1
|
Wizenty J, Sigal M. Helicobacter pylori, microbiota and gastric cancer - principles of microorganism-driven carcinogenesis. Nat Rev Gastroenterol Hepatol 2025; 22:296-313. [PMID: 40011753 DOI: 10.1038/s41575-025-01042-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/28/2025]
Abstract
The demonstration that Helicobacter pylori is a pathogenic bacterium with marked carcinogenic potential has paved the way for new preventive approaches for gastric cancer. Although decades of research have uncovered complex interactions of H. pylori with epithelial cells, current insights have refined our view on H. pylori-associated carcinogenesis. Specifically, the cell-type-specific effects on gastric stem and progenitor cells deep in gastric glands provide a new view on the ability of the bacteria to colonize long-term, manipulate host responses and promote gastric pathology. Furthermore, new, large-scale epidemiological data have shed light on factors that determine why only a subset of carriers progress to gastric cancer. Currently, technological advances have brought yet another revelation: H. pylori is far from the only microorganism able to colonize the stomach. Instead, the stomach is colonized by a diverse gastric microbiota, and there is emerging evidence for the occurrence and pathological effect of dysbiosis resulting from an aberrant interplay between H. pylori and the gastric mucosa. With the weight of this evidence mounting, here we consider how the lessons learned from H. pylori research inform and synergize with this emerging field to bring a more comprehensive understanding of the role of microbes in gastric carcinogenesis.
Collapse
Affiliation(s)
- Jonas Wizenty
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy and BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
2
|
Kan L, Yu Y, Wang Y, Shi L, Fan T, Chen H, Ren C. The application of organoids in investigating immune evasion in the microenvironment of gastric cancer and screening novel drug candidates. Mol Cancer 2025; 24:125. [PMID: 40287758 PMCID: PMC12032790 DOI: 10.1186/s12943-025-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Gastric cancer (GC) is a prevalent digestive system tumor, the fifth most diagnosed cancer worldwide, and a leading cause of cancer deaths. GC is distinguished by its pronounced heterogeneity and a dynamically evolving tumor microenvironment (TME). The lack of accurate disease models complicates the understanding of its mechanisms and impedes the discovery of novel drugs. A growing body of evidence suggests that GC organoids, developed using organoid culture technology, preserve the genetic, phenotypic, and behavioral characteristics. GC organoids hold significant potential for predicting treatment responses in individual patients. This review provides a comprehensive overview of the current clinical treatment strategies for GC, as well as the history, construction and clinical applications of organoids. The focus is on the role of organoids in simulating the TME to explore mechanisms of immune evasion and intratumoral microbiota in GC, as well as their applications in guiding clinical drug therapy and facilitating novel drug screening. Furthermore, we summarize the limitations of GC organoid models and underscore the need for continued technological advancements to benefit both basic and translational oncological research.
Collapse
Affiliation(s)
- Liuyue Kan
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Ying Yu
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yaxue Wang
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Department of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China
| | - Tingyuan Fan
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hui Chen
- Department of Geriatrics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China.
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| | - Chuanli Ren
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Department of Laboratory Medicine, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| |
Collapse
|
3
|
Shuman JHB, Lin AS, Westland MD, Bryant KN, Fortier GE, Piazuelo MB, Reyzer ML, Judd AM, Tsui T, McDonald WH, McClain MS, Schey KL, Algood HM, Cover TL. Helicobacter pylori CagA and Cag type IV secretion system activity have key roles in triggering gastric transcriptional and proteomic alterations. Infect Immun 2025; 93:e0059524. [PMID: 40047510 PMCID: PMC11977315 DOI: 10.1128/iai.00595-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/24/2025] [Indexed: 04/09/2025] Open
Abstract
Colonization of the human stomach with cag pathogenicity island (PAI)-positive Helicobacter pylori strains is associated with increased gastric cancer risk compared to colonization with cag PAI-negative strains. To evaluate the contributions of the Cag type IV secretion system (T4SS) and CagA (a secreted bacterial oncoprotein) to gastric molecular alterations relevant for carcinogenesis, we infected Mongolian gerbils with a Cag T4SS-positive wild-type (WT) H. pylori strain, one of two Cag T4SS mutant strains (∆cagT or ∆cagY), or a ∆cagA mutant for 12 weeks. Histologic staining revealed a biphasic distribution of gastric inflammation severity in WT-infected animals and minimal inflammation in animals infected with mutant strains. Atrophic gastritis (a premalignant condition), dysplasia, and gastric adenocarcinoma were only detected in WT-infected animals with high inflammation scores. Transcriptional profiling, liquid chromatography-tandem mass spectrometry analysis of micro-extracted tryptic peptides, and imaging mass spectrometry revealed more than a thousand molecular alterations in gastric tissues from WT-infected animals with high inflammation scores compared to uninfected tissues and few alterations in tissues from other groups of infected animals. Proteins with altered abundance in animals with severe Cag T4SS-induced inflammation mapped to multiple pathways, including the complement/coagulation cascade and proteasome pathway. Proteins exhibiting markedly increased abundance in tissues from H. pylori-infected animals with severe inflammation included calprotectin components, proteins involved in proteasome activation, polymeric immunoglobulin receptor (PIGR), interferon-inducible guanylate-binding protein (GBP2), lactoferrin, lysozyme, superoxide dismutase, and eosinophil peroxidase. These results demonstrate key roles for CagA and Cag T4SS activity in promoting gastric mucosal inflammation, transcriptional alterations, and proteomic alterations relevant to gastric carcinogenesis.IMPORTANCEHelicobacter pylori colonizes the stomachs of about half of humans worldwide, and its presence is the primary risk factor for the development of stomach cancer. H. pylori strains isolated from humans can be broadly classified into two groups based on whether they contain a chromosomal cag pathogenicity island, which encodes a secreted effector protein (CagA) and components of a type IV secretion system (T4SS). In experiments using a Mongolian gerbil model, we found that severe gastric inflammation and gastric transcriptional and proteomic alterations related to gastric cancer development were detected only in animals infected with a wild-type H. pylori strain containing CagA and an intact Cag T4SS. Mutant strains lacking CagA or Cag T4SS activity successfully colonized the stomach without inducing detectable pathologic host responses. These findings illustrate two different patterns of H. pylori-host interaction.
