1
|
Zeng B, Sun C, Li N, Chen Q, Rao M, Li K, Liu X, Xie S, Cheng J, Wang S, Wang X. NEK2 Control of Esophageal Squamous Cell Carcinoma Growth Based on Circadian Oscillation. Cancer Sci 2025; 116:1282-1294. [PMID: 39963019 PMCID: PMC12044676 DOI: 10.1111/cas.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 05/02/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a globally prevalent malignancy known for its aggressive nature and unfavorable outcomes. Identifying new biomarkers is crucial for the early detection and improved prognostication of ESCC. The circadian clock and NIMA-related kinase 2 (NEK2) are pivotal in cancer development. While the impact of circadian rhythm disruptions on ESCC progression is evident, the specific contribution of NEK2 to these changes is not well understood. Our study discovered NEK2 as a consistently differentially expressed gene across multiple datasets, with elevated expression in ESCC tissues. Notably, NEK2 overexpression was linked to increased ESCC cell proliferation, whereas its inhibition led to reduced cell growth and proliferation. Pathway analyses, including KEGG and Gene Set Enrichment Analysis (GSEA), indicated NEK2's association with established pathways like the cell cycle, and intriguingly, identified the circadian rhythm as a novel pathway influenced by NEK2. RNA sequencing data demonstrated NEK2's circadian rhythmic expression, and subsequent in vitro experiments confirmed its oscillation in synchronized ESCC cells. Moreover, we found a positive correlation between the efficacy of the NEK2 inhibitor INH6 and NEK2 expression levels in ESCC. In conclusion, our findings position NEK2 as a time-dependent oncogene and a potential biomarker in ESCC, highlighting its role in both tumorigenesis and the circadian rhythm.
Collapse
Affiliation(s)
- Boning Zeng
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
- Department of General Practice, Shenzhen Luohu People's HospitalThe Third Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Chao Sun
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Nan Li
- School of Pharmaceutical SciencesShenzhen University Medical SchoolShenzhenChina
- Department of PharmacyCancer Hospital of Shantou University Medical CollegeShantouChina
| | - Qiuling Chen
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Manni Rao
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Kai Li
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Xiaodi Liu
- Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Shouxia Xie
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Jiwu Cheng
- Department of Trauma Orthopedic, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Shaoxiang Wang
- School of Pharmaceutical SciencesShenzhen University Medical SchoolShenzhenChina
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| |
Collapse
|
2
|
Kondo Y, Ohashi S, Katada C, Nakai Y, Yamamoto Y, Tamaoki M, Kikuchi O, Yamada A, Hirohashi K, Mitani Y, Kataoka S, Saito T, Vu THN, Kondo T, Uneno Y, Sunami T, Yokoyama A, Matsubara J, Matsuda T, Naganuma S, Oryu K, Flashner S, Shimonosono M, Nakagawa H, Muto M. Aldh2 and the tumor suppressor Trp53 play important roles in alcohol-induced squamous field cancerization. J Gastroenterol 2025; 60:546-560. [PMID: 39909947 PMCID: PMC12014750 DOI: 10.1007/s00535-024-02210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025]
Abstract
BACKGROUND Field cancerization defined by multiple development of squamous cell carcinomas (SCCs) in upper aerodigestive tract was explained by excessive alcohol intake. A dysfunctional mitochondrial aldehyde dehydrogenase 2 (Aldh2) delays the clearance of acetaldehyde, a genotoxic alcohol metabolite, and increases SCC risks. TP53 plays key roles in squamous carcinogenesis. However, the mechanism of alcohol-mediated squamous field cancerization has not been clearly elucidated. METHODS We developed a novel genetically engineered mouse strain KTPA-/- (Krt5CreERT2; Trp53loxp/loxp; Aldh2-/-) featuring Aldh2-loss concurrent with epithelial-specific Trp53 deletion. These mice were given 10%-EtOH, and we evaluated the development of squamous cell carcinogenesis histologically and genetically. RESULTS Widespread multifocal rete ridges (RRs), characterized by downward growth of proliferative preneoplastic cells, were found only in Aldh2+/- and Aldh2-/- mice with keratin5-specific Trp53 deletion (KTPA+/- and KTPA-/- mice, respectively), and alcohol drinking apparently increased RR formation rate. SCC occurred only in KTPA-/- (Aldh2 loss/TP53 loss) mice with alcohol drinking (15/18: 83%). Total alcohol consumption volume was significantly higher in KTPA-/- (Aldh2 loss/TP53 loss) mice with SCCs than those without SCCs. Further, target sequence revealed the occurrence of genetic abnormalities including Trp53 mutations in the esophageal epithelium of Aldh2-/- mice with alcohol drinking, suggesting direct mutagenic effects of alcohol drinking to the esophageal epithelium. CONCLUSION This study provides for the first time the evidence that alcohol drinking, Aldh2 dysfunction and Trp53 loss cooperate in squamous field cancerization. Alcohol consumption volume affects the SCCs development, even in the same genotype.
Collapse
Affiliation(s)
- Yuki Kondo
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shinya Ohashi
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
- Preemptive Medicine and Lifestyle Disease Research Center, Kyoto University Hospital, Kyoto, Japan.
| | - Chikatoshi Katada
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yukie Nakai
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yoshihiro Yamamoto
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Masashi Tamaoki
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Osamu Kikuchi
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Atsushi Yamada
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Kenshiro Hirohashi
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yosuke Mitani
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Shigeki Kataoka
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomoki Saito
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Trang H Nguyen Vu
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomohiro Kondo
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yu Uneno
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomohiko Sunami
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Akira Yokoyama
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Junichi Matsubara
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomonari Matsuda
- Environment Health Division, Kyoto University Graduate School of Engineering, Kyoto, Japan
| | - Seiji Naganuma
- Faculty of Health Sciences, Department of Medical Laboratory Science, Kochi Gakuen University, Kochi, Japan
| | - Kohei Oryu
- Faculty of Health Sciences, Department of Nutrition, Kochi Gakuen University, Kochi, Japan
| | - Samuel Flashner
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA
| | - Masataka Shimonosono
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA
| | - Hiroshi Nakagawa
- Division of Digestive and Liver Diseases, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA
| | - Manabu Muto
- Department of Medical Oncology, Kyoto University Graduate School of Medicine, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
3
|
Jiang W, Zhang B, Xu J, Xue L, Wang L. Current status and perspectives of esophageal cancer: a comprehensive review. Cancer Commun (Lond) 2025; 45:281-331. [PMID: 39723635 PMCID: PMC11947622 DOI: 10.1002/cac2.12645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Esophageal cancer (EC) continues to be a significant global health concern, with two main subtypes: esophageal squamous cell carcinoma and esophageal adenocarcinoma. Prevention and changes in etiology, improvements in early detection, and refinements in the treatment have led to remarkable progress in the outcomes of EC patients in the past two decades. This seminar provides an in-depth analysis of advances in the epidemiology, disease biology, screening, diagnosis, and treatment landscape of esophageal cancer, focusing on the ongoing debate surrounding multimodality therapy. Despite significant advancements, EC remains a deadly disease, underscoring the need for continued research into early detection methods, understanding the molecular mechanisms, and developing effective treatments.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Radiation OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenGuangdongP. R. China
| | - Bo Zhang
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Jiaqi Xu
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Liyan Xue
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Luhua Wang
- Department of Radiation OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenGuangdongP. R. China
| |
Collapse
|
4
|
Yang F, Xiao H, Dai X, Xu M, Li M, Bai J, Dai N. Impact of APOBEC3s on the occurrence, development and prognosis of esophageal squamous cell carcinoma. Future Oncol 2025; 21:117-125. [PMID: 39840662 PMCID: PMC11852747 DOI: 10.1080/14796694.2024.2442300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a severe malignant tumor of the digestive system that poses a significant threat to human health. Despite its significance, the complex molecular mechanism regulating the occurrence and development of ESCC remain elusive. The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) members constitute a pivotal subfamily of the APOBEC family that possess cytidine deaminase activity. In recent years, APOBEC3s (A3s) have received increasing attention due to their pivotal roles in the occurrence, development, and prognosis of ESCC. This comprehensive review systematically summarizes the latest research progress on the mechanisms of action of A3s in ESCC and discusses their impact on the development and therapeutic considerations for ESCC, with a particular focus on their potential role in immunotherapy. These insights may be of great value in continued exploration of ESCC pathogenesis and provides a theoretical foundation for the development of clinical treatment strategies for ESCC.
Collapse
Affiliation(s)
- Fan Yang
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - He Xiao
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyan Dai
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingfang Xu
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mengxia Li
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianying Bai
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Nan Dai
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Li R, Li N, Yang Q, Tong X, Wang W, Li C, Zhao J, Jiang D, Huang H, Fang C, Xie K, Yuan J, Chen S, Li G, Luo H, Gao Z, Wu D, Cui X, Jiang W, Guo L, Ma H, Feng Y. Spatial transcriptome profiling identifies DTX3L and BST2 as key biomarkers in esophageal squamous cell carcinoma tumorigenesis. Genome Med 2024; 16:148. [PMID: 39696540 DOI: 10.1186/s13073-024-01422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Understanding the stepwise progression of esophageal squamous cell carcinoma (ESCC) is crucial for developing customized strategies for early detection and optimal clinical management. Herein, we aimed to unravel the transcriptional and immunologic alterations occurring during malignant transformation and identify clinically significant biomarkers of ESCC. METHODS Digital spatial profiling (DSP) was performed on 11 patients with early-stage ESCC (pT1) to explore the transcriptional alterations in epithelial, immune cell, and non-immune cell stromal compartments across regions of distinct histology, including normal tissues, low- and high-grade dysplasia, and cancerous tissues. Furthermore, single-cell spatial transcriptomics was performed using the CosMx Spatial Molecular Imaging (SMI) system on 4 additional patients with pT1 ESCC. Immunohistochemical (IHC) analysis was performed on consecutive histological sections of 20 pT1 ESCCs. Additionally, public bulk and single-cell RNA-sequencing (scRNA-seq) datasets were analyzed, and in vitro and in vivo functional studies were conducted. RESULTS Spatial transcriptional reprogramming and dynamic cell signaling pathways that determined ESCC progression were delineated. Increased infiltration of macrophages from normal tissues through dysplasia to cancerous tissues occurred. Macrophage subtypes were characterized using the scRNA-seq dataset. Cell-cell communication analysis of scRNA-seq and SMI data indicated that the migration inhibitory factor (MIF)-CD74 axis may exhibit pro-tumor interactions between macrophages and epithelial cells. DSP, SMI, and IHC data demonstrated that DTX3L expression in epithelial cells and BST2 expression in stromal cells increased gradually with ESCC progression. Functional studies demonstrated that DTX3L or BST2 knockdown inhibited ESCC proliferation and migration and decreased M2 polarization of tumor-associated macrophages. CONCLUSIONS Spatial profiling comprehensively characterized the molecular and immunological hallmarks from normal tissue to ESCC, guiding the way to a deeper understanding of the tumorigenesis and progression of this disease and contributing to the prevention of ESCC. Within this exploration, we uncovered biomarkers that exhibit a robust correlation with ESCC progression, offering potential new avenues for insightful therapeutic approaches.
