously exhibit serum stability, efficient directed cell internalization, and triggered drug release. Here, using lipid-mediated self-assembly of aptamers, we combine multiple structural motifs into a single nanoconstruct that targets hepatocyte growth factor receptor (cMet). The nanocarrier consists of lipidated versions of a cMet-binding aptamer and a separate lipidated GC-rich DNA hairpin motif loaded with intercalated doxorubicin. Multiple 2',6'-dimethylazobenzene moieties are incorporated into the doxorubicin-binding motif to trigger the release of the chemotherapeutics by photoisomerization. The lipidated DNA scaffolds self-assemble into spherical hybrid-nanoconstructs that specifically bind cMet. The combined features of the nanocarriers increase serum nuclease resistance, favor their import into cells presumably mediated by endocytosis, and allow selective photo-release of the chemotherapeutic into the targeted cells. cMet-expressing H1838 tumor cells specifically internalize drug-loaded nanoconstructs, and subsequent UV exposure enhances cell mortality. This modular approach thus paves the way for novel classes of powerful aptamer-based therapeutics.
Collapse
Affiliation(s)
- Deepak K Prusty
- Life and Medical Sciences (LIMES) Institute, Chemical Biology & Medicinal Chemistry Unit, c/o Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
- Stiftung Caesar, Max-Planck-Fellowship Group Chemical Biology, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Volker Adam
- Life and Medical Sciences (LIMES) Institute, Chemical Biology & Medicinal Chemistry Unit, c/o Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Reza M Zadegan
- Nanoscale Materials & Device Group, Micron School of Materials Science and Engineering, Boise State University, Boise, USA
| | - Stephan Irsen
- Stiftung Caesar, Elektronenmikroskopie und Analytik, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Michael Famulok
- Life and Medical Sciences (LIMES) Institute, Chemical Biology & Medicinal Chemistry Unit, c/o Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany.
- Stiftung Caesar, Max-Planck-Fellowship Group Chemical Biology, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
24
|
Abstract
Nucleic acid enzymes require metal ions for activity, and many recently discovered enzymes can use multiple metals, either binding to the scissile phosphate or also playing an allosteric role.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Juewen Liu
- Department of Chemistry
- Water Institute, and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
25
|
Abstract
Aptamers are single-stranded nucleic acid molecules that bind to and inhibit proteins and are commonly produced by systematic evolution of ligands by exponential enrichment (SELEX). Aptamers undergo extensive pharmacological revision, which alters affinity, specificity, and therapeutic half-life, tailoring each drug for a specific clinical need. The first therapeutic aptamer was described 25 years ago. Thus far, one aptamer has been approved for clinical use, and numerous others are in preclinical or clinical development. This review presents a short history of aptamers and SELEX, describes their pharmacological development and optimization, and reviews potential treatment of diseases including visual disorders, thrombosis, and cancer.
Collapse
Affiliation(s)
- Shahid M Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210;
| | - Rebekah R White
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27705;
| | - Richard C Becker
- Department of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio 45267;
| | - Bruce A Sullenger
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27705; .,Duke Translational Research Institute, Duke University Medical Center, Durham, North Carolina 27705;
| |
Collapse
|
26
|
Abstract
Aptamers are nucleic acids referred to as chemical antibodies as they bind to their specific targets with high affinity and selectivity. They are selected via an iterative process known as ‘selective evolution of ligands by exponential enrichment’ (SELEX). Aptamers have been developed against numerous cancer targets and among them, many tumor cell-membrane protein biomarkers. The identification of aptamers targeting cell-surface proteins has mainly been performed by two different strategies: protein- and cell-based SELEX, when the targets used for selection were proteins and cells, respectively. This review aims to update the literature on aptamers targeting tumor cell surface protein biomarkers, highlighting potentials, pitfalls of protein- and cell-based selection processes and applications of such selected molecules. Aptamers as promising agents for diagnosis and therapeutic approaches in oncology are documented, as well as aptamers in clinical development.