Collapse
Affiliation(s)
- Jennifer H. B. Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mandy D. Westland
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gabrielle E. Fortier
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Audra M. Judd
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - W. Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Li T, Jiang H, Gong Y, Liao M, Jia Y, Chen J, Dai M, Yan Y, Lu X, Chen R, Li Y, Chen Y, Lin J, Li Y, Ding X. CHI3L1: a key driver in gastritis-to-cancer transformation. J Transl Med 2025; 23:349. [PMID: 40108688 PMCID: PMC11921547 DOI: 10.1186/s12967-025-06352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Gastric cancer, recognized as one of the most lethal malignancies globally, progresses through a complex, multi-stage development. Elucidating the pathogenic mechanisms behind gastric carcinogenesis and identifying early diagnostic biomarkers are pivotal for decreasing the prevalence of gastric cancer. METHODS Using datasets on gastric cancer and its transformation from gastritis, we employed machine learning to create an early diagnostic model, identifying key genes and evaluating accuracy. We prioritized genes in the gastritis-to-cancer progression, identifying a central driver gene. Pathway analysis revealed its transformation role. Tissue microarrays and rat models validated the driver genes and networks, confirmed in cell and organoid models. We also identified cell types secreting CHI3L1 using single-cell RNA sequencing and multiplex immunohistochemistry, exploring their prognostic significance. RESULTS We identified 12 driver genes potentially involved in the gastritis-to-cancer transformation, with CHI3L1, MMP12, CXCL6, IDO1, and CCL20 emerging as the top five genes via a early gastric cancer diagnostic model. CHI3L1 was pinpointed as the central driver across the gastritis-to-cancer spectrum, with its upregulation, along with CD44, β-catenin, and c-Myc, noted in gastric precancerous lesions. In vitro and organoid studies revealed CHI3L1's role in activating the CD44-β-catenin pathway to induce malignancy. Furthermore, our findings indicate that fibroblasts and dendritic cells are the principal sources of CHI3L1 secretion, a factor that is associated with poor prognosis in gastric cancer. CONCLUSIONS This study highlights CHI3L1 as a key gene driving the progression from gastritis to gastric cancer, primarily by activating the CD44-β-catenin pathway, which enhances malignant cell traits. CHI3L1 is mainly secreted by fibroblasts and dendritic cells, and its high levels are linked to poor gastric cancer prognosis.
Collapse
Affiliation(s)
- Tao Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huizhong Jiang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yucheng Gong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Mengting Liao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yuanping Jia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jiena Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ming Dai
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Yinan Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinyu Lu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Runhua Chen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Yuan Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie Lin
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yicong Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
5
|
Wang H, Xu X, Ouyang Y, Fei X, He C, Yang X, Ren Y, Zhou Y, Chen S, Hu Y, Liu J, Ge Z, Wu WKK, Lu N, Xie C, Wu X, Zhu Y, Li N. The Protective Role of DDIT4 in Helicobacter pylori-induced Gastric Metaplasia Through Metabolic Regulation of Ferroptosis. Cell Mol Gastroenterol Hepatol 2024; 19:101448. [PMID: 39943905 PMCID: PMC11937681 DOI: 10.1016/j.jcmgh.2024.101448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 03/17/2025]
Abstract
BACKGROUND & AIMS Helicobacter pylori (H pylori) infection is a significant factor leading to gastric atrophy, metaplasia and cancer development. Here, we investigated the role of the stress response gene DDIT4 in the pathogenesis of H pylori infection. METHODS Cell lines, transgenic mice, and human tissue samples were implemented. Proteomics were performed on Ddit4+/+ and Ddit4-/- mice infected with H pylori strain PMSS1. C57BL/6 mice were administered with tamoxifen to induce gastric metaplasia. Stomach tissues were analyzed for histopathologic features, reactive oxygen species, Fe2+, lipid peroxidation, expression of DDIT4, and ferroptosis-related proteins. RESULTS DDIT4 expression was upregulated at 6 hours but significantly decreased at 24 hours in response to H pylori infection in gastric epithelial cells. Gastric DDIT4 were downregulated in INS-GAS mice at 4 months post H pylori infection. Notably, H pylori infection led to more severe gastric metaplasia lesion in Ddit4-knockout mice. The proteomic profiling revealed an increase in ferroptosis in the gastric tissues of infected Ddit4-deficient mice, compared with infected wild-type mice. Mechanistically, knockout of DDIT4 promoted H pylori-induced ferroptosis through the accumulation of lipid peroxides and ROS levels, and alterations in proteins such as GPX4, ALOX15, and HMOX1. Overexpression of DDIT4 counteracted H pylori-induced stem cell marker CD44V9 through modulation of ferroptosis. Similarly, in another mouse model of gastric metaplasia treated with tamoxifen, as well as in human GIM tissues, we observed the loss of DDIT4 and induction of ferroptosis. CONCLUSIONS Our results indicate that DDIT4 serves as a protective factor against H pylori-induced gastric metaplasia by metabolic resistance to ferroptosis.
Collapse
Affiliation(s)
- Huan Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Institute of Digestive Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinbo Xu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Institute of Digestive Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yaobin Ouyang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Institute of Digestive Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiao Fei
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Institute of Digestive Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Cong He
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Institute of Digestive Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xianhe Yang
- Department of Science and Technology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuping Ren
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanan Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Institute of Digestive Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Sihai Chen
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Institute of Digestive Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Institute of Digestive Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Institute of Digestive Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xidong Wu
- Department of Drug Safety Evaluation, Jiangxi Testing Center of Medical Instruments, Nanchang, China.