Collapse
Affiliation(s)
- Rutao Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China.
| | - Qianqian Yang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xing Tong
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wei Wang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Chang Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jun Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Dong Jiang
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Haitao Huang
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Chen Fang
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Kai Xie
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Jiamin Yuan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Shaomu Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Guangbin Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Zhibo Gao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Dongfang Wu
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Xiaoli Cui
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Wei Jiang
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Haitao Ma
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China.
| | - Yu Feng
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
6
|
Chen J, Liu X, Zhang Z, Su R, Geng Y, Guo Y, Zhang Y, Su M. Early Diagnostic Markers for Esophageal Squamous Cell Carcinoma: Copy Number Alteration Gene Identification and cfDNA Detection. J Transl Med 2024; 104:102127. [PMID: 39182610 DOI: 10.1016/j.labinv.2024.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
The high mortality rate of esophageal squamous cell carcinoma (ESCC) is exacerbated by the absence of early diagnostic markers. The pronounced heterogeneity of mutations in ESCC renders copy number alterations (CNAs) more prevalent among patients. The identification of CNA genes within esophageal squamous dysplasia (ESD), a precancerous stage of ESCC, is crucial for advancing early detection efforts. Utilization of liquid biopsies via droplet-based digital PCR (ddPCR) offers a novel strategy for detecting incipient tumor traces. This study undertook a thorough investigation of CNA profiles across ESCC development stages, integrating data from existing databases and prior investigations to pinpoint and confirm CNA markers conducive to early detection of ESCC. Targeted sequencing was employed to select potential early detection genes, followed by the establishment of prediction models for ESCC early detection using ddPCR. Our analysis revealed widespread CNAs during the ESD stage, mirroring the CNA landscape observed in ESCC. A total of 40 CNA genes were identified as highly frequent in both ESCC and ESD lesions, through a comprehensive gene-level CNA analysis encompassing ESD and ESCC tissues, ESCC cell lines, and pan-cancer data sets. Subsequent validation of 5 candidate markers via ddPCR underscored the efficacy of combined predictive models encompassing PIK3CA, SOX2, EGFR, MYC, and CCND1 in early ESCC screening, as evidenced by the area-under-the-curve values exceeding 0.92 (P < .0001) across various detection contexts. The findings highlighted the significant utility of CNA genes in the early screening of ESCC, presenting robust models that could facilitate early detection, broad-scale population screening, and adjunctive diagnosis.
Collapse
Affiliation(s)
- Jiamin Chen
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China
| | - Xi Liu
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China
| | - Zhihua Zhang
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China
| | - Ruibing Su
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China; Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yiqun Geng
- Department of Molecular Pathology, Shantou University Medical College, Shantou, China
| | - Yi Guo
- Department of Endoscopy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yimin Zhang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Min Su
- Department of Pathology, Institute of Clinical Pathology, Shantou University Medical College, Shantou, China.
| |
Collapse
|
7
|
Liu X, Cai L, Ji J, Tian D, Guo Y, Chen S, Zhao M, Su M. Genomic characteristics and evolution of Multicentric Esophageal and gastric Cardiac Cancer. Biol Direct 2024; 19:51. [PMID: 38956687 PMCID: PMC11218177 DOI: 10.1186/s13062-024-00493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Esophageal carcinoma (EC) and gastric cardiac adenocarcinoma (GCA) have high incidence rates in the Chaoshan region of South China. Multifocal esophageal and cardiac cancer (MECC) is commonly observed in this region in clinical practice. However, the genomic characteristics of MECC remains unclear. MATERIALS AND METHODS In this study, a total of 2123 clinical samples of EC and GCA were analyzed to determine the frequency of multifocal tumors, as well as their occurrence sites and pathological types. Cox proportional hazards regression was used to model the relationship between age, sex, and tumor state concerning survival in our analysis of the cohort of 541 patients with available follow-up data. We performed whole-genome sequencing on 20 tumor foci and 10 normal samples from 10 MECC patients to infer clonal structure on 6 MECC patients to explore genome characteristics. RESULT The MECC rate of EC and GCA was 5.65% (121 of 2123). Age and sex were potential factors that may influence the risk of MECC (p < 0.001). Furthermore, MECC patients showed worse survival compared with single tumor patients. We found that 12 foci from 6 patients were multicentric origin model (MC), which exhibited significant heterogeneity of variations in paired foci and had an increased number of germline mutations in immune genes compared to metastatic model. In MC cases, different lesions in the same patient were driven by distinct mutation and copy number variation (CNV) events. Although TP53 and other driver mutation genes have a high frequency in the samples, their mutation sites show significant heterogeneity in paired tumor specimens. On the other hand, CNV genes exhibited higher concordance in paired samples, especially in the amplification of oncogenes and the deletion of tumor suppressor genes. CONCLUSIONS The extent of inter-tumor heterogeneity suggests both monoclonal and polyclonal origins of MECC, which could provide insight into the genome diversity of MECC and guide clinical implementation.
Collapse
Affiliation(s)
- Xi Liu
- Institute of Clinical Pathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Lijun Cai
- Institute of Clinical Pathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Juan Ji
- Institute of Clinical Pathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Dongping Tian
- Institute of Clinical Pathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yi Guo
- Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Shaobin Chen
- Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Meng Zhao
- Novogene Co., LTD, Beijing, 100083, China
| | - Min Su
- Institute of Clinical Pathology, Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China.
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
8
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
9
|
Deboever N, Jones CM, Yamashita K, Ajani JA, Hofstetter WL. Advances in diagnosis and management of cancer of the esophagus. BMJ 2024; 385:e074962. [PMID: 38830686 DOI: 10.1136/bmj-2023-074962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Esophageal cancer is the seventh most common malignancy worldwide, with over 470 000 new cases diagnosed each year. Two distinct histological subtypes predominate, and should be considered biologically separate disease entities.1 These subtypes are esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). Outcomes remain poor regardless of subtype, with most patients presenting with late stage disease.2 Novel strategies to improve early detection of the respective precursor lesions, squamous dysplasia, and Barrett's esophagus offer the potential to improve outcomes. The introduction of a limited number of biologic agents, as well as immune checkpoint inhibitors, is resulting in improvements in the systemic treatment of locally advanced and metastatic esophageal cancer. These developments, coupled with improvements in minimally invasive surgical and endoscopic treatment approaches, as well as adaptive and precision radiotherapy technologies, offer the potential to improve outcomes still further. This review summarizes the latest advances in the diagnosis and management of esophageal cancer, and the developments in understanding of the biology of this disease.
Collapse
Affiliation(s)
- Nathaniel Deboever
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher M Jones
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kohei Yamashita
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Hou W, Song S, Duan X, Hou W, Shi Z, Ma L, Niu J, Jin M. Morphological Characteristics of Various Cells in Esophageal Squamous Dysplasia: Extremely Wide Morphological Spectrum. Int J Surg Pathol 2024; 32:692-707. [PMID: 37489001 DOI: 10.1177/10668969231188906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The WHO classification of esophageal tumors divides esophageal squamous intraepithelial dysplasia into high and low grades, but does not specify its morphological spectrum. Here, the morphological characteristics of various cells were investigated in esophageal squamous (high-grade) dysplasia, and a morphological spectrum and terminology for this lesion were proposed to avoid misdiagnosis. The clinicopathological data of 540 patients with esophageal squamous dysplasia were analyzed retrospectively. According to the unique cytomorphological characteristics of the lesions and the predominant cell type, the esophageal squamous dysplasia was divided into the following morphological groups: classic type (34.6%, 187/540), basaloid subtype (10.7%, 58/540), spindle-cell subtype (4.6%, 25/540), differentiated subtype (48.9%, 264/540), and verrucous subtype (1.1%, 6/540). Gender, age, and lesions location did not differ among the subtypes (P > 0.05), while Paris classification and lesions diameter significantly differed among the subtypes (P < 0.01). Classic-type cells showed severe atypia. In the basaloid subtype, the cells were small, and resembled basal cells; most of these lesions were of the 0-IIb type with small lesion diameter. In the spindle-cell subtype, the cells and nuclei were spindle-shaped or long and spindle-shaped and arranged in parallel. Differentiated-subtype showed well-to-moderately differentiated cells, and epithelial basal cells were mature. Verrucous-subtype showed well-differentiated cells, and were characterized by verrucous or papillary structures. Esophageal squamous dysplasia has extremely wide morphological spectrum. Awareness of the spectrum of morphological presentations of this lesion, specifically the basaloid subtype, spindle-cell subtype, differentiated subtype, and verrucous subtype, is important for accurate diagnosis.
Collapse
Affiliation(s)
- Weihua Hou
- Department of Pathology, Pingdingshan Medical District (formerly 152 Central Hospital), 989 Hospital of PLA Joint Logistic Support Force, Pingdingshan, Henan, China
| | - Shujie Song
- Department of Gastroenterology, Pingdingshan Medical District (formerly 152 Central Hospital), 989 Hospital of PLA Joint Logistic Support Force, Pingdingshan, Henan, China
| | - Xinke Duan
- Department of Gastroenterology, Pingdingshan Medical District (formerly 152 Central Hospital), 989 Hospital of PLA Joint Logistic Support Force, Pingdingshan, Henan, China
| | - Weidong Hou
- Department of Endocrinology, Pingdingshan Municipal First People's Hospital, Pingdingshan, Henan, China
| | - Zhongyue Shi
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lijuan Ma
- Department of Gastroenterology, Pingdingshan Medical District (formerly 152 Central Hospital), 989 Hospital of PLA Joint Logistic Support Force, Pingdingshan, Henan, China
| | - Jingwei Niu
- Department of Gastroenterology, Pingdingshan Medical District (formerly 152 Central Hospital), 989 Hospital of PLA Joint Logistic Support Force, Pingdingshan, Henan, China
| | - Mulan Jin
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Stachler MD, Jin RU. Molecular Pathology of Gastroesophageal Cancer. Clin Lab Med 2024; 44:239-254. [PMID: 38821643 DOI: 10.1016/j.cll.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Upper gastroesophageal carcinomas consist of cancers arising from the esophagus and stomach. Squamous cell carcinomas and adenocarcinomas are seen in the esophagus and despite arising from the same organ have different biology. Gastric adenocarcinomas are categorized into 4 molecular subtypes: high Epstein-Barr virus load, microsatellite unstable cancers, chromosomal unstable (CIN) cancers, and genomically stable cancers. Genomically stable gastric cancers correlate highly with histologically defined diffuse-type cancers. Esophageal carcinomas and CIN gastric cancers often are driven by high-level amplifications of oncogenes and contain a high degree of intratumoral heterogeneity. Targeted therapeutics is an active area of research for gastroesophageal cancers.
Collapse
Affiliation(s)
- Matthew D Stachler
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue HSW450B, San Francisco, CA 94143, USA.
| | - Ramon U Jin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, 7200 Cambridge Street, Suite 7B, MS: BCM904, Houston, TX 77030, USA
| |
Collapse
|
12
|
Min Q, Zhang M, Lin D, Zhang W, Li X, Zhao L, Teng H, He T, Sun W, Fan J, Yu X, Chen J, Li J, Gao X, Dong B, Liu R, Liu X, Song Y, Cui Y, Lu SH, Li R, Guo M, Wang Y, Zhan Q. Genomic characterization and risk stratification of esophageal squamous dysplasia. MEDICAL REVIEW (2021) 2024; 4:244-256. [PMID: 38919397 PMCID: PMC11195426 DOI: 10.1515/mr-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/15/2024] [Indexed: 06/27/2024]
Abstract
Objectives The majority of esophageal squamous dysplasia (ESD) patients progress slowly, while a subset of patients can undergo recurrence rapidly or progress to invasive cancer even after proper treatment. However, the molecular mechanisms underlying these clinical observations are still largely unknown. Methods By sequencing the genomic data of 160 clinical samples from 49 tumor-free ESD patients and 88 esophageal squamous cell carcinoma (ESCC) patients, we demonstrated lower somatic mutation and copy number alteration (CNA) burden in ESD compared with ESCC. Results Cross-species screening and functional assays identified ACSM5 as a novel driver gene for ESD progression. Furthermore, we revealed that miR-4292 promoted ESD progression and could serve as a non-invasive diagnostic marker for ESD. Conclusions These findings largely expanded our understanding of ESD genetics and tumorigenesis, which possessed promising significance for improving early diagnosis, reducing overtreatment, and identifying high-risk ESD patients.
