1
|
Targher G, Tilg H, Valenti L. Risk of Serious Bacterial and Non-Bacterial Infections in People With MASLD. Liver Int 2025; 45:e70059. [PMID: 40072231 PMCID: PMC11899495 DOI: 10.1111/liv.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most common chronic liver disease globally. MASLD is a multisystem disease where metabolic dysfunction plays a key role in the development of MASLD and its most relevant liver-related morbidities and extrahepatic complications, such as cardiovascular disease, chronic kidney disease and certain types of extrahepatic cancers. Among the least examined MASLD-related extrahepatic complications, an ever-increasing number of observational studies have reported a positive association between MASLD and the risk of serious bacterial infections (SBI) requiring hospital admission. This risk remained significant in those studies where statistical analysis was adjusted for age, sex, ethnicity, obesity, type 2 diabetes and other common comorbidities. Notably, the incidence rates of SBI were further increased with more advanced MASLD, especially in patients with MASLD-related cirrhosis, and were also observed for some acute viral infections, including SARS-CoV-2 infection, leading to severe COVID-19. In this narrative review article, we provide an overview of the literature on (a) the recent epidemiological data linking MASLD to the risk of serious bacterial and non-bacterial infections requiring hospital admission, (b) the putative underlying mechanisms through which MASLD may increase the susceptibility to serious infections, both directly and through the immune dysfunction associated with cirrhosis and portal hypertension, and (c) the practical and clinical implications of the increased risk of serious bacterial and non-bacterial infections in the growing global population with MASLD.
Collapse
Affiliation(s)
- Giovanni Targher
- Department of MedicineUniversity of VeronaVeronaItaly
- Metabolic Diseases Research UnitIRCCS Sacro Cuore—Don Calabria HospitalNegrar di ValpolicellaItaly
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and MetabolismMedical University InnsbruckInnsbruckAustria
| | - Luca Valenti
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Precision Medicine, Biological Resource Center UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
2
|
Kozlitina J, Sookoian S. Global Epidemiological Impact of PNPLA3 I148M on Liver Disease. Liver Int 2025; 45:e16123. [PMID: 39373119 PMCID: PMC11815610 DOI: 10.1111/liv.16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) has increased exponentially over the past three decades, in parallel with the global rise in obesity and type 2 diabetes. It is currently the most common cause of liver-related morbidity and mortality. Although obesity has been identified as a key factor in the increased prevalence of MASLD, individual differences in susceptibility are significantly influenced by genetic factors. PNPLA3 I148M (rs738409 C>G) is the variant with the greatest impact on the risk of developing progressive MASLD and likely other forms of steatotic liver disease. This variant is prevalent across the globe, with the risk allele (G) frequency exhibiting considerable variation. Here, we review the contribution of PNPLA3 I148M to global burden and regional differences in MASLD prevalence, focusing on recent evidence emerging from population-based sequencing studies and prevalence assessments. We calculated the population attributable fraction (PAF) as a means of quantifying the impact of the variant on MASLD. Furthermore, we employ quantitative trait locus (QTL) analysis to ascertain the associations between rs738409 and a range of phenotypic traits. This analysis suggests that these QTLs may underpin pleiotropic effects on extrahepatic traits. Finally, we outline potential avenues for further research and identify key areas for investigation in future studies.