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Institute of Digestive Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
6
|
Lee Y, Kim KH, Park J, Kang HM, Kim SH, Jeong H, Lee B, Lee N, Cho Y, Kim GD, Yu S, Gee HY, Bok J, Hamilton MS, Gewin L, Aronow BJ, Lim KM, Coffey RJ, Nam KT. Regenerative Role of Lrig1+ Cells in Kidney Repair. J Am Soc Nephrol 2024; 35:1702-1714. [PMID: 39120954 PMCID: PMC11617485 DOI: 10.1681/asn.0000000000000462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/05/2024] [Indexed: 08/11/2024] Open
Abstract
Key Points Lrig1 + cells exist long term during kidney homeostasis and become activated upon injury, contributing to regeneration. Lrig1 + cells and their progeny emerge during tubulogenesis and contribute to proximal tubule and inner medullary collecting duct development. Lrig1 + cells expand and differentiate into a mature nephron lineage in response to AKI to repair the proximal tubule. Background In response to severe kidney injury, the kidney epithelium displays remarkable regenerative capabilities driven by adaptable resident epithelial cells. To date, it has been widely considered that the adult kidney lacks multipotent stem cells; thus, the cellular lineages responsible for repairing proximal tubule damage are incompletely understood. Leucine-rich repeats and immunoglobulin-like domain protein 1–expressing cells (Lrig1 + cells) have been identified as a long-lived cell in various tissues that can induce epithelial tissue repair. Therefore, we hypothesized that Lrig1 + cells participate in kidney development and tissue regeneration. Methods We investigated the role of Lrig1 + cells in kidney injury using mouse models. The localization of Lrig1 + cells in the kidney was examined throughout mouse development. The function of Lrig1 + progeny cells in AKI repair was examined in vivo using a tamoxifen-inducible Lrig1 -specific Cre recombinase-based lineage tracing in three different kidney injury mouse models. In addition, we conducted single-cell RNA sequencing to characterize the transcriptional signature of Lrig1 + cells and trace their progeny. Results Lrig1 + cells were present during kidney development and contributed to formation of the proximal tubule and collecting duct structures in mature mouse kidneys. In three-dimensional culture, single Lrig1 + cells demonstrated long-lasting propagation and differentiated into the proximal tubule and collecting duct lineages. These Lrig1 + proximal tubule cells highly expressed progenitor-like and quiescence-related genes, giving rise to a novel cluster of cells with regenerative potential in adult kidneys. Moreover, these long-lived Lrig1 + cells expanded and repaired damaged proximal tubule in response to three types of AKIs in mice. Conclusions These findings highlight the critical role of Lrig1 + cells in kidney regeneration.
Collapse
Affiliation(s)
- Yura Lee
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang H. Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Hyun Mi Kang
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sung-Hee Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Haengdueng Jeong
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Buhyun Lee
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Nakyum Lee
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yejin Cho
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Gyeong Dae Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Seyoung Yu
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jinwoong Bok
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Maxwell S. Hamilton
- Epithelial Biology Center and Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Leslie Gewin
- Division of Nephrology and Hypertension, Department of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Bruce J. Aronow
- Departments of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Robert J. Coffey
- Epithelial Biology Center and Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Ki Taek Nam
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Nascakova Z, He J, Papa G, Francas B, Azizi F, Müller A. Helicobacter pylori induces the expression of Lgr5 and stem cell properties in gastric target cells. Life Sci Alliance 2024; 7:e202402783. [PMID: 39191487 PMCID: PMC11350067 DOI: 10.26508/lsa.202402783] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Helicobacter pylori infection predisposes carriers to a high risk of developing gastric cancer. The cell-of-origin of antral gastric cancer is the Lgr5+ stem cell. Here, we show that infection of antrum-derived gastric organoid cells with H. pylori increases the expression of the stem cell marker Lgr5 as determined by immunofluorescence microscopy, qRT-PCR, and Western blotting, both when cells are grown and infected as monolayers and when cells are exposed to H. pylori in 3D structures. H. pylori exposure increases stemness properties as determined by spheroid formation assay. Lgr5 expression and the acquisition of stemness depend on a functional type IV secretion system (T4SS) and at least partly on the T4SS effector CagA. The pharmacological inhibition or genetic ablation of NF-κB reverses the increase in Lgr5 and spheroid formation. Constitutively active Wnt/β-catenin signaling because of Apc inactivation exacerbates H. pylori-induced Lgr5 expression and stemness, both of which persist even after eradication of the infection. The combined data indicate that H. pylori has stemness-inducing properties that depend on its ability to activate NF-κB signaling.