Collapse
Affiliation(s)
- Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | | | - Dongmei Lin
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xianfeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastroenterology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Tao He
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
- Department of Pathology, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Wei Sun
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiawen Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiying Yu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaohan Gao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Rui Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xuefeng Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongping Cui
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shih-Hsin Lu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- Peking University International Cancer Institute, Peking University, Beijing, China
- Soochow University Cancer Institute, Suzhou, China
- State Key Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Zhao YX, Zhao HP, Zhao MY, Yu Y, Qi X, Wang JH, Lv J. Latest insights into the global epidemiological features, screening, early diagnosis and prognosis prediction of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:2638-2656. [PMID: 38855150 PMCID: PMC11154680 DOI: 10.3748/wjg.v30.i20.2638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024] Open
Abstract
As a highly invasive carcinoma, esophageal cancer (EC) was the eighth most prevalent malignancy and the sixth leading cause of cancer-related death worldwide in 2020. Esophageal squamous cell carcinoma (ESCC) is the major histological subtype of EC, and its incidence and mortality rates are decreasing globally. Due to the lack of specific early symptoms, ESCC patients are usually diagnosed with advanced-stage disease with a poor prognosis, and the incidence and mortality rates are still high in many countries, especially in China. Therefore, enormous challenges still exist in the management of ESCC, and novel strategies are urgently needed to further decrease the incidence and mortality rates of ESCC. Although the key molecular mechanisms underlying ESCC pathogenesis have not been fully elucidated, certain promising biomarkers are being investigated to facilitate clinical decision-making. With the advent and advancement of high-throughput technologies, such as genomics, proteomics and metabolomics, valuable biomarkers with high sensitivity, specificity and stability could be identified for ESCC. Herein, we aimed to determine the epidemiological features of ESCC in different regions of the world, especially in China, and focused on novel molecular biomarkers associated with ESCC screening, early diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Yi-Xin Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Meng-Yao Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Xi Qi
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Ji-Han Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
14
|
Shi H, Chen L, Wang T, Zhang W, Liu J, Huang Y, Li J, Qi H, Wu Z, Wang Y, Chen H, Zhu Y, Li Q. Nur77-IRF1 axis inhibits esophageal squamous cell carcinoma growth and improves anti-PD-1 treatment efficacy. Cell Death Discov 2024; 10:254. [PMID: 38789431 PMCID: PMC11126585 DOI: 10.1038/s41420-024-02019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The nuclear receptor Nur77 plays paradoxical roles in numerous cancers. However, whether Nur77 inhibits esophageal squamous cell carcinoma (ESCC) growth and affects immunological responses against ESCC has not been determined. The functional role of Nur77 in ESCC was investigated in this study using human ESCC cell lines, quantitative real-time polymerase chain reaction (PCR), cell proliferation and colony formation assays, flow cytometry analysis, western blotting and animal models. The target gene controlled by Nur77 was verified using dual-luciferase reporter assays, chromatin immunoprecipitation analysis and functional rescue experiments. To examine the clinical importance of Nur77, 72 human primary ESCC tissues were subjected to immunohistochemistry. Taken together, these findings showed that, both in vitro and in vivo, Nur77 dramatically reduced ESCC cell growth and triggered apoptosis. Nur77 directly interacts with the interferon regulatory factor 1 (IRF1) promoter to inhibit its activity in ESCC. Pharmacological induction of Nur77 using cytosporone B (CsnB) inhibited ESCC cell proliferation and promoted apoptosis both in vitro and in vivo. Furthermore, CsnB increased CD8+ T-cell infiltration and cytotoxicity to inhibit the formation of ESCC tumors in an immunocompetent mouse model. In ESCC tissues, Nur77 expression was downregulated, and IRF1 expression was increased; moreover, their expression levels were negatively related. IRF1 and Nur77 were strongly correlated with overall survival. These findings suggested that Nur77 targets and regulates the IRF1/PD-L1 axis to serve as a tumor suppressor in ESCC. Graphical abstract of the regulatory mechanism of Nur77 overexpression downregulates IRF1 in the inhibition of ESCC progression and enhance anti-PD-1 therapy efficacy.
Collapse
Affiliation(s)
- Huanying Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Jiafeng Liu
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Yuxin Huang
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Jiyifan Li
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Zimei Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Yi Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China.
| | - Yongjun Zhu
- Department of Cardio-Thoracic Surgery, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, No.12 Urumqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
15
|
Mao L, Deng G, Li M, Lu SH, Jiang W, Yu X. Antitumour effects of artesunate via cell cycle checkpoint controls in human oesophageal squamous carcinoma cells. Eur J Med Res 2024; 29:293. [PMID: 38773551 PMCID: PMC11110347 DOI: 10.1186/s40001-024-01882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2024] [Indexed: 05/24/2024] Open
Abstract
Artesunate (ART), an effective antimalarial semisynthetic derivative of artemisinin, exhibits antitumour properties, but the mechanism(s) involved remain elusive. In this study, we investigated the antitumour effects of ART on human oesophageal squamous cell carcinoma (ESCC) cell lines. Treatment of ESCC cell lines with ART resulted in the production of excessive reactive oxygen species (ROS) that induced DNA damage, reduced cell proliferation and inhibited clonogenicity via G1-S cell cycle arrest and/or apoptosis in vitro. The administration of ART to nude mice with ESCC cell xenografts inhibited tumour formation in vivo. However, the cytotoxicity of ART strongly differed among the ESCC cell lines tested. Transcriptomic profiling revealed that although the expression of large numbers of genes in ESCC cell lines was affected by ART treatment, these genes could be functionally clustered into pathways involved in regulating cell cycle progression, DNA metabolism and apoptosis. We revealed that p53 and Cdk4/6-p16-Rb cell cycle checkpoint controls were critical determinants required for mediating ART cytotoxicity in ESCC cell lines. Specifically, KYSE30 cells with p53Mut/p16Mut were the most sensitive to ART, KYSE150 and KYSE180 cells with p53Mut/p16Nor exhibited intermediate responses to ART, and Eca109 cells with p53Nor/p16Nor exhibited the most resistance to ATR. Consistently, perturbation of p53 expression using RNA interference (RNAi) and/or Cdk4/6 activity using the inhibitor palbociclib altered ART cytotoxicity in KYSE30 cells. Given that the p53 and Cdk4/6-cyclin D1-p16-Rb genes are commonly mutated in ESCC, our results potentially shed new light on neoadjuvant chemotherapy strategies for ESCC.
Collapse
Affiliation(s)
- Linlin Mao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Guodong Deng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mengfan Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shih-Hsin Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiying Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
16
|
Gao Y, Ye LS, Li X, Yu B, Liao K, Xie J, Du J, Zhang QY, Hu B. Effect of vinegar supplementation on patients with esophageal lesions lightly stained with Lugol's iodine solution: Prospective single-centre trial. World J Gastrointest Endosc 2024; 16:259-272. [PMID: 38813576 PMCID: PMC11130546 DOI: 10.4253/wjge.v16.i5.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Esophageal chromoendoscopy with iodine solution is important for detecting early esophageal cancer. The effect of routine treatment for lesions lightly stained with Lugol's iodine solution is limited, and the addition of natural substances to a regular diet is becoming increasingly common. Vinegar has antitumor effects as reported in previous studies. AIM To evaluate whether vinegar supplementation could improve the prognosis of patients with lightly stained esophageal lesions. METHODS This prospective single-centre trial included consecutive patients with lightly stained lesions between June 2020 and April 2022. Patients in the experimental group received increased amounts of vinegar for 6 months. The primary outcome of the study was the clinical therapeutic effect. Complications related to vinegar ingestion and adverse events were also recorded in detail. RESULTS A total of 166 patients were included in the final analysis. There was no significant difference in the baseline data between the two groups. Intention-to-treat (ITT) analysis demonstrated that the rates at which endoscopic characteristics improved were 33.72% in the experimental group and 20.00% in the conventional group (P = 0.007); and the rates at which biopsy pathology improved were 19.77% and 8.75%, respectively (P = 0.011). Additional vinegar consumption had a statistically protective effect on the rate at which endoscopic characteristics improved [hazard ratio (HR) ITT = 2.183, 95%CI: 1.183-4.028; HRper-protocol (PP) = 2.307, 95%CI: 1.202-4.426] and biopsy pathology improved (HRITT = 2.931, 95%CI: 1.212-7.089; HRPP = 3.320, 95%CI: 1.295-8.507). No statistically significant effect of increased vinegar consumption on preventing high-grade intraepithelial neoplasia or early cancer was observed (HRITT = 0.382, 95%CI: 0.079-1.846; HRPP = 0.382, 95%CI: 0.079-1.846). The subgroup analyses indicated that the overall therapeutic improvement of endoscopic characteristics and biopsy pathology seemed more obvious in older (age > 60) male patients with small lesions (lesion size ≤ 0.5 cm). Three patients in the experimental group reported acid regurgitation and heartburn. No adverse event during gastroscopy were recorded during follow-up. CONCLUSION A moderately increased ingestion of vinegar could not directly reduce the risk of esophageal cancer in the mucosa dysplasia population, but it improved the endoscopic characteristics and ameliorated the biopsy pathology to a certain extent. Further research is needed to verify the effect of nutritional intervention on precancerous esophageal lesions.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lian-Song Ye
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xu Li
- Center of Biostatistics, Design, Measurement and Evaluation (CBDME), Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610065, Sichuan Province, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Ke Liao
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia Xie
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jiang Du
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiong-Ying Zhang
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
17
|
Wang N, Pan D, Zhu X, Ren X, Jin X, Chen X, Wang Y, Su M, Sun G, Wang S. Selenium May Be Involved in Esophageal Squamous Cancer Prevention by Affecting GPx3 and FABP1 Expression: A Case-Control Study Based on Bioinformatic Analysis. Nutrients 2024; 16:1322. [PMID: 38732573 PMCID: PMC11085500 DOI: 10.3390/nu16091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The role of selenium in the developmental process of esophageal cancer (EC) requires further investigation. To explore the relationship between selenium-related factors and EC through bioinformatic analysis, a case-control study was conducted to verify the results. Utilizing the GEPIA and TCGA databases, we delineated the differential expression of glutathione peroxidase 3 (GPx3) in EC and normal tissues, identified differentially expressed genes (DEGs), and a performed visualization analysis. Additionally, 100 pairs of dietary and plasma samples from esophageal precancerous lesions (EPLs) of esophageal squamous cancer (ESCC) cases and healthy controls from Huai'an district, Jiangsu, were screened. The levels of dietary selenium, plasma selenium, and related enzymes were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) or ELISA kits. The results showed lower GPx3 expression in tumor tissues compared to normal tissues. Further analysis revealed that DEGs were mainly involved in the fat digestion and absorption pathway, and the core protein fatty acid binding protein 1 (FABP1) was significantly upregulated and negatively correlated with GPx3 expression. Our case-control study found that selenium itself was not associated with EPLs risk. However, both the decreased concentration of GPx3 and the increase in FABP1 were positively correlated with the EPLs risk (p for trend = 0.035 and 0.046, respectively). The different expressions of GPx3 and FABP1 reflect the potential of selenium for preventing ESCC at the EPLs stage. GPx3 may affect EC through FABP1, which remains to be further studied.
Collapse
Affiliation(s)
- Niannian Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
| | - Xiaopan Zhu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
| | - Xingyuan Ren
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
| | - Xingyi Jin
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
| | - Xiangjun Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712000, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
| | - Ming Su
- Huai’an District Center for Disease Control and Prevention, Huai’an 223001, China;
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (N.W.); (D.P.); (X.Z.); (X.R.); (X.J.); (X.C.); (Y.W.); (G.S.)
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712000, China
| |
Collapse
|
18
|
Fan Z, Zhou J, Tian Y, Qin Y, Liu Z, Gu L, Dawsey SM, Wei W, Deng D. Somatic CDKN2A copy number variations are associated with the prognosis of esophageal squamous cell dysplasia. Chin Med J (Engl) 2024; 137:980-989. [PMID: 38445358 PMCID: PMC11046026 DOI: 10.1097/cm9.0000000000002982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Somatic copy number variations (SCNVs) in the CDKN2A gene are among the most frequent events in the dysplasia-carcinoma sequence of esophageal squamous cell carcinoma. However, whether CDKN2A SCNVs are useful biomarkers for the risk stratification and management of patients with esophageal squamous cell dysplasia (ESCdys) is unknown. This study aimed to investigate the characteristics and prognostic value of CDKN2A SCNVs in patients with mild or moderate (m/M) ESCdys. METHODS This study conducted a prospective multicenter study of 205 patients with a baseline diagnosis of m/M ESCdys in five high-risk regions of China (Ci County, Hebei Province; Yanting, Sichuan Province; Linzhou, Henan Province; Yangzhong, Jiangsu Province; and Feicheng, Shandong Province) from 2005 to 2019. Genomic DNA was extracted from paraffin biopsy samples and paired peripheral white blood cells from patients, and a quantitative polymerase chain reaction assay, P16-Light, was used to detect CDKN2A copy number. The cumulative regression and progression rates of ESCdys were evaluated using competing risk models. RESULTS A total of 205 patients with baseline m/M ESCdys were enrolled. The proportion of ESCdys regression was significantly lower in the CDKN2A deletion cohort than in the diploid and amplification cohorts (18.8% [13/69] vs. 35.0% [28/80] vs. 51.8% [29/56], P <0.001). In the univariable competing risk analysis, the cumulative regression rate was statistically significantly lower ( P = 0.008), while the cumulative progression rate was higher ( P = 0.017) in ESCdys patients with CDKN2A deletion than in those without CDKN2A deletion. CDKN2A deletion was also an independent predictor of prognosis in ESCdys ( P = 0.004) in the multivariable analysis. CONCLUSION The results indicated that CDKN2A SCNVs are associated with the prognosis of ESCdys and may serve as potential biomarkers for risk stratification.