Collapse
Affiliation(s)
- Julia Kozlitina
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Silvia Sookoian
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
- Clinical and Molecular Hepatology, Translational Health Research Center (CENITRES)Maimónides UniversityBuenos AiresArgentina
| |
Collapse
|
3
|
Volkert I, Fromme M, Schneider C, Candels L, Lindhauer C, Su H, Thorhauge K, Pons M, Mohamed MR, Schneider KM, Strnad P, Trautwein C. Impact of PNPLA3 I148M on alpha-1 antitrypsin deficiency-dependent liver disease progression. Hepatology 2024; 79:898-911. [PMID: 37625151 DOI: 10.1097/hep.0000000000000574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND AND AIMS Genetic risk factors are major determinants of chronic liver disease (CLD) progression. Patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M polymorphism and alpha-1 antitrypsin (AAT) E342K variant, termed PiZ, are major modifiers of metabolic CLD. Both variants are known to affect metabolic CLD through increased endoplasmic reticulum stress, but their combined effect on CLD progression remains largely unknown. Here, we aimed to test our working hypothesis that their combined incidence triggers CLD disease progression. APPROACH AND RESULTS We showed that patients with PiZZ/PNPLA3 I148M from the European alpha-1-antitrypsin deficiency (AATD) liver consortium and the UK Biobank had a trend towards higher liver enzymes, but no increased liver fat accumulation was evident between subgroups. After generating transgenic mice that overexpress the PiZ variant and simultaneously harbor the PNPLA3 I148M knockin (designated as PiZ/PNPLA3 I148M ), we observed that animals with PiZ and PiZ/PNPLA3 I148M showed increased liver enzymes compared to controls during aging. However, no significant difference between PiZ and PiZ/PNPLA3 I148M groups was observed, with no increased liver fat accumulation over time. To further study the impact on CLD progression, a Western-styled diet was administered, which resulted in increased fat accumulation and fibrosis in PiZ and PiZ/PNPLA3 I148M livers compared to controls, but the additional presence of PNPLA3 I148M had no impact on liver phenotype. Notably, the PiZ variant protected PNPLA3 I148M mice from liver damage and obesity after Western-styled diet feeding. CONCLUSION Our results demonstrate that the PNPLA3 polymorphism in the absence of additional metabolic risk factors is insufficient to drive the development of advanced liver disease in severe AATD.
Collapse
Affiliation(s)
- Ines Volkert
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Malin Fromme
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Carolin Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Lena Candels
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Cecilia Lindhauer
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Huan Su
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Katrine Thorhauge
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autonoma de Barcelona, Barcelona
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Pavel Strnad
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
4
|
Sahin E, Dag A, Eren F. The pleiotropic approach to coronavirus disease-19 pathogenesis: The impact of liver diseases associated host genetic variants. HEPATOLOGY FORUM 2023; 5:93-96. [PMID: 38487739 PMCID: PMC10936119 DOI: 10.14744/hf.2023.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/06/2023] [Indexed: 03/17/2024]
Abstract
Coronavirus disease-2019 (COVID-19) is a novel multisystemic viral disease caused pandemic. The disease impact involves liver and associated systems. Undoubtedly, host genetic background influences the predisposition and prediction of infection. Variants among human populations might increase susceptibility or protect against severe outcomes. In this manner, rs738409 variant of patatin-like phospholipase domain-containing protein 3 gene appears to be protective in some populations in spite of its aggravating effect on non-alcoholic fatty liver diseases (NAFLDs) and steatohepatitis. DRB1*15:01 allele of human leukocyte antigen is associated with protective effect in European and Japanese populations. DRB1*03:01 contrarily increases the susceptibility of severe COVID-19 infection in European populations. rs1260326 in glucokinase regulatory protein gene, rs112875651 in tribbles homolog 1 gene, rs429358 in apolipoprotein 1, and rs58542926 in transmembrane 6 superfamily 2 alleles are found related with NAFLD and obesity; thus, hypercoagulability and severe COVID-19 outcomes. In chronic or acute liver diseases, comorbid syndromes are the key factors to explain increased severity. There might not be a direct association between the variant and severe COVID-19 infection. As it is concluded, there are genes and variants known and unknown yet to be studied to reveal the association with disease severity.