Collapse
Affiliation(s)
- Zuzana Nascakova
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Jiazhuo He
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Giovanni Papa
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Biel Francas
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Flora Azizi
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
- Comprehensive Cancer Center Zürich, Zürich, Switzerland
| |
Collapse
|
8
|
Willmer WFDEA, Samonge EFN, Barcia Junior OE, Bogossian GM, Assumpção LR, Marques RG. Comparison between Glasgow prognostic criteria and O-POSSUM/ P-POSSUM physiological indices in patients undergoing gastrectomy for gastric adenocarcinoma and the occurrency of early postoperative complications. Rev Col Bras Cir 2024; 51:e20243662. [PMID: 38985034 PMCID: PMC11449513 DOI: 10.1590/0100-6991e-20243662-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/12/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION Gastric cancer is still the third cause of death worldwide due to malignant neoplasms. Its prognostic indices have not yet been well defined for surgical intervention in terms of stratifying the intensity of chronic inflammation. The Glasgow Prognostic Score (GPS) and O-POSSUM and P-POSSUM Indices may constitute these standardizations and were tested to assess the association between them and the prognosis after curative gastrectomy. METHOD Retrospective observational study, analysing medical records of patients with gastric adenocarcinoma who underwent gastrectomy, from 2015 to 2021, in two hospitals in Rio de Janeiro. Surgical extension, pre, peri and postoperative clinical and laboratory data were observed, up to 30 days after surgery. Patients were layered by GPS and compared according to the Clavien-Dindo (CD) classification. Logistic regression was performed to test the association between the outcome and independent variables. RESULTS Of the 48 patients, 56.25% were female. There was difference between the groups regarding surgical extension and GPS (both with p<0.001), while O-POSSUM, P-POSSUM and age showed no difference. Factors associated with CD ≥ III-a complication in the univariate analysis were GPS (OR: 85,261; CI: 24,909- 291,831) and P-POSSUM (OR: 1,211; CI:1,044-1,404). In the multivariate analysis, the independent factors associated with CD ≥ III-a were GPS (OR:114,865; CI: 15,430-855,086), P-POSSUM (OR: 1,133; CI: 1,086-1,181) and O-POSSUM (OR: 2,238; CI: 1,790-2,797). CONCLUSION In this model, GPS, P-POSSUM and O-POSSUM predicted serious surgical complications. There is a need for further studies to establish strategies to minimize the inflammatory response in the preoperative period.
Collapse
Affiliation(s)
- William Frederic DE Araújo Willmer
- - Hospital Universitário Pedro Ernesto/UERJ, Programa de Pós-graduação em Fisiopatologia e Ciências Cirúrgicas - Rio de Janeiro - RJ - Brasil
| | | | | | | | - Lia Roque Assumpção
- - Hospital Universitário Pedro Ernesto/UERJ, Programa de Pós-graduação em Fisiopatologia e Ciências Cirúrgicas - Rio de Janeiro - RJ - Brasil
| | - Ruy Garcia Marques
- - Hospital Universitário Pedro Ernesto/UERJ, Programa de Pós-graduação em Fisiopatologia e Ciências Cirúrgicas - Rio de Janeiro - RJ - Brasil
| |
Collapse
|
9
|
Willmer WFDEA, Samonge EFN, Barcia Junior OE, Bogossian GM, Assumpção LR, Marques RG. Comparison between Glasgow prognostic criteria and O-POSSUM/ P-POSSUM physiological indices in patients undergoing gastrectomy for gastric adenocarcinoma and the occurrency of early postoperative complications. Rev Col Bras Cir 2024; 51:e20243662. [PMID: 38985034 DOI: 10.1590/0100-6991e-20243662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/12/2024] [Indexed: 01/03/2025] Open
Abstract
INTRODUCTION Gastric cancer is still the third cause of death worldwide due to malignant neoplasms. Its prognostic indices have not yet been well defined for surgical intervention in terms of stratifying the intensity of chronic inflammation. The Glasgow Prognostic Score (GPS) and O-POSSUM and P-POSSUM Indices may constitute these standardizations and were tested to assess the association between them and the prognosis after curative gastrectomy. METHOD Retrospective observational study, analysing medical records of patients with gastric adenocarcinoma who underwent gastrectomy, from 2015 to 2021, in two hospitals in Rio de Janeiro. Surgical extension, pre, peri and postoperative clinical and laboratory data were observed, up to 30 days after surgery. Patients were layered by GPS and compared according to the Clavien-Dindo (CD) classification. Logistic regression was performed to test the association between the outcome and independent variables. RESULTS Of the 48 patients, 56.25% were female. There was difference between the groups regarding surgical extension and GPS (both with p<0.001), while O-POSSUM, P-POSSUM and age showed no difference. Factors associated with CD ≥ III-a complication in the univariate analysis were GPS (OR: 85,261; CI: 24,909- 291,831) and P-POSSUM (OR: 1,211; CI:1,044-1,404). In the multivariate analysis, the independent factors associated with CD ≥ III-a were GPS (OR:114,865; CI: 15,430-855,086), P-POSSUM (OR: 1,133; CI: 1,086-1,181) and O-POSSUM (OR: 2,238; CI: 1,790-2,797). CONCLUSION In this model, GPS, P-POSSUM and O-POSSUM predicted serious surgical complications. There is a need for further studies to establish strategies to minimize the inflammatory response in the preoperative period.
Collapse
Affiliation(s)
- William Frederic DE Araújo Willmer
- - Hospital Universitário Pedro Ernesto/UERJ, Programa de Pós-graduação em Fisiopatologia e Ciências Cirúrgicas - Rio de Janeiro - RJ - Brasil
| | | | | | | | - Lia Roque Assumpção
- - Hospital Universitário Pedro Ernesto/UERJ, Programa de Pós-graduação em Fisiopatologia e Ciências Cirúrgicas - Rio de Janeiro - RJ - Brasil
| | - Ruy Garcia Marques
- - Hospital Universitário Pedro Ernesto/UERJ, Programa de Pós-graduação em Fisiopatologia e Ciências Cirúrgicas - Rio de Janeiro - RJ - Brasil
| |
Collapse
|
10
|
Yin Z, Guo X, Liang X, Wang Z. FTO promotes gastric cancer progression by modulating MAP4K4 expression via demethylation in an m6A-dependent manner. Med Oncol 2024; 41:120. [PMID: 38643333 DOI: 10.1007/s12032-024-02369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/20/2024] [Indexed: 04/22/2024]
Abstract
Gastric cancer (GC) is a serious malignant tumour with a high mortality rate and a poor prognosis. Recently, emerging evidence has suggested that N6-methyladenosine (m6A) modification plays a crucial regulatory role in cancer progression. However, the exact role of m6A regulatory factors FTO in GC is unclear. First, the expression of m6A methylation-related regulatory factors in clinical samples and the clinical data of the corresponding patients were obtained from The Cancer Genome Atlas (TCGA-STAD) dataset, and correlation analysis between FTO expression and patient clinicopathological parameters was subsequently performed. qRT-PCR, immunohistochemistry (IHC) and western blotting (WB) were used to verify FTO expression in GC. CCK-8, EdU, flow cytometry and transwell assays were used to evaluate the effect of FTO on the behaviour of GC cells. Transcriptome sequencing and RNA immunoprecipitation analysis were used to explore the potential regulatory mechanisms mediated by FTO. FTO was highly expressed in GC tissues and cells, and high expression of FTO predicted a worse prognosis than low expression. Functionally, overexpression of FTO promoted the proliferation, migration and invasion of GC cells but inhibited cell apoptosis. Mechanistically, we found that FTO is upregulated in GC and promotes GC progression by modulating the expression of MAP4K4. Taken together, our findings provide new insights into the effects of FTO-mediated m6A demethylation and could lead to the development of new strategies for GC monitoring and aggressive treatment.