Collapse
|
27
|
The Roles of Carcinoembryonic Antigen in Liver Metastasis and Therapeutic Approaches. Gastroenterol Res Pract 2017; 2017:7521987. [PMID: 28588612 PMCID: PMC5447280 DOI: 10.1155/2017/7521987] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/16/2017] [Indexed: 12/22/2022] Open
Abstract
Metastasis is a highly complicated and sequential process in which primary cancer spreads to secondary organic sites. Liver is a well-known metastatic organ from colorectal cancer. Carcinoembryonic antigen (CEA) is expressed in most gastrointestinal, breast, and lung cancer cells. Overexpression of CEA is closely associated with liver metastasis, which is the main cause of death from colorectal cancer. CEA is widely used as a diagnostic and prognostic tumor marker in cancer patients. It affects many steps of liver metastasis from colorectal cancer cells. CEA inhibits circulating cancer cell death. CEA also binds to heterogeneous nuclear RNA binding protein M4 (hnRNP M4), a Kupffer cell receptor protein, and activates Kupffer cells to secrete various cytokines that change the microenvironments for the survival of colorectal cancer cells in the liver. CEA also activates cell adhesion-related molecules. The close correlation between CEA and cancer has spurred the exploration of many CEA-targeted approaches as anticancer therapeutics. Understanding the detailed functions and mechanisms of CEA in liver metastasis will provide great opportunities for the improvement of anticancer approaches against colorectal cancers. In this report, the roles of CEA in liver metastasis and CEA-targeting anticancer modalities are reviewed.
Collapse
|
28
|
Novel biotechnology approaches in colorectal cancer diagnosis and therapy. Biotechnol Lett 2017; 39:785-803. [DOI: 10.1007/s10529-017-2303-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/07/2017] [Indexed: 12/17/2022]
|
29
|
Hassan EM, Willmore WG, DeRosa MC. Aptamers: Promising Tools for the Detection of Circulating Tumor Cells. Nucleic Acid Ther 2016; 26:335-347. [PMID: 27736306 DOI: 10.1089/nat.2016.0632] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and freely circulate in the blood, retaining the ability to initiate metastasis and form a secondary tumor in distant organs in the body. CTCs reflect the molecular profile of the primary tumor, therefore studying CTCs can allow for an understanding of the mechanism of metastasis, and an opportunity to monitor the prognosis of cancer. Unfortunately, the detection of CTCs is a considerable challenge due to their low abundance in the bloodstream and the lack of consistent markers present to recognize these cells. The aim of this review is to summarize some of the aptamer-based affinity methods for the detection of CTCs. The basic biological concept of how metastasis occurs and the role of CTCs in this process are presented. Some methods of CTC detection employing antibodies or peptides are mentioned here for comparison. The review of present literature suggests that aptamers are emerging as competitive technology in the detection of CTCs, especially due to their unique properties, but there still remain several challenges to be met, including the need to improve the throughput and sensitivity of such methods.
Collapse
Affiliation(s)
- Eman M Hassan
- 1 Institut National de la Recherche Scientifique-Energie, Materiaux Telecommunication , Quebec, Canada .,2 Department of Chemistry, Carleton University , Ottawa, Canada
| | | | - Maria C DeRosa
- 2 Department of Chemistry, Carleton University , Ottawa, Canada .,3 Institute of Biochemistry, Carleton University , Ottawa, Canada
| |
Collapse
|
30
|
Tobi M, Thomas P, Ezekwudo D. Avoiding hepatic metastasis naturally: Lessons from the cotton top tamarin (Saguinus oedipus). World J Gastroenterol 2016; 22:5479-94. [PMID: 27350726 PMCID: PMC4917608 DOI: 10.3748/wjg.v22.i24.5479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/26/2016] [Accepted: 05/21/2016] [Indexed: 02/06/2023] Open
Abstract
Much has been written about hepatic metastasis and animal models abound. In terms of the human experience, progress in treating this final common pathway, a terminal event of many human malignancies has been relatively slow. The current thinking is that primary prevention is best served by early detection of cancer and eradication of early stage cancers by screening. Some cancers spread early in their course and the role of screening may be limited. Until relatively recently there has not been a pathfinder model that makes the evasion of this unfortunate event a reality. This review discusses such an animal model and attempts to relate it to human disease in terms of intervention. Concrete proposals are also offered on how scientists may be able to intervene to prevent this deadly progression of the cancer process.