Collapse
Affiliation(s)
- Eren Sahin
- Marmara University School of Medicine, 3 year Pre-Clinical Student, Istanbul, Turkiye
| | - Ali Dag
- Marmara University School of Medicine, 3 year Pre-Clinical Student, Istanbul, Turkiye
| | - Fatih Eren
- Department of Medical Biology, Marmara University School of Medicine, Istanbul, Turkiye
- Department of Medical Biology, Eastern Mediterranean University School of Medicine, Famagusta, Turkish Republic of Northern Cyprus
| |
Collapse
|
5
|
Buchynskyi M, Oksenych V, Kamyshna I, Vari SG, Kamyshnyi A. Genetic Predictors of Comorbid Course of COVID-19 and MAFLD: A Comprehensive Analysis. Viruses 2023; 15:1724. [PMID: 37632067 PMCID: PMC10459448 DOI: 10.3390/v15081724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) and its potential impact on the severity of COVID-19 have gained significant attention during the pandemic. This review aimed to explore the genetic determinants associated with MAFLD, previously recognized as non-alcoholic fatty liver disease (NAFLD), and their potential influence on COVID-19 outcomes. Various genetic polymorphisms, including PNPLA3 (rs738409), GCKR (rs780094), TM6SF2 (rs58542926), and LYPLAL1 (rs12137855), have been investigated in relation to MAFLD susceptibility and progression. Genome-wide association studies and meta-analyses have revealed associations between these genetic variants and MAFLD risk, as well as their effects on lipid metabolism, glucose regulation, and liver function. Furthermore, emerging evidence suggests a possible connection between these MAFLD-associated polymorphisms and the severity of COVID-19. Studies exploring the association between indicated genetic variants and COVID-19 outcomes have shown conflicting results. Some studies observed a potential protective effect of certain variants against severe COVID-19, while others reported no significant associations. This review highlights the importance of understanding the genetic determinants of MAFLD and its potential implications for COVID-19 outcomes. Further research is needed to elucidate the precise mechanisms linking these genetic variants to disease severity and to develop gene profiling tools for the early prediction of COVID-19 outcomes. If confirmed as determinants of disease severity, these genetic polymorphisms could aid in the identification of high-risk individuals and in improving the management of COVID-19.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Sandor G. Vari
- International Research and Innovation in Medicine Program, Cedars–Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
6
|
Pirola CJ, Sookoian S. COVID-19 and non-alcoholic fatty liver disease: Biological insights from multi-omics data. Liver Int 2023; 43:580-587. [PMID: 36593576 DOI: 10.1111/liv.15509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
We explored the shared pathophysiological mechanisms between COVID-19 and non-alcoholic fatty liver disease (NAFLD) by integrating multi-omics data. We studied common genetic risk factors and underlying biological processes using functional enrichment analysis. To understand the sex-specific pathways involved in the clinical course of SARS-CoV-2 infection, we processed sex-stratified data from COVID-19 genome-wide association datasets. We further explored the transcriptional signature of the liver cells in healthy and COVID-19 tissue specimens. We also integrated genetic and metabolomic information. We found that COVID-19 and NAFLD share biological disease mechanisms, including pathways that regulate the inflammatory and lipopolysaccharide response. Single-cell transcriptomics revealed enrichment of complement-related pathways in Kupffer cells, syndecan-mediated signalling in plasma cells, and epithelial-to-mesenchymal transition in hepatic stellate cells. The strategy of pathway-level analysis of genomic and metabolomic data uncovered l-lactic acid, Krebs cycle intermediate compounds, arachidonic acid and cortisol among the most prominent shared metabolites.
Collapse
Affiliation(s)
- Carlos J Pirola
- Systems Biology of Complex Diseases, Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia Sookoian
- Clinical and Molecular Hepatology, Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Quarleri J, Delpino MV. Molecular mechanisms implicated in SARS-CoV-2 liver tropism. World J Gastroenterol 2022; 28:6875-6887. [PMID: 36632318 PMCID: PMC9827585 DOI: 10.3748/wjg.v28.i48.6875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 11/27/2022] [Indexed: 12/26/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hepatic involvement is common in SARS-CoV-2-infected individuals. It is currently accepted that the direct and indirect hepatic effects of SARS-CoV-2 infection play a significant role in COVID-19. In individuals with pre-existing infectious and non-infectious liver disease, who are at a remarkably higher risk of developing severe COVID-19 and death, this pathology is most medically relevant. This review emphasizes the current pathways regarded as contributing to the gastrointestinal and hepatic ailments linked to COVID-19-infected patients due to an imbalanced interaction among the liver, systemic inflammation, disrupted coagulation, and the lung.