Collapse
Affiliation(s)
- Zhiyuan Fan
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yuan Tian
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yu Qin
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhaojun Liu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Sanford M. Dawsey
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wenqiang Wei
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
19
|
Sun JR, Chen DM, Huang R, Wang RT, Jia LQ. Transcriptome sequencing reveals novel biomarkers and immune cell infiltration in esophageal tumorigenesis. World J Gastrointest Oncol 2024; 16:1500-1513. [PMID: 38660641 PMCID: PMC11037066 DOI: 10.4251/wjgo.v16.i4.1500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/07/2024] [Accepted: 02/04/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies worldwide, and its development comprises a multistep process from intraepithelial neoplasia (IN) to carcinoma (CA). However, the critical regulators and underlying molecular mechanisms remain largely unknown. AIM To explore the genes and infiltrating immune cells in the microenvironment that are associated with the multistage progression of ESCC to facilitate diagnosis and early intervention. METHODS A mouse model mimicking the multistage development of ESCC was established by providing warter containing 4-nitroquinoline 1-oxide (4NQO) to C57BL/6 mice. Moreover, we established a control group without 4NQO treatment of mice. Then, transcriptome sequencing was performed for esophageal tissues from patients with different pathological statuses, including low-grade IN (LGIN), high-grade IN (HGIN), and CA, and controlled normal tissue (NOR) samples. Differentially expressed genes (DEGs) were identified in the LGIN, HGIN, and CA groups, and the biological functions of the DEGs were analyzed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The CIBERSORT algorithm was used to detect the pattern of immune cell infiltration. Immunohistochemistry (IHC) was also conducted to validate our results. Finally, the Luminex multiplex cytokine analysis was utilized to measure the serum cytokine levels in the mice. RESULTS Compared with those in the NOR group, a total of 681541, and 840 DEGs were obtained in the LGIN, HGIN, and CA groups, respectively. Using the intersection of the three sets of DEGs, we identified 86 genes as key genes involved in the development of ESCC. Enrichment analysis revealed that these genes were enriched mainly in the keratinization, epidermal cell differentiation, and interleukin (IL)-17 signaling pathways. CIBERSORT analysis revealed that, compared with those in the NOR group, M0 and M1 macrophages in the 4NQO group showed stronger infiltration, which was validated by IHC. Serum cytokine analysis revealed that, compared with those in the NOR group, IL-1β and IL-6 were upregulated, while IL-10 was downregulated in the LGIN, HGIN, and CA groups. Moreover, the expression of the representative key genes, such as S100a8 and Krt6b, was verified in external human samples, and the results of immunohistochemical staining were consistent with the findings in mice. CONCLUSION We identified a set of key genes represented by S100a8 and Krt6b and investigated their potential biological functions. In addition, we found that macrophage infiltration and abnormal alterations in the levels of inflammation-associated cytokines, such as IL-1β, IL-6, and IL-10, in the peripheral blood may be closely associated with the development of ESCC.
Collapse
Affiliation(s)
- Jian-Rong Sun
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dong-Mei Chen
- Integrated Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Rong Huang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui-Tao Wang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li-Qun Jia
- Integrated Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
20
|
Zhao Y, Ma C, Cai R, Xin L, Li Y, Ke L, Ye W, Ouyang T, Liang J, Wu R, Lin Y. NMR and MS reveal characteristic metabolome atlas and optimize esophageal squamous cell carcinoma early detection. Nat Commun 2024; 15:2463. [PMID: 38504100 PMCID: PMC10951220 DOI: 10.1038/s41467-024-46837-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Metabolic changes precede malignant histology. However, it remains unclear whether detectable characteristic metabolome exists in esophageal squamous cell carcinoma (ESCC) tissues and biofluids for early diagnosis. Here, we conduct NMR- and MS-based metabolomics on 1,153 matched ESCC tissues, normal mucosae, pre- and one-week post-operative sera and urines from 560 participants across three hospitals, with machine learning and WGCNA. Aberrations in 'alanine, aspartate and glutamate metabolism' proved to be prevalent throughout the ESCC evolution, consistently identified by NMR and MS, and reflected in 16 serum and 10 urine metabolic signatures in both discovery and validation sets. NMR-based simplified panels of any five serum or urine metabolites outperform clinical serological tumor markers (AUC = 0.984 and 0.930, respectively), and are effective in distinguishing early-stage ESCC in test set (serum accuracy = 0.994, urine accuracy = 0.879). Collectively, NMR-based biofluid screening can reveal characteristic metabolic events of ESCC and be feasible for early detection (ChiCTR2300073613).
Collapse
Affiliation(s)
- Yan Zhao
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Central Laboratory, Clinical Research Center, Shantou Central Hospital, Shantou, Guangdong, China
| | - Changchun Ma
- Radiation Oncology Department, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Rongzhi Cai
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lijing Xin
- Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Lixin Ke
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Ye
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ting Ouyang
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiahao Liang
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Renhua Wu
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Yan Lin
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
21
|
Papadakos SP, Argyrou A, Lekakis V, Arvanitakis K, Kalisperati P, Stergiou IE, Konstantinidis I, Schizas D, Koufakis T, Germanidis G, Theocharis S. Metformin in Esophageal Carcinoma: Exploring Molecular Mechanisms and Therapeutic Insights. Int J Mol Sci 2024; 25:2978. [PMID: 38474224 PMCID: PMC10932447 DOI: 10.3390/ijms25052978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Esophageal cancer (EC) remains a formidable malignancy with limited treatment options and high mortality rates, necessitating the exploration of innovative therapeutic avenues. Through a systematic analysis of a multitude of studies, we synthesize the diverse findings related to metformin's influence on EC. This review comprehensively elucidates the intricate metabolic pathways and molecular mechanisms through which metformin may exert its anti-cancer effects. Key focus areas include its impact on insulin signaling, AMP-activated protein kinase (AMPK) activation, and the mTOR pathway, which collectively contribute to its role in mitigating esophageal cancer progression. This review critically examines the body of clinical and preclinical evidence surrounding the potential role of metformin, a widely prescribed anti-diabetic medication, in EC management. Our examination extends to the modulation of inflammation, oxidative stress and angiogenesis, revealing metformin's potential as a metabolic intervention in esophageal cancer pathogenesis. By consolidating epidemiological and clinical data, we assess the evidence that supports metformin's candidacy as an adjuvant therapy for esophageal cancer. By summarizing clinical and preclinical findings, our review aims to enhance our understanding of metformin's role in EC management, potentially improving patient care and outcomes.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527 Athens, Greece;
| | - Alexandra Argyrou
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | - Vasileios Lekakis
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Polyxeni Kalisperati
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.); (I.E.S.)
| | - Ioanna E. Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.); (I.E.S.)
| | | | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, General Hospital “Hippokration”, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527 Athens, Greece;
| |
Collapse
|
22
|
Arai T, Ono S, Takubo K. Squamous Neoplastic Precursor Lesions of the Esophagus. Gastroenterol Clin North Am 2024; 53:25-38. [PMID: 38280749 DOI: 10.1016/j.gtc.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Clinicopathological and molecular studies have demonstrated that dysplasia is a precancerous and/or neoplastic lesion with malignant potential. Further, it is subclassified into two grades: high-grade and low-grade dysplasia. High-grade dysplasia is a clinically significant lesion requiring resection or ablation. Low-grade dysplasia has a much lower risk of carcinoma; thus, it should be followed by endoscopic surveillance. Because squamous dysplasia may progress to squamous cell carcinoma, periodic endoscopy is useful to detect the lesion in patients with risk factors. Squamous dysplasia is diagnosed histopathologically by evaluating both cytologic and structural changes.
Collapse
Affiliation(s)
- Tomio Arai
- Department of Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Satoshi Ono
- Department of Gastroenterology and Gastrointestinal Endoscopy, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
23
|
Schiavoni G, Messina B, Scalera S, Memeo L, Colarossi C, Mare M, Blandino G, Ciliberto G, Bon G, Maugeri-Saccà M. Role of Hippo pathway dysregulation from gastrointestinal premalignant lesions to cancer. J Transl Med 2024; 22:213. [PMID: 38424512 PMCID: PMC10903154 DOI: 10.1186/s12967-024-05027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND First identified in Drosophila melanogaster, the Hippo pathway is considered a major regulatory cascade controlling tissue homeostasis and organ development. Hippo signaling components include kinases whose activity regulates YAP and TAZ final effectors. In response to upstream stimuli, YAP and TAZ control transcriptional programs involved in cell proliferation, cytoskeletal reorganization and stemness. MAIN TEXT While fine tuning of Hippo cascade components is essential for maintaining the balance between proliferative and non-proliferative signals, pathway signaling is frequently dysregulated in gastrointestinal cancers. Also, YAP/TAZ aberrant activation has been described in conditions characterized by chronic inflammation that precede cancer development, suggesting a role of Hippo effectors in triggering carcinogenesis. In this review, we summarize the architecture of the Hippo pathway and discuss the involvement of signaling cascade unbalances in premalignant lesions of the gastrointestinal tract, providing a focus on the underlying molecular mechanisms. CONCLUSIONS The biology of premalignant Hippo signaling dysregulation needs further investigation in order to elucidate the evolutionary trajectories triggering cancer inititation and develop effective early therapeutic strategies targeting the Hippo/YAP pathway.
Collapse
Affiliation(s)
- Giulia Schiavoni
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Beatrice Messina
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
| | | | - Marzia Mare
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Bon
- Cellular Network and Molecular Therapeutic Target Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Marcello Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
24
|
Che J, Zhao Y, Gu B, Li S, Li Y, Pan K, Sun T, Han X, Lv J, Zhang S, Fan B, Li C, Wang C, Wang J, Zhang T. Untargeted serum metabolomics reveals potential biomarkers and metabolic pathways associated with the progression of gastroesophageal cancer. BMC Cancer 2023; 23:1238. [PMID: 38102546 PMCID: PMC10724912 DOI: 10.1186/s12885-023-11744-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Previous metabolic studies in upper digestive cancer have mostly been limited to cross-sectional study designs, which hinders the ability to effectively predict outcomes in the early stage of cancer. This study aims to identify key metabolites and metabolic pathways associated with the multistage progression of epithelial cancer and to explore their predictive value for gastroesophageal cancer (GEC) formation and for the early screening of esophageal squamous cell carcinoma (ESCC). METHODS A case-cohort study within the 7-year prospective Esophageal Cancer Screening Cohort of Shandong Province included 77 GEC cases and 77 sub-cohort individuals. Untargeted metabolic analysis was performed in serum samples. Metabolites, with FDR q value < 0.05 and variable importance in projection (VIP) > 1, were selected as differential metabolites to predict GEC formation using Random Forest (RF) models. Subsequently, we evaluated the predictive performance of these differential metabolites for the early screening of ESCC. RESULTS We found a distinct metabolic profile alteration in GEC cases compared to the sub-cohort, and identified eight differential metabolites. Pathway analyses showed dysregulation in D-glutamine and D-glutamate metabolism, nitrogen metabolism, primary bile acid biosynthesis, and steroid hormone biosynthesis in GEC patients. A panel of eight differential metabolites showed good predictive performance for GEC formation, with an area under the receiver operating characteristic curve (AUC) of 0.893 (95% CI = 0.816-0.951). Furthermore, four of the GEC pathological progression-related metabolites were validated in the early screening of ESCC, with an AUC of 0.761 (95% CI = 0.716-0.805). CONCLUSIONS These findings indicated a panel of metabolites might be an alternative approach to predict GEC formation, and therefore have the potential to mitigate the risk of cancer progression at the early stage of GEC.