Collapse
|
31
|
Zhou G, Wilson G, Hebbard L, Duan W, Liddle C, George J, Qiao L. Aptamers: A promising chemical antibody for cancer therapy. Oncotarget 2016; 7:13446-13463. [PMID: 26863567 PMCID: PMC4924653 DOI: 10.18632/oncotarget.7178] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/24/2016] [Indexed: 12/20/2022] Open
Abstract
Aptamers, also known as chemical antibodies, are single-stranded nucleic acid oligonucleotides which bind to their targets with high specificity and affinity. They are typically selected by repetitive in vitro process termed systematic evolution of ligands by exponential enrichment (SELEX). Owing to their excellent properties compared to conventional antibodies, notably their smaller physical size and lower immunogenicity and toxicity, aptamers have recently emerged as a new class of agents to deliver therapeutic drugs to cancer cells by targeting specific cancer-associated hallmarks. Aptamers can also be structurally modified to make them more flexible in order to conjugate other agents such as nano-materials and therapeutic RNA agents, thus extending their applications for cancer therapy. This review presents the current knowledge on the practical applications of aptamers in the treatment of a variety of cancers.
Collapse
Affiliation(s)
- Gang Zhou
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - George Wilson
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Lionel Hebbard
- Discipline of Molecular and Cell Biology, James Cook University, Townsville, QLD, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
32
|
Dickey DD, Giangrande PH. Oligonucleotide aptamers: A next-generation technology for the capture and detection of circulating tumor cells. Methods 2015; 97:94-103. [PMID: 26631715 DOI: 10.1016/j.ymeth.2015.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 01/17/2023] Open
Abstract
A critical challenge for treating cancer is the early identification of those patients who are at greatest risk of developing metastatic disease. The number of circulating tumor cells (CTCs) in cancer patients has recently been shown to be a valuable (and non-invasively accessible) diagnostic indicator of the state of metastatic disease. CTCs are rare cancer cells found in the blood circulation of cancer patients believed to provide a means of diagnosing the likelihood for metastatic spread and assessing response to therapy in advanced, as well as early stage disease settings. Numerous technical efforts have been made to reliably detect and quantify CTCs, but the development of a universal assay has proven quite difficult. Notable challenges for developing a broadly useful CTC-based diagnostic assay are the development of easy-to-operate methods that (1) are sufficiently sensitive to reliably detect the small number of CTCs that are present in the circulation and (2) can capture the molecular heterogeneity of tumor cells. In this review, we describe recent progress towards the application of synthetic oligonucleotide aptamers as promising, novel, robust tools for the isolation and detection of CTCs. Advantages and challenges of the aptamer approach are also discussed.
Collapse
Affiliation(s)
- David D Dickey
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Paloma H Giangrande
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
33
|
Lee CH, Lee SH, Kim JH, Noh YH, Noh GJ, Lee SW. Pharmacokinetics of a Cholesterol-conjugated Aptamer Against the Hepatitis C Virus (HCV) NS5B Protein. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e254. [PMID: 26440598 PMCID: PMC4881758 DOI: 10.1038/mtna.2015.30] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is the major cause of progressive liver disease such as chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Previously, we reported that a 29 nucleotide-long 2'-F pyrimidine modified RNA aptamer against the HCV nonstructural protein 5B efficiently inhibited HCV replication and suppressed HCV infectious virus particle formation in a cell culture system. In this study, we modified this aptamer through conjugation of cholesterol for in vivo availability. This cholesterol-conjugated aptamer (chol-aptamer) efficiently entered the cell and inhibited HCV RNA replication, without any alteration in gene expression profiling including innate immune response-related genes. Moreover, systemic administration of the chol-aptamer was well tolerated without any abnormalities in mice. To evaluate the pharmacokinetics of the chol-aptamer in vivo, dose proportionality, bioavailability, and pharmacokinetic parameters were evaluated by noncompartmental analyses in normal BALB/c mice. Population analysis was performed using nonlinear mixed effects modeling. Moreover, the pharmacokinetics of two different routes (intravenous, IV, versus intraperitoneal, IP) were compared. Cholesterol conjugation showed dose proportionality, extended the time that the aptamer was in the plasma, and enhanced aptamer exposure to the body. Noticeably, the IV route was more suitable than the IP route due to the chol-aptamer remaining in the plasma for a longer period of time.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University, Yongin, Korea
| | - Soo-Han Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Ji Hyun Kim
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University, Yongin, Korea
| | - Yook-Hwan Noh