Collapse
Affiliation(s)
- Jorge Quarleri
- Institute for Biomedical Research on Retroviruses and AIDS, Faculty of Medical Sciences, National Scientific and Technical Research Council-University of Buenos Aires, Buenos Aires 1121, Argentina
| | - M. Victoria Delpino
- Institute for Biomedical Research on Retroviruses and AIDS, Faculty of Medical Sciences, National Scientific and Technical Research Council-University of Buenos Aires, Buenos Aires 1121, Argentina
| |
Collapse
|
8
|
Abstract
Knowledge on SARS-CoV-2 infection and its resultant COVID-19 in liver diseases has rapidly increased during the pandemic. Hereby, we review COVID-19 liver manifestations and pathophysiological aspects related to SARS-CoV-2 infection in patients without liver disease as well as the impact of COVID-19 in patients with chronic liver disease (CLD), particularly cirrhosis and liver transplantation (LT). SARS-CoV-2 infection has been associated with overt proinflammatory cytokine profile, which probably contributes substantially to the observed early and late liver abnormalities. CLD, particularly decompensated cirrhosis, should be regarded as a risk factor for severe COVID-19 and death. LT was impacted during the pandemic, mainly due to concerns regarding donation and infection in recipients. However, LT did not represent a risk factor per se of worse outcome. Even though scarce, data regarding COVID-19 specific therapy in special populations such as LT recipients seem promising. COVID-19 vaccine-induced immunity seems impaired in CLD and LT recipients, advocating for a revised schedule of vaccine administration in this population.
Collapse
Affiliation(s)
- Jean-François Dufour
- Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Marjot
- Oxford Liver Unit, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Nuffield Department of Medicine, Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Chiara Becchetti
- Department of Hepatology and Gastroenterology, ASST Grande Ospedale Metropolitano Niguarda, Bern, Italy
- Department of Visceral Surgery and Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Impact of COVID-19 on the liver and on the care of patients with chronic liver disease, hepatobiliary cancer, and liver transplantation: An updated EASL position paper. J Hepatol 2022; 77:1161-1197. [PMID: 35868584 PMCID: PMC9296253 DOI: 10.1016/j.jhep.2022.07.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has presented a serious challenge to the hepatology community, particularly healthcare professionals and patients. While the rapid development of safe and effective vaccines and treatments has improved the clinical landscape, the emergence of the omicron variant has presented new challenges. Thus, it is timely that the European Association for the Study of the Liver provides a summary of the latest data on the impact of COVID-19 on the liver and issues guidance on the care of patients with chronic liver disease, hepatobiliary cancer, and previous liver transplantation, as the world continues to deal with the consequences of the COVID-19 pandemic.
Collapse
|
10
|
Pirola CJ, Sookoian S. Metabolic dysfunction-associated fatty liver disease: advances in genetic and epigenetic implications. Curr Opin Lipidol 2022; 33:95-102. [PMID: 34966133 DOI: 10.1097/mol.0000000000000814] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Fatty liver associated with metabolic dysfunction, also known under the acronym NAFLD (nonalcoholic fatty liver disease) is the leading global cause of chronic liver disease. In this review, we address the state of research on genetics and epigenetics of NAFLD with focus on key discoveries and conceptual advances over the past 2 years. RECENT FINDINGS The analysis of NAFLD-associated genetic variant effects on the whole-transcriptome, including quantitative trait loci (QTL) associated with gene expression (eQTL) or splicing (sQTL) may explain pleiotropic effects. Functional experiments on NAFLD-epigenetics, including profiling of liver chromatin accessibility quantitative trait loci (caQTL) show co-localization with numerous genome-wide association study signals linked to metabolic and cardiovascular traits. Novel studies provide insights into the modulation of the hepatic transcriptome and epigenome by tissue microbiotas. Genetic variation of components of the liver cellular respirasome may result in broad cellular and metabolic effects. Mitochondrial noncoding RNAs may regulate liver inflammation and fibrogenesis. RNA modifications as N6-methyladenosine may explain sex-specific differences in liver gene transcription linked to lipid traits. SUMMARY The latest developments in the field of NAFLD-genomics can be leveraged for identifying novel disease mechanisms and therapeutic targets that may prevent the morbidity and mortality associated with disease progression. VIDEO ABSTRACT http://links.lww.com/COL/A23.