Collapse
Affiliation(s)
- Jiajing Che
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yongbin Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Bingbing Gu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shuting Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yunfei Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Keyu Pan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Tiantian Sun
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xinyue Han
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jiali Lv
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shuai Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Bingbing Fan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chunxia Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Cheng Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jialin Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, China.
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
25
|
Chang J, Zhao X, Wang Y, Liu T, Zhong C, Lao Y, Zhang S, Liao H, Bai F, Lin D, Wu C. Genomic alterations driving precancerous to cancerous lesions in esophageal cancer development. Cancer Cell 2023; 41:2038-2050.e5. [PMID: 38039962 DOI: 10.1016/j.ccell.2023.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/26/2023] [Accepted: 11/04/2023] [Indexed: 12/03/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) develops through a series of increasingly abnormal precancerous lesions. Previous studies have revealed the striking differences between normal esophageal epithelium and ESCC in copy number alterations (CNAs) and mutations in genes driving clonal expansion. However, due to limited data on early precancerous lesions, the timing of these transitions and which among them are prerequisites for malignant transformation remained unclear. Here, we analyze 1,275 micro-biopsies from normal esophagus, early and late precancerous lesions, and esophageal cancers to decipher the genomic alterations at each stage. We show that the frequency of TP53 biallelic inactivation increases dramatically in early precancerous lesion stage while CNAs and APOBEC mutagenesis substantially increase at late stages. TP53 biallelic loss is the prerequisite for the development of CNAs of genes in cell cycle, DNA repair, and apoptosis pathways, suggesting it might be one of the earliest steps initiating malignant transformation.
Collapse
Affiliation(s)
- Jiang Chang
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Yichen Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Ce Zhong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Yueqiong Lao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Han Liao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China; Center for Translational Cancer Research, Peking University First Hospital, Beijing 100034, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
26
|
van Tilburg L, Spaander MCW, Bruno MJ, Oudijk L, Heij LR, Doukas M, Koch AD. Increased risk of esophageal squamous cell carcinoma in patients with squamous dysplasia: a nationwide cohort study in the Netherlands. Dis Esophagus 2023; 36:doad045. [PMID: 37480179 PMCID: PMC10691308 DOI: 10.1093/dote/doad045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/30/2023] [Accepted: 06/25/2023] [Indexed: 07/23/2023]
Abstract
Squamous dysplasia is the histological precursor of esophageal squamous cell carcinoma (ESCC). The optimal management for distinct squamous dysplasia grades remains unclear because the corresponding risk of developing ESCC is unknown. We aimed to assess the ESCC risk in patients with esophageal squamous dysplasia in a Western country. This nationwide cohort study included all patients with esophageal squamous dysplasia, diagnosed between 1991 and 2020 in the Dutch nationwide pathology databank (Palga). Squamous dysplasia was divided in mild-to-moderate dysplasia (mild, low-grade, and moderate dysplasia) and higher-grade dysplasia (high-grade dysplasia, severe dysplasia, carcinoma in situ). ESCC were identified in Palga and the Netherlands Cancer Registry. The primary endpoint was diagnosis of prevalent (≤6 months) and incident (>6 months after squamous dysplasia) ESCC. In total, 873 patients (55% male, aged 68 years SD ± 13.2) were diagnosed with esophageal squamous dysplasia, comprising mild-to-moderate dysplasia (n = 456), higher-grade dysplasia (n = 393), and dysplasia not otherwise specified (n = 24). ESCC was diagnosed in 77 (17%) patients with mild-to-moderate dysplasia (49 prevalent, 28 incident ESCC) and in 162 (41%) patients with higher-grade dysplasia (128 prevalent, 34 incident ESCC). After excluding prevalent ESCC, the annual risk of ESCC was 4.0% (95% CI: 2.7-5.7%) in patients with mild-to-moderate dysplasia and 8.5% (95% CI: 5.9-11.7%) in patients with higher-grade dysplasia. All patients with squamous dysplasia, including those with mild-to-moderate dysplasia, have a substantial risk of developing ESCC. Consequently, endoscopic surveillance of the esophageal mucosa or endoscopic resection of dysplasia should be considered for patients with mild-to-moderate dysplasia in Western countries. KEY MESSAGES What is already known on this topic? Squamous dysplasia is the histological precursor of ESCC and is divided in distinct grades, based on the proportion of the squamous epithelium with histopathological abnormalities. In Western countries, the optimal management for distinct squamous dysplasia grades remains unclear because the corresponding risk of developing ESCC is unknown. What this study adds The ESCC risk of patients with squamous dysplasia was increased for all patients with squamous dysplasia in a Western country; 2.1% for patients with mild dysplasia, 5.1% for low-grade dysplasia, and 5.2% for moderate dysplasia. Increasing grades of squamous dysplasia were associated with an increased ESCC risk. How this study might affect research, practice, or policy We recommend that endoscopic follow-up or treatment should be considered in all patients with esophageal squamous dysplasia in Western countries: 1) for patients with mild, low-grade, and moderate dysplasia, endoscopic surveillance with careful inspection with narrow band imaging or dye-based chromoendoscopy of the esophageal mucosa is indicated; and 2) for patients with high-grade dysplasia, severe dysplasia and carcinoma in situ adequate endoscopic staging and in case of suspected neoplasia endoscopic treatment should be performed.
Collapse
Affiliation(s)
- Laurelle van Tilburg
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Lindsey Oudijk
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Lara R Heij
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Arjun D Koch
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
27
|
Wan M, Yang X, He L, Meng H. Elucidating the clonal relationship of esophageal second primary tumors in patients with laryngeal squamous cell carcinoma. Infect Agent Cancer 2023; 18:75. [PMID: 38017473 PMCID: PMC10685475 DOI: 10.1186/s13027-023-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
Laryngeal cancer ranks as the second most prevalent upper airway malignancy, following Lung cancer. Although some progress has been made in managing laryngeal cancer, the 5-year survival rate is disappointing. The gradual increase in the incidence of second primary tumors (SPTs) plays a crucial role in determining survival outcomes during long-term follow-up, and the esophagus was the most common site with a worse prognosis. In clinical practice, the treatment of esophageal second primary tumors (ESPT) in patients with laryngeal squamous cell carcinoma (LSCC) has always been challenging. For patients with synchronous tumors, several treatment modalities, such as radiotherapy, chemotherapy and potentially curative surgery are necessary but are typically poorly tolerated. Secondary cancer therapy options for metachronous patients are always constrained by index cancer treatment indications. Therefore, understanding the clonal origin of the second primary tumor may be an important issue in the treatment of patients. LSCC cells demonstrate genetic instability because of two distinct aetiologies (human papillomavirus (HPV)-negative and HPV-positive) disease. Various etiologies exhibit distinct oncogenic mechanisms, which subsequently impact the tissue microenvironment. The condition of the tissue microenvironment plays a crucial role in determining the destiny and clonal makeup of mutant cells during the initial stages of tumorigenesis. This review focuses on the genetic advances of LSCC, the current research status of SPT, and the influence of key carcinogenesis of HPV-positive and HPV-negative LSCC on clonal evolution of ESPT cells. The objective is to gain a comprehensive understanding of the molecular basis underlying the clonal origins of SPT, thereby offering novel perspectives for future investigations in this field.
Collapse
Affiliation(s)
- Meixuan Wan
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xinxin Yang
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lin He
- Department of Stomatology, Heilongjiang Province Hospital, Harbin, 150081, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
28
|
Huang H, Li N, Liang Y, Li R, Tong X, Xiao J, Tang H, Jiang D, Xie K, Fang C, Chen S, Li G, Wang B, Wang J, Luo H, Guo L, Ma H, Jiang W, Feng Y. Multi-omics analyses reveal spatial heterogeneity in primary and metastatic oesophageal squamous cell carcinoma. Clin Transl Med 2023; 13:e1493. [PMID: 38009315 PMCID: PMC10679972 DOI: 10.1002/ctm2.1493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Biopsies obtained from primary oesophageal squamous cell carcinoma (ESCC) guide diagnosis and treatment. However, spatial intra-tumoral heterogeneity (ITH) influences biopsy-derived information and patient responsiveness to therapy. Here, we aimed to elucidate the spatial ITH of ESCC and matched lymph node metastasis (LNmet ). METHODS Primary tumour superficial (PTsup ), deep (PTdeep ) and LNmet subregions of patients with locally advanced resectable ESCC were evaluated using whole-exome sequencing (WES), whole-transcriptome sequencing and spatially resolved digital spatial profiling (DSP). To validate the findings, immunohistochemistry was conducted and a single-cell transcriptomic dataset was analysed. RESULTS WES revealed 15.72%, 5.02% and 32.00% unique mutations in PTsup , PTdeep and LNmet , respectively. Copy number alterations and phylogenetic trees showed spatial ITH among subregions both within and among patients. Driver mutations had a mixed intra-tumoral clonal status among subregions. Transcriptome data showed distinct differentially expressed genes among subregions. LNmet exhibited elevated expression of immunomodulatory genes and enriched immune cells, particularly when compared with PTsup (all P < .05). DSP revealed orthogonal support of bulk transcriptome results, with differences in protein and immune cell abundance between subregions in a spatial context. The integrative analysis of multi-omics data revealed complex heterogeneity in mRNA/protein levels and immune cell abundance within each subregion. CONCLUSIONS This study comprehensively characterised spatial ITH in ESCC, and the findings highlight the clinical significance of unbiased molecular classification based on multi-omics data and their potential to improve the understanding and management of ESCC. The current practices for tissue sampling are insufficient for guiding precision medicine for ESCC, and routine profiling of PTdeep and/or LNmet should be systematically performed to obtain a more comprehensive understanding of ESCC and better inform treatment decisions.
Collapse
Affiliation(s)
- Haitao Huang
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Yingkuan Liang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Rutao Li
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Xing Tong
- Department of Pathologythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jinyuan Xiao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Hongzhen Tang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Dong Jiang
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Kai Xie
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chen Fang
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shaomu Chen
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Guangbin Li
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Bin Wang
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Jiaqian Wang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Lingchuan Guo
- Department of Pathologythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haitao Ma
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Wei Jiang
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Yu Feng
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
29
|
Su Z, Chen W, Cao X, Deng L, Zhang Y. Exploratory Study of a New Technique of Pixelated Chromoendoscopy in the Diagnosis of Early Esophageal Cancer. Surg Laparosc Endosc Percutan Tech 2023; 33:522-526. [PMID: 37585390 DOI: 10.1097/sle.0000000000001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/24/2022] [Indexed: 08/18/2023]
Abstract
BACKGROUND Chromoendoscopy is an effective method for early screening of esophageal cancer, but diagnosis can depend on subjective judgment. The study aimed to explore a new technique of pixelated chromoendoscopy in the diagnosis of early esophageal cancer. PATIENTS AND METHODS The study included patients with symptoms of esophageal cancer who attended Jiangyin People's Hospital between January 2015 and July 2021. Chromoendoscopy was performed on each patient. The images then underwent digital analysis; the lesion area (the sensitive region) was pixelated by dividing it into the smallest image unit and the red, green, and blue color components. The diagnostic performance of pixelated chromoendoscopy was evaluated by calculating the area under the receiver operating characteristic. RESULTS The study finally enrolled 86 patients (aged 51.34 ± 5.82 y), including 54 males and 32 females. Pathologic diagnosis identified 54 cases in the cancer group and 32 cases in the non-cancer group. Traditional judgment had a diagnostic sensitivity of 70.73% and specificity was 75.00%. Pixelated chromoendoscopy sensitivity was 80.49%, and specificity was 83.33%. The area under the receiver operating characteristic was 0.814, at a cutoff value of 0.625, indicating a good prediction effect. CONCLUSIONS These results showed that pixelated chromoendoscopy might improve the rate of esophageal cancer diagnoses from early screening.