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, California, USA
| | - Gyu-Jeong Noh
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong-Wook Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University, Yongin, Korea
| |
Collapse
|
34
|
Xi Z, Huang R, Li Z, He N, Wang T, Su E, Deng Y. Selection of HBsAg-Specific DNA Aptamers Based on Carboxylated Magnetic Nanoparticles and Their Application in the Rapid and Simple Detection of Hepatitis B Virus Infection. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11215-23. [PMID: 25970703 DOI: 10.1021/acsami.5b01180] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Aptamers are short single-stranded DNA or RNA oligonucleotides and can be selected from synthetic combinatorial libraries in vitro. They have a high binding affinity and specificity for their targets. Agarose gels, nitrocellulose membranes, and adsorptive microplates are often used as carriers to immobilize targets in the SELEX (systematic evolution of ligands by exponential enrichment) process, but the subsequent separation step is tedious and time-consuming. Therefore, we used magnetic nanoparticles (MNPs) as carriers to immobilize the target, hepatitis B surface antigen (HBsAg), which is convenient for fast magnetic separation. In this study, we first selected DNA aptamers against HBsAg by immobilizing HBsAg on the surface of carboxylated MNPs. The ssDNA library of each selection round was prepared by asymmetric PCR amplification for the next selection round. To obtain aptamer sequences, the final selected products were purified by gel electrophoresis, then cloned, and sequenced. DNA aptamers that specifically bind to HBsAg were successfully obtained after 13 selection rounds. The selected aptamers were used to construct a chemiluminescence aptasensor based on magnetic separation and immunoassay to detect HBsAg from pure protein or actual serum samples. There was a linear relationship between HBsAg concentration and chemiluminescent intensity in the range of 1-200 ng/mL. The aptasensor worked well even in the presence of interfering substances and was highly specific in the detection of HBsAg in serum samples, with a detection limit 0.1 ng/mL lower than the 0.5 ng/mL limit of an ELISA in use at the hospital. This aptasensor can contribute to better detection of hepatitis B virus infection.
Collapse
Affiliation(s)
- Zhijiang Xi
- †State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- ‡School of Life and Science, Yangtze University, Jingzhou 434025, P. R. China
| | - Rongrong Huang
- †State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Zhiyang Li
- †State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Nongyue He
- †State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- §Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Ting Wang
- †State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Enben Su
- †State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- ∥Getein Biotechnology Co., Ltd., Nanjing 210000, P. R. China
| | - Yan Deng
- †State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- §Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou 412007, P. R. China
| |
Collapse
|
35
|
Viraka Nellore BP, Kanchanapally R, Pramanik A, Sinha SS, Chavva SR, Hamme A, Ray PC. Aptamer-conjugated graphene oxide membranes for highly efficient capture and accurate identification of multiple types of circulating tumor cells. Bioconjug Chem 2015; 26:235-42. [PMID: 25565372 PMCID: PMC4578366 DOI: 10.1021/bc500503e] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumor metastasis is responsible for 1 in 4 deaths in the United States. Though it has been well-documented over past two decades that circulating tumor cells (CTCs) in blood can be used as a biomarker for metastatic cancer, there are enormous challenges in capturing and identifying CTCs with sufficient sensitivity and specificity. Because of the heterogeneous expression of CTC markers, it is now well understood that a single CTC marker is insufficient to capture all CTCs from the blood. Driven by the clear need, this study reports for the first time highly efficient capture and accurate identification of multiple types of CTCs from infected blood using aptamer-modified porous graphene oxide membranes. The results demonstrate that dye-modified S6, A9, and YJ-1 aptamers attached to 20-40 μm porous garphene oxide membranes are capable of capturing multiple types of tumor cells (SKBR3 breast cancer cells, LNCaP prostate cancer cells, and SW-948 colon cancer cells) selectively and simultaneously from infected blood. Our result shows that the capture efficiency of graphene oxide membranes is ~95% for multiple types of tumor cells; for each tumor concentration, 10 cells are present per milliliter of blood sample. The selectivity of our assay for capturing targeted tumor cells has been demonstrated using membranes without an antibody. Blood infected with different cells also has been used to demonstrate the targeted tumor cell capturing ability of aptamer-conjugated membranes. Our data also demonstrate that accurate analysis of multiple types of captured CTCs can be performed using multicolor fluorescence imaging. Aptamer-conjugated membranes reported here have good potential for the early diagnosis of diseases that are currently being detected by means of cell capture technologies.