Collapse
Affiliation(s)
- Zhe Yin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Xiong Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Xiaolong Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
11
|
Liu Y, Chen H, Xiao L, Dong P, Ma Y, Zhou Y, Yang J, Bian B, Xie G, Chen L, Shen L. Notum enhances gastric cancer stem-like cell properties through upregulation of Sox2 by PI3K/AKT signaling pathway. Cell Oncol (Dordr) 2024; 47:463-480. [PMID: 37749430 PMCID: PMC11090966 DOI: 10.1007/s13402-023-00875-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
PURPOSE Considerable evidence suggests that tumor cells with stemness features contribute to initiation, progression, recurrence of gastric cancer (GC) and resistance to therapy, but involvement of underlying regulators and mechanisms remain largely unclear. However, the clinical significance and biological function of Notum in GC tumor sphere formation and tumorigenesis remain unclear. METHODS Bioinformatics analysis, RT-qPCR, western blot and imunohistochemistry staining were applied to characterize Notum expression in GC specimens. The early diagnostic value of Notum was analyzed by logistic regression analysis method. Cancer stemness assays were used in Notum knockdown and overexpressing cells in vitro and in vivo. RNA-seq was employed to reveal the downstream effectors of Notum. RESULTS Notum is highly expressed in early stage of GC patients and stem-like GC cells. For discriminating the early-stage and advanced GC patients, the joint analysis had a better diagnostic value. Overexpression of Notum markedly increased stemness features of GC cells to promote tumor sphere formation and tumorigenesis. Conversely, Notum knockdown attenuated the stem-like cell properties in vitro and in vivo. Mechanically, Notum upregulates Sox2 through activating the PI3K/AKT signaling pathway. Notum inhibitor Caffeine exhibited a potent inhibitory effect on stemness features by impairing the PI3K/AKT signaling pathway activity and targeting Sox2. CONCLUSION Our findings confer a comprehensive and mechanistic function of Notum in GC tumor sphere formation and tumorigenesis that may provide a novel and promising target for early diagnosis and clinical therapy of GC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lanshu Xiao
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bingxian Bian
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lei Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, 200240, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
12
|
Yang Q, Meng D, Zhang Q, Wang J. Advances in research on the anti-tumor mechanism of Astragalus polysaccharides. Front Oncol 2024; 14:1334915. [PMID: 38515577 PMCID: PMC10955345 DOI: 10.3389/fonc.2024.1334915] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
The dry root of the soybean plant Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge) Hsiao or A. membranaceus (Fisch) Bge, Astragali Radix (AR) has a long medicinal history. Astragalus polysaccharide (APS), the natural macromolecule that exhibits immune regulatory, anti-inflammatory, anti-tumor, and other pharmacological activities, is an important active ingredient extracted from AR. Recently, APS has been increasingly used in cancer therapy owing to its anti-tumor ability as it prevents the progression of prostate, liver, cervical, ovarian, and non-small-cell lung cancer by suppressing tumor cell growth and invasion and enhancing apoptosis. In addition, APS enhances the sensitivity of tumors to antineoplastic agents and improves the body's immunity. This macromolecule has prospects for broad application in tumor therapy through various pathways. In this article, we present the latest progress in the research on the anti-tumor effects of APS and its underlying mechanisms, aiming to provide novel theoretical support and reference for its use in cancer therapy.
Collapse
Affiliation(s)
| | | | - Qinyuan Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Yuan HL, Zhang X, Chu WW, Lin GB, Xu CX. Risk factor analysis and nomogram for predicting gastroparesis in patients with type 2 diabetes mellitus. Heliyon 2024; 10:e26221. [PMID: 38390180 PMCID: PMC10881375 DOI: 10.1016/j.heliyon.2024.e26221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Purpose The incidence of gastroparesis is higher in individuals diagnosed with type 2 diabetes mellitus (T2DM) compared to the healthy individuals. Our study aimed to explore the risk factors for gastroparesis in T2DM and to establish a clinical prediction model (nomogram). Methods Our study enlisted 694 patients with T2DM from two medical centers over a period of time. From January 2020 to December 2022, 347 and 149 patients were recruited from the Beilun branch of Zhejiang University's First Affiliated Hospital in the training and internal validation cohorts, respectively. The external validation cohort consisted of 198 patients who were enrolled at Nanchang University's First Affiliated Hospital from October 2020 to September 2021. We conducted univariate and multivariate logistic regression analyses to select the risk factors for gastroparesis in patients with T2DM; subsequently,we developed a nomogram model. The performance of the nomogram was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC), calibration curve, and decision curve analysis(DCA). Results Four clinical variables, including age, regular exercise, glycated hemoglobin level(HbA1c), and Helicobacter pylori (H. pylori) infection, were identified and included in the model. The model demonstrated excellent discrimination, with an AUC of 0.951 (95% CI = 0.925-0.978) in the training group, and 0.910 (95% CI = 0.859-0.961) and 0.875 (95% CI = 0.813-0.937) in the internal and external validation groups, respectively. The calibration curve showed good consistency between prediction of the model and observed gastroparesis. The DCA also demonstrated good clinical efficacy. Conclusion The nomogram model developed in this study showed good performance in predicting gastroparesis in patients with T2DM.