Collapse
Affiliation(s)
- Zhe Su
- Department of Gastroenterology
| | - Wei Chen
- Department of Oncology, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin
| | - Xiangming Cao
- Department of Digestive Disease, Dongtai Hospital Affiliated to Nantong Medical University, Yancheng, Jiangsu, China
| | - Lichun Deng
- Department of Digestive Disease, Dongtai Hospital Affiliated to Nantong Medical University, Yancheng, Jiangsu, China
| | | |
Collapse
|
30
|
Yao Y, Xuan H, Wang J, Gong L, Gao W. Integrative analysis of tertiary lymphoid structures and immune microenvironment in patients with esophageal carcinoma. TUMORI JOURNAL 2023; 109:466-480. [PMID: 37249074 DOI: 10.1177/03008916231176857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common upper gastrointestinal malignancies worldwide. Tertiary lymphoid structures (TLS) are tumor-infiltrating immune cells aggregates coupled with stromal cells which are similar to secondary lymphoid organs. The objective of this study is to explore the predictive effects of two common genes associated with TLS models on prognosis and immunotherapy effects in ESCC patients. METHODS Clinical information for ESCC patients in the TCGA(The Cancer Genome Altas) cohort and GSE 53625 were collected. All of the samples were classified as either high score group or low score group based on two TLS signatures, and the association between TLS signatures and survival, clinical indicators, genomic burden, stemness indices analysis, tumor microenvironment and immunotherapy response were performed. Furthermore, the mature TLS was also assessed in ESCC tissue microarray. RESULTS In our study, we quantified the score of TLS_9 and TLS_12, respectively, reflecting the different statuses of TLS (TLS_9 = B and T cells in TLSs; TLS_12 = neogenesis of TLSs). Subsequently, we explored the effect of TLS score on ESCC tumor microenvironment quantified by multiple algorithms. We found that a correlation analysis indicated that TLS_9 and TLS_12 were all positively correlated with CD8+ T cell, NK cells, CD4+ T cells, M1 macrophages and so on. Meanwhile, some cells present a different correlation pattern of TLS_9 and TLS_12, including activated CD4+ memory T cells and Tgd cells. Immune-related analysis revealed that the TLS_12 and TLS_9 scores were all positively correlated with immune dysfunction, yet negatively correlated with immune exclusion. Following this, the biological roles of TLS_9 and TLS_12 scores were investigated. Also, we noticed that the TLS score could significantly affect the CAFs infiltration and be associated with the genomic burden and tumor stemness. In addition, we explored the prognostic value of mature TLS through tissue microarray (TMA). Our result displayed ESCC patients with the presence of mature TLS had a better prognosis than ESCC patients without it. CONCLUSIONS Our study indicated that ESCC patients with the presence of TLS had better outcomes and an inflamed immune microenvironment. In addition, both TLS-9 and TLS-12 gene signatures could be used as potential biomarkers for the immunotherapy of ESCC patients.
Collapse
Affiliation(s)
- Yuanshan Yao
- Department of Thoracic Surgery, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Haojie Xuan
- Department of Thoracic Surgery, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jing Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Libao Gong
- Department of abdominal oncology, The cancer center of the fifth affiliated hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Wen Gao
- Department of Thoracic Surgery, Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
31
|
Dong J, Gao M, Li L, Pan X, Chen SY, Li J, Smith-Warner SA, Li X, Wang H, Zheng J. Associations of Dietary Inflammatory Potential with Esophageal Precancerous Lesions and Esophageal Squamous-Cell Cancer: A Cross-Sectional Study. Nutrients 2023; 15:4078. [PMID: 37764860 PMCID: PMC10537352 DOI: 10.3390/nu15184078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic inflammation plays a central role in the progression from esophageal precancerous lesions (EPLs) to esophageal squamous-cell cancer (ESCC). However, few studies have investigated the relationship between the overall inflammatory potential of diets and EPLs and ESCC. We aimed to study the association between the Dietary Inflammatory Index (DII) and EPLs and ESCC. As part of the National Cohort of Esophageal Cancer (NCEC) in China, 3967 residents (1993 men and 1974 women) aged from 40 to 69 years living in Yanting County received free gastroscopy screenings from 2017 to 2019. Dietary intake during the past year was assessed at enrollment of the cohort before screening and DII scores were calculated based on 28 food parameters. EPLs (classified into mild, moderate, and severe dysplasia) and ESCC were histologically confirmed by biopsy. Multivariable logistic regression was used to examine the associations of DII scores with EPLs and ESCC. A total of 312 participants were diagnosed with EPLs (226 with mild dysplasia, 40 with moderate dysplasia, and 46 with severe dysplasia) and 72 were diagnosed with ESCC. A statistically significant positive association was observed between DII scores and overall EPLs (ORT3 vs. T1 = 1.45, 95%CI = 1.01-2.09); the association was similar but not statistically significant for mild dysplasia (ORone-unit-increment = 1.11, 95%CI = 0.95-1.34) and for moderate and severe dysplasia combined (ORone-unit-increment = 1.15, 95%CI = 0.87-1.51). The association with ESCC was similar in magnitude but not significant, likely due to the small number of cases. In this cross-sectional study of a population in China at high risk of ESCC, DII scores were positively associated with odds of EPLs and ESCC. Consumption of anti-inflammatory foods may be beneficial to prevent EPLs and ESCC.
Collapse
Affiliation(s)
- Jingwen Dong
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA; (J.D.); (S.-Y.C.); (S.A.S.-W.)
| | - Min Gao
- School of Public Health, Capital Medical University, Beijing 100069, China;
| | - Lin Li
- Cancer Prevention and Treatment Office, Yanting Cancer Hospital, Mianyang 621600, China; (L.L.); (J.L.)
| | - Xiaoyu Pan
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA 02115, USA;
| | - Sheng-Yin Chen
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA; (J.D.); (S.-Y.C.); (S.A.S.-W.)
| | - Jun Li
- Cancer Prevention and Treatment Office, Yanting Cancer Hospital, Mianyang 621600, China; (L.L.); (J.L.)
| | - Stephanie A. Smith-Warner
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA; (J.D.); (S.-Y.C.); (S.A.S.-W.)
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA 02115, USA;
| | - Xiaoguang Li
- Department of Food Safety and Toxicology, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.L.); (H.W.)
| | - Hui Wang
- Department of Food Safety and Toxicology, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.L.); (H.W.)
| | - Jiali Zheng
- Department of Epidemiology and Biostatistics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
32
|
Xu YJ, Li R, Chen JM, Zhuang XY, Lin N, Wang LP, Zeng BW. Use of Immunohistochemical p53 Mutant-Phenotype in Diagnosis of High-Grade Dysplasia of Esophageal Squamous Epithelia. Dig Dis 2023; 41:685-694. [PMID: 37579733 DOI: 10.1159/000531331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Mild cellular atypia of esophageal squamous epithelial dysplasia has a risk of progressing to cancer that poses great confusion for pathological diagnosis. There is no research on the diagnosis and differential diagnosis of esophageal squamous dysplasia by the expression of immunohistochemical (IHC) p53. The study aims to conduct a graded diagnosis of esophageal squamous epithelial hyperplasia by combining p53 expressions and microscopic histomorphological characteristics. METHODS The study was conducted from January 2021 to January 2022 and included a total of 208 cases including 262 specimens with atypical hyperplasia or dysplasia of squamous epithelia discovered by esophageal mucosal biopsy. HE staining was used to grade the epithelial hyperplasia degree, and all cases underwent p53 IHC evaluation. RESULTS Benign lesions: we did not find any p53 IHC mutant-phenotype (0/12 cases) in 12 cases of esophagitis. We found 10 cases (10/80 cases) of p53 IHC mutant-phenotype in 80 cases of low-grade dysplasia, and 158 cases (158/170 cases) of p53 IHC mutant-phenotype of high-grade lesions in 170 cases of high-grade dysplasia and early cancer based on the χ2 test results. We found statistically significant differences in p53 IHC mutant-phenotype between the high-grade squamous epithelial lesions and benign lesions. The sensitivity and specificity of p53 in detecting high-grade squamous epithelial lesions were 92.9% and 89.1%, respectively. The positive predictive value was 94.0%, and the negative predictive value was 87.2%. CONCLUSION In this study, we found that p53 IHC had high sensitivity and specificity in detecting high-grade esophageal squamous epithelial lesions. Therefore, it has potential to be used as a routine item in pathological detection for auxiliary risk stratification of esophageal squamous epithelial lesions.
Collapse
Affiliation(s)
- Yan-Juan Xu
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ran Li
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jiang-Mu Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xue-Yu Zhuang
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Na Lin
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Lin-Pei Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Bing-Wei Zeng
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
33
|
Zhao J, Jia X, Li Q, Zhang H, Wang J, Huang S, Hu Z, Li C. Genomic and transcriptional characterization of early esophageal squamous cell carcinoma. BMC Med Genomics 2023; 16:153. [PMID: 37393256 PMCID: PMC10315050 DOI: 10.1186/s12920-023-01588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a highly heterogeneous cancer that lacks comprehensive understanding and effective treatment. Although multi-omics study has revealed features and underlying drivers of advanced ESCC, research on molecular characteristics of the early stage ESCC is quite limited. MATERIALS AND METHODS We presented characteristics of genomics and transcriptomics in 10 matched pairs of tumor and normal tissues of early ESCC patients in the China region. RESULTS We identified the specific patterns of cancer gene mutations and copy number variations. We also found a dramatic change in the transcriptome, with more than 4,000 genes upregulated in cancer. Among them, more than one-third of HOX family genes were specifically and highly expressed in early ESCC samples of China and validated by RT-qPCR. Gene regulation network analysis indicated that alteration of Hox family genes promoted the proliferation and metabolism remodeling of early ESCC. CONCLUSIONS We characterized the genomic and transcriptomic landscape of 10 paired normal adjacent and early ESCC tissues in the China region, and provided a new perspective to understand the development of ESCC and insight into potential prevention and diagnostic targets for the management of early ESCC in China.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Gastroenterology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiya Jia
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qiaojuan Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hena Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianjun Wang
- Department of Pediatric Medicine, Gansu Provincial People's Hospital, Lanzhou City, , Gansu Province, China
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Department of Gastroenterology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Caiping Li
- Department of Gastroenterology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
34
|
Fan JH, Sun WY, Yang H, Wang XK, Abnet CC, Qiao YL. Short-term and long-term effect of nutrition intervention in the Linxian Dysplasia Nutrition Intervention Trial and the reason for disappearance of the intervention effect: A cohort study. Cancer 2023. [PMID: 37243894 DOI: 10.1002/cncr.34761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND The objective of this study was to determine the short-term and long-term effects of a nutrition intervention in using 37 years of follow-up data. METHODS The Linxian Dysplasia Population Nutrition Intervention Trial was a randomized, double-blind, placebo-controlled trial with 7 years of intervention and 30 years of follow-up. The Cox proportional hazard model was used for analyses. Subgroup analyses were conducted in age and sex subgroups, and the 30 years of follow-up were divided into two 15-year early and late periods. RESULTS The results at 37 years did not indicate any effects on mortality from cancers or other diseases. In the first 15 years, the intervention decreased the overall risk of gastric cancer deaths in all participants (hazard ratio [HR], 0.76; 95% confidence interval [CI], 0.58-1.00) and in the subgroup participants younger than 55 years (HR, 0.64; 95% CI, 0.43-0.96). In addition, in the group younger than 55 years (HR, 0.58; 95% CI, 0.35-0.96), the intervention decreased the risk of death from other diseases; and, in the group aged 55 years and older (HR, 0.75; 95% CI, 0.58-0.98), the intervention reduced the risk of death from heart disease. There were no significant results in the later 15 years, which indicated the disappearance of the intervention effect. Comparing demographic characteristics between those who died during the two periods, the participants who died later included more women, had a higher education level, had a lower smoking rate, were younger, and also more had a mild degree of esophageal dysplasia, representing a better lifestyle and health condition. CONCLUSIONS Long-term follow-up indicated no effect of nutrition on deaths in a population with esophageal squamous dysplasia, further supporting the significance of continuous nutritional intervention for cancer protection. The pattern of protective effect of a nutrition intervention on gastric cancer in patients with esophageal squamous dysplasia was similar to that in the general population. Participants who died in the later period had more protective factors than those who died in the earlier period, contributing to the obvious effect of the intervention in early stage disease.