Collapse
Affiliation(s)
- Bhanu Priya Viraka Nellore
- Department of Chemistry and Biochemistry, Jackson State University , Jackson, Mississippi 39217, United States
| | | | | | | | | | | | | |
Collapse
|
36
|
Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou SF, Kong L, Li Y, Pu C, Duan W. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Am J Cancer Res 2015; 5:23-42. [PMID: 25553096 PMCID: PMC4265746 DOI: 10.7150/thno.10202] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/01/2014] [Indexed: 12/29/2022] Open
Abstract
Conventional anticancer therapies, such as chemo- and/or radio-therapy are often unable to completely eradicate cancers due to abnormal tumor microenvironment, as well as increased drug/radiation resistance. More effective therapeutic strategies for overcoming these obstacles are urgently in demand. Aptamers, as chemical antibodies that bind to targets with high affinity and specificity, are a promising new and novel agent for both cancer diagnostic and therapeutic applications. Aptamer-based cancer cell targeting facilitates the development of active targeting in which aptamer-mediated drug delivery could provide promising anticancer outcomes. This review is to update the current progress of aptamer-based cancer diagnosis and aptamer-mediated active targeting for cancer therapy in vivo, exploring the potential of this novel form of targeted cancer therapy.
Collapse
|
37
|
Won YS, Jeong JS, Kim SJ, Ju MH, Lee SW. Targeted anticancer effect through microRNA-181a regulated tumor-specific hTERT replacement. Cancer Lett 2014; 356:918-28. [PMID: 25444904 DOI: 10.1016/j.canlet.2014.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 01/11/2023]
Abstract
We previously generated a group I intron-based ribozyme that can reprogram human telomerase reverse transcriptase (hTERT) RNA to stimulate transgene activity in cancer cells expressing the target RNA via an accurate and specific trans-splicing reaction. One of the major concerns of the hTERT RNA targeting anti-cancer approach is the potential side effects to hTERT(+) hematopoietic stem cell-derived blood cells. Thus, here we modified the ribozyme by inserting target sites against microRNA-181a, which is a blood cell-specific microRNA, downstream of its 3' exon. The specificity of transgene induction and anticancer activity in hTERT(+) cancer cells improved significantly with the modified ribozyme, resulting in selective targeting of hTERT(+) cancer cells, but not hematopoietic cells even if they are hTERT-positive. Importantly, the trans-splicing reaction of the microRNA-regulated ribozyme worked equally well in a nude mouse model of hepatocarcinoma-derived intrasplenic carcinomatosis, inducing highly specific expression of a therapeutic transgene and efficiently regressing hTERT-positive liver tumors with minimal liver toxicity when systemically delivered with an adenoviral vector encoding the ribozyme. These results suggest that a combined approach of microRNA regulation with targeted RNA replacement is more useful for effective anti-cancer treatment.
Collapse
Affiliation(s)
- You-Sub Won
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University, Yongin, Republic of Korea
| | - Jin-Sook Jeong
- Department of Pathology and Medical Research Center for Cancer Molecular Therapy, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Sung Jin Kim
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University, Yongin, Republic of Korea
| | - Mi Ha Ju
- Department of Pathology and Medical Research Center for Cancer Molecular Therapy, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Seong-Wook Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University, Yongin, Republic of Korea.
| |
Collapse
|
38
|
Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y. Oligonucleotide aptamers: new tools for targeted cancer therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e182. [PMID: 25093706 PMCID: PMC4221593 DOI: 10.1038/mtna.2014.32] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy.