Collapse
Affiliation(s)
- Hai-Liang Yuan
- Department of Gastroenterology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
- The Precision Medicine Laboratory, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Xian Zhang
- Department of Endocrinology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei-Wei Chu
- Department of Gastroenterology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Guan-Bin Lin
- Department of Gastroenterology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| | - Chun-Xia Xu
- Department of Gastroenterology, Beilun Branch of the First Affiliated Hospital of Zhejiang University, Ningbo, China
| |
Collapse
|
14
|
Wang Z, Wang Q, Chen C, Zhao X, Wang H, Xu L, Fu Y, Huang G, Li M, Xu J, Zhang Q, Wang B, Xu G, Wang L, Zou X, Wang S. NNMT enriches for AQP5 + cancer stem cells to drive malignant progression in early gastric cardia adenocarcinoma. Gut 2023; 73:63-77. [PMID: 36977555 DOI: 10.1136/gutjnl-2022-328408] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Early gastric cardia adenocarcinoma (EGCA) is a highly heterogeneous cancer, and the understanding of its classification and malignant progression is limited. This study explored the cellular and molecular heterogeneity in EGCA using single-cell RNA sequencing (scRNA-seq). DESIGN scRNA-seq was conducted on 95 551 cells from endoscopic biopsies of low-grade intraepithelial neoplasia, well/moderately/poorly differentiated EGCA and their paired adjacent nonmalignant biopsy samples. Large-scale clinical samples and functional experiments were employed. RESULTS Integrative analysis of epithelial cells revealed that chief cells, parietal cells and enteroendocrine cells were rarely detected in the malignant epithelial subpopulation, whereas gland and pit mucous cells and AQP5+ stem cells were predominant during malignant progression. Pseudotime and functional enrichment analyses showed that the WNT and NF-κB signalling pathways were activated during the transition. Cluster analysis of heterogeneous malignant cells revealed that NNMT-mediated nicotinamide metabolism was enriched in gastric mucin phenotype cell population, which was associated with tumour initiation and inflammation-induced angiogenesis. Furthermore, the expression level of NNMT was gradually increased during the malignant progression and associated with poor prognosis in cardia adenocarcinoma. Mechanistically, NNMT catalysed the conversion of nicotinamide to 1-methyl nicotinamide via depleting S-adenosyl methionine, which led to a reduction in H3K27 trimethylation (H3K27me3) and then activated the WNT signalling pathway to maintain the stemness of AQP5+ stem cells during EGCA malignant progression. CONCLUSION Our study extends the understanding of the heterogeneity of EGCA and identifies a functional NNMT+/AQP5+ population that may drive malignant progression in EGCA and could be used for early diagnosis and therapy.
Collapse
Affiliation(s)
- Zhangding Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Chen Chen
- Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaoya Zhao
- Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Honggang Wang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, People's Republic of China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Guang Huang
- Center for Global Health, Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Mengmeng Li
- Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jiawen Xu
- Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Qianyi Zhang
- Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
15
|
Liu Y, Wei D, Deguchi Y, Xu W, Tian R, Liu F, Xu M, Mao F, Li D, Chen W, Valentin LA, Deguchi E, Yao JC, Shureiqi I, Zuo X. PPARδ dysregulation of CCL20/CCR6 axis promotes gastric adenocarcinoma carcinogenesis by remodeling gastric tumor microenvironment. Gastric Cancer 2023; 26:904-917. [PMID: 37572185 PMCID: PMC10640489 DOI: 10.1007/s10120-023-01418-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor delta (PPARδ) promotes inflammation and carcinogenesis in many organs, but the underlying mechanisms remains elusive. In stomachs, PPARδ significantly increases chemokine Ccl20 expression in gastric epithelial cells while inducing gastric adenocarcinoma (GAC). CCR6 is the sole receptor of CCL20. Here, we examine the role of PPARδ-mediated Ccl20/Ccr6 signaling in GAC carcinogenesis and investigate the underlying mechanisms. METHODS The effects of PPARδ inhibition by its specific antagonist GSK3787 on GAC were examined in the mice with villin-promoter-driven PPARδ overexpression (PpardTG). RNAscope Duplex Assays were used to measure Ccl20 and Ccr6 levels in stomachs and spleens. Subsets of stomach-infiltrating immune cells were measured via flow cytometry or immunostaining in PpardTG mice fed GSK3787 or control diet. A panel of 13 optimized proinflammatory chemokines in mouse sera were quantified by an enzyme-linked immunosorbent assay. RESULTS GSK3787 significantly suppressed GAC carcinogenesis in PpardTG mice. PPARδ increased Ccl20 level to chemoattract Ccr6+ immunosuppressive cells, including tumor-associated macrophages, myeloid-derived suppressor cells and T regulatory cells, but decreased CD8+ T cells in gastric tissues. GSK3787 suppressed PPARδ-induced gastric immunosuppression by inhibiting Ccl20/Ccr6 axis. Furthermore, Ccl20 protein levels increased in sera of PpardTG mice starting at the age preceding gastric tumor development and further increased with GAC progression as the mice aged. GSK3787 decreased the PPARδ-upregulated Ccl20 levels in sera of the mice. CONCLUSIONS PPARδ dysregulation of Ccl20/Ccr6 axis promotes GAC carcinogenesis by remodeling gastric tumor microenvironment. CCL20 might be a potential biomarker for the early detection and progression of GAC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yasunori Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiguo Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rui Tian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fuyao Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fei Mao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weidong Chen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lovie Ann Valentin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eriko Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - James C Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Imad Shureiqi
- Rogel Cancer Center and Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Lim NR, Chung WC. Helicobacter pylori-associated Chronic Atrophic Gastritis and Progression of Gastric Carcinogenesis. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:171-179. [PMID: 37876256 DOI: 10.4166/kjg.2023.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 10/26/2023]
Abstract
Chronic inflammation due to a Helicobacter pylori (H. pylori) infection is a representative cause of gastric cancer that can promote gastric carcinogenesis by abnormally activating immune cells and increasing the inflammatory cytokines levels. H. pylori infections directly cause DNA double-strand breaks in gastric epithelial cells and genetic damage by increasing the enzymatic activity of cytidine deaminase. Eventually, gastric cancer is induced through dysplasia. Hypermethylation of tumor suppressor genes is an important cause of gastric cancer because of a H. pylori infection. In addition, the changes in gastric microbiota and the mucosal inflammatory changes associated with a co-infection with the Epstein-Barr virus are associated with gastric cancer development. DNA damage induced by H. pylori and the subsequent responses of gastric stem cells have implications for gastric carcinogenesis. Although the pathogenesis of H. pylori has been established, many uncertainties remain, requiring more study.