Collapse
Affiliation(s)
- Jin-Hu Fan
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wan-Yi Sun
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huan Yang
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Kun Wang
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - You-Lin Qiao
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Center for Global Health, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Shah MA, Altorki N, Patel P, Harrison S, Bass A, Abrams JA. Improving outcomes in patients with oesophageal cancer. Nat Rev Clin Oncol 2023; 20:390-407. [PMID: 37085570 DOI: 10.1038/s41571-023-00757-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
The care of patients with oesophageal cancer or of individuals who have an elevated risk of oesophageal cancer has changed dramatically. The epidemiology of squamous cell and adenocarcinoma of the oesophagus has diverged over the past several decades, with a marked increase in incidence only for oesophageal adenocarcinoma. Only in the past decade, however, have molecular features that distinguish these two forms of the disease been identified. This advance has the potential to improve screening for oesophageal cancers through the development of novel minimally invasive diagnostic technologies predicated on cancer-specific genomic or epigenetic alterations. Surgical techniques have also evolved towards less invasive approaches associated with less morbidity, without compromising oncological outcomes. With improvements in multidisciplinary care, advances in radiotherapy and new tools to detect minimal residual disease, certain patients may no longer even require surgical tumour resection. However, perhaps the most anticipated advance in the treatment of patients with oesophageal cancer is the advent of immune-checkpoint inhibitors, which harness and enhance the host immune response against cancer. In this Review, we discuss all these advances in the management of oesophageal cancer, representing only the beginning of a transformation in our quest to improve patient outcomes.
Collapse
Affiliation(s)
- Manish A Shah
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Nasser Altorki
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Pretish Patel
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sebron Harrison
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Adam Bass
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Julian A Abrams
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
36
|
Wang Q, Qin Y, Li B. CD8 + T cell exhaustion and cancer immunotherapy. Cancer Lett 2023; 559:216043. [PMID: 36584935 DOI: 10.1016/j.canlet.2022.216043] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Immunotherapy plays an increasingly important role in the treatment of most malignant tumors, and CD8+ T cells are the most important antitumor effector cells in the process of immunotherapy, and their number and functional status largely determine the antitumor effect. However, under continuous antigen exposure and the stimulation of inflammatory factors, CD8+ T cells gradually show a weakened proliferation and effector function, accompanied by the expression of a variety of inhibitory receptors. This state is known as CD8+ T cell "exhaustion" and often leads to the loss of control and progression of tumors. Recent studies provided us a better understanding of the mechanisms of T cell exhaustion, this review provides an overview of the activation, exhaustion mechanisms and exhaustion characteristics of CD8+ T cells. Although immunotherapy can reverse the exhaustion of CD8+ T cells and significantly improve the antitumor effects, single immunotherapy often has limitations, and it is difficult to achieve satisfactory antitumor effects, therefore, this review also summarizes up-to-date information related to cancer immunotherapy, and these emerging insights provide promising clues to the future management of malignant tumors.
Collapse
Affiliation(s)
- Qingda Wang
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, Chengdu, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Bo Li
- Department of Liver Surgery, West China Hospital, Sichuan University Medical School, Chengdu, China.
| |
Collapse
|
37
|
Li L, Jiang D, Zhang Q, Liu H, Xu F, Guo C, Qin Z, Wang H, Feng J, Liu Y, Chen W, Zhang X, Bai L, Tian S, Tan S, Xu C, Song Q, Liu Y, Zhong Y, Chen T, Zhou P, Zhao JY, Hou Y, Ding C. Integrative proteogenomic characterization of early esophageal cancer. Nat Commun 2023; 14:1666. [PMID: 36966136 PMCID: PMC10039899 DOI: 10.1038/s41467-023-37440-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is malignant while the carcinogenesis is still unclear. Here, we perform a comprehensive multi-omics analysis of 786 trace-tumor-samples from 154 ESCC patients, covering 9 histopathological stages and 3 phases. Proteogenomics elucidates cancer-driving waves in ESCC progression, and reveals the molecular characterization of alcohol drinking habit associated signatures. We discover chromosome 3q gain functions in the transmit from nontumor to intraepithelial neoplasia phases, and find TP53 mutation enhances DNA replication in intraepithelial neoplasia phase. The mutations of AKAP9 and MCAF1 upregulate glycolysis and Wnt signaling, respectively, in advanced-stage ESCC phase. Six major tracks related to different clinical features during ESCC progression are identified, which is validated by an independent cohort with another 256 samples. Hyperphosphorylated phosphoglycerate kinase 1 (PGK1, S203) is considered as a drug target in ESCC progression. This study provides insight into the understanding of ESCC molecular mechanism and the development of therapeutic targets.
Collapse
Affiliation(s)
- Lingling Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Hui Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Fujiang Xu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Chunmei Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yang Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Weijie Chen
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Xue Zhang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Lin Bai
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Qi Song
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yalan Liu
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yunshi Zhong
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Tianyin Chen
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Pinghong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
| | - Jian-Yuan Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
- Institute for Development and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Department of Anatomy and Neuroscience Research Institute , School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
38
|
Ji X, Wang E, Cui Q. Deciphering gene contributions and etiologies of somatic mutational signatures of cancer. Brief Bioinform 2023; 24:6995381. [PMID: 36682004 DOI: 10.1093/bib/bbad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/23/2023] Open
Abstract
Somatic mutational signatures (MSs) identified by genome sequencing play important roles in exploring the cause and development of cancer. Thus far, many such signatures have been identified, and some of them do imply causes of cancer. However, a major bottleneck is that we do not know the potential meanings (i.e. carcinogenesis or biological functions) and contributing genes for most of them. Here, we presented a computational framework, Gene Somatic Genome Pattern (GSGP), which can decipher the molecular mechanisms of the MSs. More importantly, it is the first time that the GSGP is able to process MSs from ribonucleic acid (RNA) sequencing, which greatly extended the applications of both MS analysis and RNA sequencing (RNAseq). As a result, GSGP analyses match consistently with previous reports and identify the etiologies for a number of novel signatures. Notably, we applied GSGP to RNAseq data and revealed an RNA-derived MS involved in deficient deoxyribonucleic acid mismatch repair and microsatellite instability in colorectal cancer. Researchers can perform customized GSGP analysis using the web tools or scripts we provide.
Collapse
Affiliation(s)
- Xiangwen Ji
- Department of Biomedical Informatics, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Edwin Wang
- Department of Biochemistry and Molecular Biology, Medical Genetics, and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| |
Collapse
|
39
|
Roles of oncogenes in esophageal squamous cell carcinoma and their therapeutic potentials. Clin Transl Oncol 2023; 25:578-591. [PMID: 36315334 DOI: 10.1007/s12094-022-02981-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer (EC) in Asia. It is a malignant digestive tract tumor with abundant gene mutations. Due to the lack of specific diagnostic markers and early cancer screening markers, most patients are diagnosed at an advanced stage. Genetic and epigenetic changes are closely related to the occurrence and development of ESCC. Here, We review the activation of proto-oncogenes into oncogenes through gene mutation and gene amplification in ESCC from a genetic and epigenetic genome perspective, We also discuss the specific regulatory mechanisms through which these oncogenes mainly affect the biological function and occurrence and development of ESCC through specific regulatory mechanisms. In addition, we summarize the clinical application value of these oncogenes is summarized, and it provides a feasible direction for clinical use as potential therapeutic and diagnostic markers.
Collapse
|
40
|
Liao G, Tang J, Bai J. Early development of esophageal squamous cell cancer: Stem cells, cellular origins and early clone evolution. Cancer Lett 2023; 555:216047. [PMID: 36587837 DOI: 10.1016/j.canlet.2022.216047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC), a highly malignant cancer with poor prognosis, is an example of the classical view of cancer development based on stem cell origin and multistep progression. In the past five years, the applications of large-scale sequencing and single-cell sequencing have expanded to human esophageal normal tissues and precancerous lesions, which, coupled with the application of transgenic lineage tracing technology in mouse models, has provided a more comprehensive and detailed understanding of esophageal stem cell heterogeneity and early clonal evolution of ESCC. In this review, we discuss the heterogeneity of esophageal basal-layer stem cells and their potential relationship with cells of ESCC origin. We present evidence that expansion of NOTCH1 mutants may call into play an evolutionarily conserved anti-cancer mechanism and mold the model of early clonal evolution in ESCCs. Finally, we discuss the potential avenues in this context. This review provides a focused understanding of the early development of ESCC, as a background for early tumor detection, intervention, and prevention strategies.
Collapse
Affiliation(s)
- Guobin Liao
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China; Department of Gastroenterology, The 901 Hospital of Chinese People's Liberation Army Joint Service Support Unit, Hefei, 230000, China.
| | - Jun Tang
- Department of Gastroenterology, The 901 Hospital of Chinese People's Liberation Army Joint Service Support Unit, Hefei, 230000, China.
| | - Jianying Bai
- Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
41
|
Yuan H, Qing T, Zhu S, Yang X, Wu W, Xu K, Chen H, Jiang Y, Zhu C, Yuan Z, Zhang T, Jin L, Suo C, Lu M, Chen X, Ye W. The effects of altered DNA damage repair genes on mutational processes and immune cell infiltration in esophageal squamous cell carcinoma. Cancer Med 2023; 12:10077-10090. [PMID: 36708047 PMCID: PMC10166979 DOI: 10.1002/cam4.5663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/01/2023] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Defects in DNA damage repair (DDR) pathways lead to genomic instability and oncogenesis. DDR deficiency is prevalent in esophageal squamous cell carcinoma (ESCC), but the effects of DDR alterations on mutational processes and tumor immune microenvironment in ECSS remain unclear. METHODS Whole-exome and transcriptome sequencing data of 45 ESCC samples from Taizhou, China, were used to identify genomic variations, gene expression modulation in DDR pathways, and the abundance of tumor-infiltrating immune cells. Ninety-six ESCC cases from The Cancer Genome Atlas (TCGA) project were used for validation. RESULTS A total of 57.8% (26/45) of the cases in the Taizhou data and 70.8% (68/96) of the cases in the TCGA data carried at least one functional impact DDR mutation. Mutations in the DDR pathways were associated with a high tumor mutation burden. Several DDR deficiency-related mutational signatures were discovered and were associated with immune cell infiltration, including T cells, monocytes, dendritic cells, and mast cells. The expression levels of two DDR genes, HFM1 and NEIL1, were downregulated in ESCC tumor tissues and had an independent effect on the infiltration of mast cells. In the Taizhou data, increased expression of HFM1 was associated with a poor prognosis, and the increased expression of NEIL1 was associated with a good outcome, but no reproducible correlation was observed in the TCGA data. CONCLUSION This research demonstrated that DDR alterations could impact mutational processes and immune cell infiltration in ESCC. The suppression of HFM1 and NEIL1 could play a crucial role in ESCC progression and may also serve as prognostic markers.