Collapse
Affiliation(s)
- Hongguang Sun
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Xun Zhu
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Jilin, China
| | | | - Roberto R Rosato
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Wen Tan
- School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
39
|
In vitro selection of RNA aptamers that selectively bind danofloxacin. Biochem Biophys Res Commun 2014; 448:397-402. [PMID: 24792181 DOI: 10.1016/j.bbrc.2014.04.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 11/21/2022]
Abstract
Danofloxacin is a synthetic fluoroquinolone with broad spectrum antibacterial activity that is used for the treatment of respiratory diseases in animal husbandry. However, danofloxacin has many adverse reactions and is toxic to humans. Especially, it detrimentally affects muscle, central nerve system, peripheral nerve system, liver, and skin in those who ingest foods in which danofloxacin has accumulated. Prescreening and determination of the level of danofloxacin in foods or food products is necessary for human health. Aptamers are composing of oligonucleotides that specifically interact with target molecules. They are emerging as detection/diagnostic ligands. Here, we used the SELEX in vitro selection technology to identify specific and high-affinity RNA aptamers with 2'-fluoro-2'-deoxyribonucleotide modified pyrimidine nucleotides against danofloxacin. Selected RNA aptamers bound specifically to danofloxacin, but not to tetracycline. Truncation of RNA aptamer up to 36 mer did not comprise specificity and affinity. The truncated RNA aptamer specifically bound to target chemical, allowing the discrimination of danofloxacin from other fluoroquinolones. The isolated specific aptamer could be a potential agent used for the rapid and cost-effective detection and sensing of danofloxacin, replacing instrumental methods including the more expensive and time-consuming methods of high performance liquid chromatography and liquid chromatography/mass spectrometry.
Collapse
|
40
|
Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, Leggas M, Evers BM, Guo P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 2014; 66:74-89. [PMID: 24270010 DOI: 10.1016/j.addr.2013.11.006] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
Human genome sequencing revealed that only ~1.5% of the DNA sequence coded for proteins. More and more evidence has uncovered that a substantial part of the 98.5% so-called "junk" DNAs actually code for noncoding RNAs. Two milestones, chemical drugs and protein drugs, have already appeared in the history of drug development, and it is expected that the third milestone in drug development will be RNA drugs or drugs that target RNA. This review focuses on the development of RNA therapeutics for potential cancer treatment by applying RNA nanotechnology. A therapeutic RNA nanoparticle is unique in that its scaffold, ligand, and therapeutic component can all be composed of RNA. The special physicochemical properties lend to the delivery of siRNA, miRNA, ribozymes, or riboswitches; imaging using fluogenenic RNA; and targeting using RNA aptamers. With recent advances in solving the chemical, enzymatic, and thermodynamic stability issues, RNA nanoparticles have been found to be advantageous for in vivo applications due to their uniform nano-scale size, precise stoichiometry, polyvalent nature, low immunogenicity, low toxicity, and target specificity. In vivo animal studies have revealed that RNA nanoparticles can specifically target tumors with favorable pharmacokinetic and pharmacodynamic parameters without unwanted accumulation in normal organs. This review summarizes the key studies that have led to the detailed understanding of RNA nanoparticle formation as well as chemical and thermodynamic stability issue. The methods for RNA nanoparticle construction, and the current challenges in the clinical application of RNA nanotechnology, such as endosome trapping and production costs, are also discussed.