Collapse
Affiliation(s)
- Na Rae Lim
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| | - Woo Chul Chung
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
17
|
Wizenty J, Koop PH, Clusmann J, Tacke F, Trautwein C, Schneider KM, Sigal M, Schneider CV. Association of Helicobacter pylori Positivity With Risk of Disease and Mortality. Clin Transl Gastroenterol 2023; 14:e00610. [PMID: 37367296 PMCID: PMC10522101 DOI: 10.14309/ctg.0000000000000610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
INTRODUCTION Helicobacter pylori colonizes the human stomach. Infection causes chronic gastritis and increases the risk of gastroduodenal ulcer and gastric cancer. Its chronic colonization in the stomach triggers aberrant epithelial and inflammatory signals that are also associated with systemic alterations. METHODS Using a PheWAS analysis in more than 8,000 participants in the community-based UK Biobank, we explored the association of H. pylori positivity with gastric and extragastric disease and mortality in a European country. RESULTS Along with well-established gastric diseases, we dominantly found overrepresented cardiovascular, respiratory, and metabolic disorders. Using multivariate analysis, the overall mortality of H. pylori -positive participants was not altered, while the respiratory and Coronovirus 2019-associated mortality increased. Lipidomic analysis for H. pylori -positive participants revealed a dyslipidemic profile with reduced high-density lipoprotein cholesterol and omega-3 fatty acids, which may represent a causative link between infection, systemic inflammation, and disease. DISCUSSION Our study of H. pylori positivity demonstrates that it plays an organ- and disease entity-specific role in the development of human disease and highlights the importance of further research into the systemic effects of H. pylori infection.
Collapse
Affiliation(s)
- Jonas Wizenty
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Paul-Henry Koop
- Department for Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Jan Clusmann
- Department for Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Trautwein
- Department for Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Kai Markus Schneider
- Department for Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carolin V. Schneider
- Department for Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
18
|
Li G, Huo D, Guo N, Li Y, Ma H, Liu L, Xie H, Zhang D, Qu B, Chen X. Integrating multiple machine learning algorithms for prognostic prediction of gastric cancer based on immune-related lncRNAs. Front Genet 2023; 14:1106724. [PMID: 37082204 PMCID: PMC10111190 DOI: 10.3389/fgene.2023.1106724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) play an important role in the immune regulation of gastric cancer (GC). However, the clinical application value of immune-related lncRNAs has not been fully developed. It is of great significance to overcome the challenges of prognostic prediction and classification of gastric cancer patients based on the current study.Methods: In this study, the R package ImmLnc was used to obtain immune-related lncRNAs of The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) project, and univariate Cox regression analysis was performed to find prognostic immune-related lncRNAs. A total of 117 combinations based on 10 algorithms were integrated to determine the immune-related lncRNA prognostic model (ILPM). According to the ILPM, the least absolute shrinkage and selection operator (LASSO) regression was employed to find the major lncRNAs and develop the risk model. ssGSEA, CIBERSORT algorithm, the R package maftools, pRRophetic, and clusterProfiler were employed for measuring the proportion of immune cells among risk groups, genomic mutation difference, drug sensitivity analysis, and pathway enrichment score.Results: A total of 321 immune-related lncRNAs were found, and there were 26 prognostic immune-related lncRNAs. According to the ILPM, 18 of 26 lncRNAs were selected and the risk score (RS) developed by the 18-lncRNA signature had good strength in the TCGA training set and Gene Expression Omnibus (GEO) validation datasets. Patients were divided into high- and low-risk groups according to the median RS, and the low-risk group had a better prognosis, tumor immune microenvironment, and tumor signature enrichment score and a higher metabolism, frequency of genomic mutations, proportion of immune cell infiltration, and antitumor drug resistance. Furthermore, 86 differentially expressed genes (DEGs) between high- and low-risk groups were mainly enriched in immune-related pathways.Conclusion: The ILPM developed based on 26 prognostic immune-related lncRNAs can help in predicting the prognosis of patients suffering from gastric cancer. Precision medicine can be effectively carried out by dividing patients into high- and low-risk groups according to the RS.