Collapse
Affiliation(s)
- Huangbo Yuan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Tao Qing
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Breast Medical Oncology, School of Medicine, Yale University, Connecticut, New Haven, USA
| | - Sibo Zhu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Weicheng Wu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Hui Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chengkai Zhu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Tiejun Zhang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Yiwu Research Institute of Fudan University, Yiwu, China
| | - Weimin Ye
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
42
|
Ooki A, Osumi H, Chin K, Watanabe M, Yamaguchi K. Potent molecular-targeted therapies for advanced esophageal squamous cell carcinoma. Ther Adv Med Oncol 2023; 15:17588359221138377. [PMID: 36872946 PMCID: PMC9978325 DOI: 10.1177/17588359221138377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/21/2022] [Indexed: 01/15/2023] Open
Abstract
Esophageal cancer (EC) remains a public health concern with a high mortality and disease burden worldwide. Esophageal squamous cell carcinoma (ESCC) is a predominant histological subtype of EC that has unique etiology, molecular profiles, and clinicopathological features. Although systemic chemotherapy, including cytotoxic agents and immune checkpoint inhibitors, is the main therapeutic option for recurrent or metastatic ESCC patients, the clinical benefits are limited with poor prognosis. Personalized molecular-targeted therapies have been hampered due to the lack of robust treatment efficacy in clinical trials. Therefore, there is an urgent need to develop effective therapeutic strategies. In this review, we summarize the molecular profiles of ESCC based on the findings of pivotal comprehensive molecular analyses, highlighting potent therapeutic targets for establishing future precision medicine for ESCC patients, with the most recent results of clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31
Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Keisho Chin
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy,
Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo,
Japan
| |
Collapse
|
43
|
Testa U, Castelli G, Pelosi E. The Molecular Characterization of Genetic Abnormalities in Esophageal Squamous Cell Carcinoma May Foster the Development of Targeted Therapies. Curr Oncol 2023; 30:610-640. [PMID: 36661697 PMCID: PMC9858483 DOI: 10.3390/curroncol30010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Esophageal cancer is among the most common tumors in the world and is associated with poor outcomes, with a 5-year survival rate of about 10-20%. Two main histological subtypes are observed: esophageal squamous cell carcinoma (ESCC), more frequent among Asian populations, and esophageal adenocarcinoma (EAC), the predominant type in Western populations. The development of molecular analysis techniques has led to the definition of the molecular alterations observed in ESCC, consistently differing from those observed in EAC. The genetic alterations observed are complex and heterogeneous and involve gene mutations, gene deletions and gene amplifications. However, despite the consistent progress in the definition of the molecular basis of ESCC, precision oncology for these patients is still virtually absent. The recent identification of molecular subtypes of ESCC with clinical relevance may foster the development of new therapeutic strategies. It is estimated that about 40% of the genetic alterations observed in ESCC are actionable. Furthermore, the recent introduction of solid tumor immunotherapy with immune checkpoint inhibitors (ICIs) showed that a minority of ESCC patients are responsive, and the administration of ICIs, in combination with standard chemotherapy, significantly improves overall survival over chemotherapy in ESCC patients with advanced disease.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | |
Collapse
|
44
|
Wang H. Network pharmacology- and molecular docking-based approaches to unveil the pharmacological mechanisms of dihydroartemisinin against esophageal carcinoma. Front Genet 2022; 13:1017520. [PMID: 36506308 PMCID: PMC9732420 DOI: 10.3389/fgene.2022.1017520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Objective: Dihydroartemisinin (DHA) is an active metabolite of artemisinin and its derivatives, which is a potent drug extensively applied in clinical treatment of malaria. The antitumor properties of DHA have received increasing attention. However, there is no systematic summary on the pharmacological mechanisms of DHA against esophageal carcinoma (ESCA). The present study implemented network pharmacology- and molecular docking-based approaches to unveil the pharmacological mechanisms of DHA against ESCA. Methods: DHA targets were accessed through integrating the SwissTargetPrediction, HERB, as well as BATMAN-TCM platforms. In TCGA-ESCA dataset, genes with differential expression were screened between 161 ESCA and 11 normal tissue specimens. DHA targets against ESCA were obtained through intersection. Their biological significance was evaluated with functional enrichment analysis. A prognostic signature was established via uni- and multivariate cox regression analyses. DHA-target interactions were predicted via molecular docking. Molecular dynamics simulation was implemented to examine the stability of DHA binding to potential targets. Results: The study predicted 160 DHA targets as well as 821 genes with differential expression in ESCA. Afterwards, 16 DHA targets against ESCA were obtained, which remarkably correlated to cell cycle progression. The ADORA2B- and AURKA-based prognostic signature exhibited the reliability and independency in survival prediction. The stable docking of DHA-ADORA2B and DHA-AURKA was confirmed. Conclusion: Collectively, this study systematically revealed the basis and mechanism of DHA against ESCA through targeting multi-target and multi-pathway mechanisms, and thus offered theoretical and scientific basis for the clinical application of DHA.
Collapse
|
45
|
Wang N, Pan D, Wang X, Su M, Wang X, Yan Q, Sun G, Wang S. NAPRT, but Not NAMPT, Provides Additional Support for NAD Synthesis in Esophageal Precancerous Lesions. Nutrients 2022; 14:4916. [PMID: 36432602 PMCID: PMC9695206 DOI: 10.3390/nu14224916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
It is hypothesized that esophageal precancerous lesions (EPLs) have a surge requirement for coenzyme I (NAD). The purpose of this study is to clarify the key control points of NAD synthesis in developing EPL by detecting related markers and the gene polymorphism of NAD synthesis and metabolism. This case-control study was conducted in Huai'an, China. In total, 100 healthy controls and 100 EPL cases matched by villages, gender, and age (±2 years) were included. The levels of plasma niacin and nicotinamide, and the protein concentration of NAMPT, NAPRT, and PARP-1 were quantitatively analyzed. PARP-1 gene polymorphism was detected to determine if the cases differed genetically in NAD synthesis. The levels of plasma niacin and nicotinamide and the concentrations of NAMPT were not related to the risk of EPL, but the over-expressions of NAPRT (p = 0.014, 0.001, and 0.016, respectively) and PARP-1 (p for trend = 0.021) were associated with the increased EPL risk. The frequency distribution of APRP-1 genotypes was found to not differ between the two groups, while the EPL group showed an increased frequency of the variant C allele. NAPRT, but not NAMPT, was found to be responsible for the stress of excess NAD synthesis in EPL. Focusing on the development of NAPRT inhibitors may be beneficial to prevent and control ESCC.
Collapse
Affiliation(s)
- Niannian Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Da Pan
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xuemei Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ming Su
- Huai’an District Center for Disease Control and Prevention, Huai’an 223001, China
| | - Xin Wang
- Huai’an District Center for Disease Control and Prevention, Huai’an 223001, China
| | - Qingyang Yan
- Huai’an District Center for Disease Control and Prevention, Huai’an 223001, China
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shaokang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712000, China
| |
Collapse
|
46
|
Liu Z, Su R, Ahsan A, Liu C, Liao X, Tian D, Su M. Esophageal Squamous Cancer from 4NQO-Induced Mice Model: CNV Alterations. Int J Mol Sci 2022; 23:ijms232214304. [PMID: 36430789 PMCID: PMC9698903 DOI: 10.3390/ijms232214304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Squamous esophageal carcinoma is a common pathological type of esophageal carcinoma around the world. The prognosis of esophageal carcinoma is usually poor and diagnosed at late stages. Recently, research suggested that genomic instability occurred in esophageal cells during the development of esophageal squamous cell carcinoma (ESCC). Identifying prognostic and specific genomic characteristics, especially at the early hyperplasia stage, is critical. Mice were given 4-nitroquinoline 1-oxide (4NQO) with drinking water to induce esophageal cancer. The immortalized human esophageal epithelial cell line (NE2) was also treated with 4NQO. We performed histologic analyses, immunofluorescence, and immunohistochemical staining to detect DNA damage at different time points. Whole-exome sequencing was accomplished on the esophagus tissues at different pathological stages to detect single-nucleotide variants and copy number variation (CNV) in the genome. Our findings indicate that all mice were tumor-forming, and a series of changes from simple hyperplasia (ESSH) to intraepithelial neoplasia (IEN) to esophageal squamous cell carcinoma (ESCC) was seen at different times. The expression of γ-H2AX increased from ESSH to ESCC. In addition, mutations of the Muc4 gene were detected throughout the pathological stages. Furthermore, CNV burden appeared in the esophageal tissues from the beginning of ESSH and accumulated more in cancer with the deepening of the lesions. This study demonstrates that mutations caused by the early appearance of DNA damage may appear in the early stage of malignant tissue before the emergence of atypia. The detection of CNV and mutations of the Muc4 gene may be used as an ultra-early screening indicator for esophageal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Su
- Correspondence: ; Fax: +86-0754-88900429
| |
Collapse
|
47
|
Jajosky A, Fels Elliott DR. Esophageal Cancer Genetics and Clinical Translation. Thorac Surg Clin 2022; 32:425-435. [DOI: 10.1016/j.thorsurg.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
48
|
Ge F, Li Z, Hu J, Pu Y, Zhao F, Kong L. METTL3/m 6A/IFIT2 regulates proliferation, invasion and immunity in esophageal squamous cell carcinoma. Front Pharmacol 2022; 13:1002565. [PMID: 36386128 PMCID: PMC9644211 DOI: 10.3389/fphar.2022.1002565] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 08/04/2023] Open
Abstract
Epigenetic regulation plays a critical role in the development, progression, and treatment of tumors. The most common chemical modification of mRNA, called m6A, is essential for controlling mRNA stability, splicing, and translation. Methyltransferase-like 3 (METTL3) is an important m6A methyltransferase. The mechanism of action of METTL3 in esophageal squamous cell carcinoma (ESCC) remains unclear. In this investigation, we sought to clarify the function and clinical importance of METTL3 in ESCC and investigate its underlying mechanisms. We discovered that METTL3 has a significant proliferative effect in ESCC cells by using lentiviral construction of stable cell lines overexpressing METTL3 (METTL3-OE) and knocking down METTL3 (sh-METTL3). To create a xenograft tumor model, we inoculated KYSE510 cells subcutaneously into BALB/c nude mice and discovered that sh-METTL3 inhibited the tumorigenicity of esophageal cancer KYSE510 cells in the nude mouse tumor model. MeRIP-seq and RNA-seq analysis revealed IFIT2 to be a METTL3 target gene. The findings revealed that METTL3 regulates IFIT2 and thus influences malignant biological behaviors such as proliferation, migration, and invasion of ESCC, as well as the immune microenvironment of tumors.
Collapse
Affiliation(s)
- Fangfang Ge
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Provincial Clinical College, Wannan Medical College, Wuhu, China
| | - Zhenyu Li
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Provincial Clinical College, Wannan Medical College, Wuhu, China
| | - Jiaru Hu
- Division of Life Sciences and Medicine, Department of the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Youguang Pu
- Division of Life Sciences and Medicine, Department of Cancer Epigenetics Program, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Fangfang Zhao
- Division of Life Sciences and Medicine, Department of Cancer Epigenetics Program, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Lingsuo Kong
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
49
|
Integrated cohort of esophageal squamous cell cancer reveals genomic features underlying clinical characteristics. Nat Commun 2022; 13:5268. [PMID: 36071046 PMCID: PMC9452532 DOI: 10.1038/s41467-022-32962-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
Esophageal squamous cell cancer (ESCC) is the major pathologic type of esophageal cancer in Asian population. To systematically evaluate the mutational features underlying clinical characteristics, we establish the integrated dataset of ESCC-META that consists of 1930 ESCC genomes from 33 datasets. The data process pipelines lead to well homogeneity of this integrated cohort for further analysis. We identified 11 mutational signatures in ESCC, some of which are related to clinical features, and firstly detect the significant mutated hotspots in TGFBR2 and IRF2BPL. We screen the survival related mutational features and found some genes had different prognostic impacts between early and late stage, such as PIK3CA and NFE2L2. Based on the results, an applicable approach of mutational score is proposed and validated to predict prognosis in ESCC. As an open-sourced, quality-controlled and updating mutational landscape, the ESCC-META dataset could facilitate further genomic and translational study in this field.
Collapse
|
50
|
Abstract
Esophageal squamous cell carcinoma (ESCC) is common in the developing world with decreasing incidence in developed countries and carries significant morbidity and mortality. Major risk factors for ESCC development include significant use of alcohol and tobacco. Screening for ESCC can be recommended in high-risk populations living in highly endemic regions. The treatment of ESCC ranges from endoscopic resection therapy or surgery in localized disease to chemoradiotherapy in metastatic disease, and prognosis is directly related to the stage at diagnosis. New immunotherapies and molecular targeted therapies may improve the dismal survival outcomes in patients with metastatic ESCC.
Collapse
Affiliation(s)
- D Chamil Codipilly
- Division of Gastroenterology and Hepatology, Mayo Clinic, SMH Campus, 6 Alfred GI Unit, 200 1st Street South West, Rochester MN 55905, USA
| | - Kenneth K Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, SMH Campus, 6 Alfred GI Unit, 200 1st Street South West, Rochester MN 55905, USA.
| |
Collapse
|