Collapse
Affiliation(s)
- Yi Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Fengmei Pi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ashwani Sharma
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Mehdi Rajabi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Farzin Haque
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Dan Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Markos Leggas
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
41
|
Gameiro SR, Jammeh ML, Hodge JW. Cancer vaccines targeting carcinoembryonic antigen: state-of-the-art and future promise. Expert Rev Vaccines 2013; 12:617-29. [PMID: 23750792 DOI: 10.1586/erv.13.40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Concurrent with the US FDA's approval of the first therapeutic cancer vaccine, and supported by mounting clinical evidence indicating that targeting carcinoembryonic antigen (CEA) can safely overcome pre-existing tolerance, a multitude of novel CEA cancer vaccines are now in various stages of development. Since cancer-driven immune suppression often limits the efficacy of vaccines, numerous strategies are being examined in both preclinical and clinical settings to overcome immunosuppressive elements, including the combined use of vaccines with certain chemotherapies, immune checkpoint inhibitors, small-molecule targeted therapies and radiation. This review discusses the current state and future direction of therapeutic cancer vaccines targeting CEA, based on advances achieved over the last 5 years.
Collapse
Affiliation(s)
- Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
42
|
Phase I trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma. Cancer Immunol Immunother 2013; 63:225-34. [PMID: 24327292 DOI: 10.1007/s00262-013-1505-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/24/2013] [Indexed: 12/22/2022]
Abstract
Yeast-CEA (GI-6207) is a therapeutic cancer vaccine genetically modified to express recombinant carcinoembryonic antigen (CEA) protein, using heat-killed yeast (Saccharomyces cerevisiae) as a vector. In preclinical studies, yeast-CEA induced a strong immune response to CEA and antitumor responses. Patients received subcutaneous vaccines every 2 weeks for 3 months and then monthly. Patients were enrolled at 3 sequential dose levels: 4, 16, and 40 yeast units (10(7) yeast particles/unit). Eligible patients were required to have serum CEA > 5 ng/mL or > 20 % CEA(+) tumor block, ECOG PS 0-2, and no history of autoimmunity. Restaging scans were performed at 3 months and then bimonthly. Peripheral blood was collected for the analysis of immune response (e.g., by ELISPOT assay). Twenty-five patients with metastatic CEA-expressing carcinomas were enrolled. Median patient age was 52 (range 39-81). A total of 135 vaccines were administered. The vaccine was well tolerated, and the most common adverse event was grade 1/2 injection-site reaction. Five patients had stable disease beyond 3 months (range 3.5-18 months), and each had CEA stabilization while on-study. Some patients showed evidence post-vaccination of increases in antigen-specific CD8(+) T cells and CD4(+) T lymphocytes and decreases in regulatory T cells. Of note, a patient with medullary thyroid cancer had substantial T cell responses and a vigorous inflammatory reaction at sites of metastatic disease. Yeast-CEA vaccination had minimal toxicity and induced some antigen-specific T cell responses and CEA stabilization in a heterogeneous, heavily pre-treated patient population. Further studies are required to determine the clinical benefit of yeast-CEA vaccination.
Collapse
|
43
|
|
44
|
Orava EW, Abdul-Wahid A, Huang EHB, Mallick AI, Gariépy J. Blocking the attachment of cancer cells in vivo with DNA aptamers displaying anti-adhesive properties against the carcinoembryonic antigen. Mol Oncol 2013; 7:799-811. [PMID: 23656757 DOI: 10.1016/j.molonc.2013.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/27/2013] [Accepted: 03/31/2013] [Indexed: 01/28/2023] Open
Abstract
The formation of metastatic foci occurs through a series of cellular events, initiated by the attachment and aggregation of cancer cells leading to the establishment of micrometastases. We report the derivation of synthetic DNA aptamers bearing anti-adhesive properties directed at cancer cells expressing the carcinoembryonic antigen (CEA). Two DNA aptamers targeting the homotypic and heterotypic IgV-like binding domain of CEA were shown to block the cell adhesion properties of CEA, while not recognizing other IgV-like domains of CEACAM family members that share strong sequence and structural homologies. More importantly, the pre-treatment of CEA-expressing tumour cells with these aptamers prior to their intraperitoneal implantation resulted in the prevention of peritoneal tumour foci formation. Taken together, these results highlight the effectiveness of targeting the cell adhesion properties of cancer cells with aptamers in preventing tumour implantation.
Collapse
Affiliation(s)
- Erik W Orava
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
45
|
Bead affinity chromatography in a temperature-controllable microsystem for biomarker detection. Anal Bioanal Chem 2012; 404:2267-75. [DOI: 10.1007/s00216-012-6380-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 12/12/2022]
|