Collapse
Affiliation(s)
- Carlos J Pirola
- Institute of Medical Research A Lanari, University of Buenos Aires, School of Medicine
- Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET) - University of Buenos Aires
| | - Silvia Sookoian
- Institute of Medical Research A Lanari, University of Buenos Aires, School of Medicine
- Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET) - University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
11
|
Liu D, Zhang Q, Bai P, Zhao J. Assessing causal relationships between COVID-19 and non-alcoholic fatty liver disease. J Hepatol 2022; 76:740-742. [PMID: 34813919 PMCID: PMC8605812 DOI: 10.1016/j.jhep.2021.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Dong Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianlong Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pinqing Bai
- Department of School Health, Food Nutrition and Safety, Pudong New Area Center for Disease Control and Prevention, Shanghai, China
| | - Jian Zhao
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
12
|
Schnabl B, Arteel GE, Stickel F, Hengstler J, Vartak N, Ghallab A, Dooley S, Li Y, Schwabe RF. Liver specific, systemic and genetic contributors to alcohol-related liver disease progression. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:36-44. [PMID: 35042252 PMCID: PMC8941985 DOI: 10.1055/a-1714-9330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alcohol-related liver disease (ALD) impacts millions of patients worldwide each year and the numbers are increasing. Disease stages range from steatosis via steatohepatitis and fibrosis to cirrhosis, severe alcohol-associated hepatitis and liver cancer. ALD is usually diagnosed at an advanced stage of progression with no effective therapies. A major research goal is to improve diagnosis, prognosis and also treatments for early ALD. This however needs prioritization of this disease for financial investment in basic and clinical research to more deeply investigate mechanisms and identify biomarkers and therapeutic targets for early detection and intervention. Topics of interest are communication of the liver with other organs of the body, especially the gut microbiome, the individual genetic constitution, systemic and liver innate inflammation, including bacterial infections, as well as fate and number of hepatic stellate cells and the composition of the extracellular matrix in the liver. Additionally, mechanical forces and damaging stresses towards the sophisticated vessel system of the liver, including the especially equipped sinusoidal endothelium and the biliary tract, work together to mediate hepatocytic import and export of nutritional and toxic substances, adapting to chronic liver disease by morphological and functional changes. All the aforementioned parameters contribute to the outcome of alcohol use disorder and the risk to develop advanced disease stages including cirrhosis, severe alcoholic hepatitis and liver cancer. In the present collection, we summarize current knowledge on these alcohol-related liver disease parameters, excluding the aspect of inflammation, which is presented in the accompanying review article by Lotersztajn and colleagues.
Collapse
Affiliation(s)
- Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, United States
- Department of Medicine, VA San Diego Healthcare System, San Diego, United States
| | - Gavin E Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, United States
- Pittsburgh Liver Research Center, Pittsburgh, United States
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Jan Hengstler
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany
| | - Nachiket Vartak
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany
| | - Ahmed Ghallab
- Systems Toxicology, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yujia Li
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, United States
| |
Collapse
|
13
|
Pirola CJ, Sookoian S. PNPLA3 and COVID-19 outcomes: Thinking outside the box might explain the biology behind pleiotropic effects of rs738409 on the immune system. Liver Int 2021; 41:2801-2804. [PMID: 34455682 PMCID: PMC8662082 DOI: 10.1111/liv.15043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Carlos J. Pirola
- School of MedicineInstitute of Medical Research A LanariUniversity of Buenos AiresCiudad Autónoma de Buenos AiresBuenos AiresArgentina,Department of Molecular Genetics and Biology of Complex DiseasesNational Scientific and Technical Research Council (CONICET)University of Buenos AiresInstitute of Medical Research (IDIM)Ciudad Autónoma de Buenos AiresBuenos AiresArgentina
| | - Silvia Sookoian
- School of MedicineInstitute of Medical Research A LanariUniversity of Buenos AiresCiudad Autónoma de Buenos AiresBuenos AiresArgentina,Department of Clinical and Molecular HepatologyNational Scientific and Technical Research Council (CONICET)University of Buenos AiresInstitute of Medical Research (IDIM)Ciudad Autónoma de Buenos AiresBuenos AiresArgentina
| |
Collapse
|