Collapse
Affiliation(s)
- Guoqi Li
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Diwei Huo
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Naifu Guo
- Department of Biological Science, College of Biological Science and Technology, Harbin Normal University, Harbin, China
| | - Yi Li
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongzhe Ma
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lei Liu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongbo Xie
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Denan Zhang
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Bo Qu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Bo Qu, ; Xiujie Chen,
| | - Xiujie Chen
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- *Correspondence: Bo Qu, ; Xiujie Chen,
| |
Collapse
|
19
|
Decourtye-Espiard L, Guilford P. Hereditary Diffuse Gastric Cancer. Gastroenterology 2023; 164:719-735. [PMID: 36740198 DOI: 10.1053/j.gastro.2023.01.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023]
Abstract
Hereditary diffuse gastric cancer (HDGC) is a dominantly inherited cancer syndrome characterized by a high incidence of diffuse gastric cancer (DGC) and lobular breast cancer (LBC). HDGC is caused by germline mutations in 2 genes involved in the epithelial adherens junction complex, CDH1 and CTNNA1. We discuss the genetics of HDGC and the variability of its clinical phenotype, in particular the variable penetrance of advanced DGC and LBC, both within and between families. We review the pathology of the disease, the mechanism of tumor initiation, and its natural history. Finally, we describe current best practice for the clinical management of HDGC, including emerging genetic testing criteria for the identification of new families, methods for endoscopic surveillance, the complications associated with prophylactic surgery, postoperative quality of life, and the emerging field of HDGC chemoprevention.
Collapse
Affiliation(s)
- Lyvianne Decourtye-Espiard
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Parry Guilford
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
20
|
Wizenty J, Sigal M. Gastric Stem Cell Biology and Helicobacter pylori Infection. Curr Top Microbiol Immunol 2023; 444:1-24. [PMID: 38231213 DOI: 10.1007/978-3-031-47331-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori colonizes the human gastric mucosa and persists lifelong. An interactive network between the bacteria and host cells shapes a unique microbial niche within gastric glands that alters epithelial behavior, leading to pathologies such as chronic gastritis and eventually gastric cancer. Gland colonization by the bacterium initiates aberrant trajectories by inducing long-term inflammatory and regenerative gland responses, which involve various specialized epithelial and stromal cells. Recent studies using cell lineage tracing, organoids and scRNA-seq techniques have significantly advanced our knowledge of the molecular "identity" of epithelial and stromal cell subtypes during normal homeostasis and upon infection, and revealed the principles that underly stem cell (niche) behavior under homeostatic conditions as well as upon H. pylori infection. The activation of long-lived stem cells deep in the gastric glands has emerged as a key prerequisite of H. pylori-associated gastric site-specific pathologies such as hyperplasia in the antrum, and atrophy or metaplasia in the corpus, that are considered premalignant lesions. In addition to altering the behaviour of bona fide stem cells, injury-driven de-differentiation and trans-differentation programs, such as "paligenosis", subsequently allow highly specialized secretory cells to re-acquire stem cell functions, driving gland regeneration. This plastic regenerative capacity of gastric glands is required to maintain homeostasis and repair mucosal injuries. However, these processes are co-opted in the context of stepwise malignant transformation in chronic H. pylori infection, causing the emergence, selection and expansion of cancer-promoting stem cells.
Collapse
Affiliation(s)
- Jonas Wizenty
- Division of Gastroenterology and Hepatology, Medical Department, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Sigal
- Division of Gastroenterology and Hepatology, Medical Department, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
21
|
Huang W, Zhao Y, Xu Z, Wu X, Qiao M, Zhu Z, Zhao Z. The Regulatory Mechanism of miR-574-5p Expression in Cancer. Biomolecules 2022; 13:biom13010040. [PMID: 36671425 PMCID: PMC9855975 DOI: 10.3390/biom13010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of small, single-stranded, non-coding RNAs approximately 22 nucleotides in length. The dysregulation of miRNAs has been widely investigated in various pathological processes, including tumorigenesis, providing a biomarker for cancer diagnosis and prognosis. As a member of the miRNA family, miR-574-5p is located on the human chromosome 4p14 and is highly correlated with a high incidence of human cancers. Functional pathways as well as underlying novel mechanisms upregulate or downregulate miR-574-5p, which plays an important regulatory role in tumorigenesis and progression. In this review, we systematically summarize the context-dependent implications of miR-574-5p and review differences in miR-574-5p expression in cancer. We also investigate the intricate functions exerted by miR-574-5p in diverse pathological processes and highlight regulatory pathways, networks, and other underlying novel mechanisms. The clinical applications of miR-574-5p as a diagnostic biomarker, prognostic biomarker, and therapeutic mechanism are also discussed in this paper. On this basis, we anticipate that miR-574-5p will be a promising and effective biomarker and therapeutic target.
Collapse
|
22
|
Won Y, Choi E. Mouse models of Kras activation in gastric cancer. Exp Mol Med 2022; 54:1793-1798. [PMID: 36369466 PMCID: PMC9723172 DOI: 10.1038/s12276-022-00882-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer has one of the highest incidence rates and is one of the leading causes of cancer-related mortality worldwide. Sequential steps within the carcinogenic process are observed in gastric cancer as well as in pancreatic cancer and colorectal cancer. Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most well-known oncogene and can be constitutively activated by somatic mutations in the gene locus. For over 2 decades, the functions of Kras activation in gastrointestinal (GI) cancers have been studied to elucidate its oncogenic roles during the carcinogenic process. Different approaches have been utilized to generate distinct in vivo models of GI cancer, and a number of mouse models have been established using Kras-inducible systems. In this review, we summarize the genetically engineered mouse models in which Kras is activated with cell-type and/or tissue-type specificity that are utilized for studying carcinogenic processes in gastric cancer as well as pancreatic cancer and colorectal cancer. We also provide a brief description of histological phenotypes and characteristics of those mouse models and the current limitations in the gastric cancer field to be investigated further.
Collapse
Affiliation(s)
- Yoonkyung Won
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
23
|
Duan Y, Dou Y, Xu D. How Can We Better Understand the Gastric Carcinogenesis of Helicobacter pylori? Gastroenterology 2022; 163:1121-1122. [PMID: 35469907 DOI: 10.1053/j.gastro.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Yantao Duan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther 2022; 7:336. [PMID: 36167824 PMCID: PMC9513303 DOI: 10.1038/s41392-022-01194-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Digestive system diseases arise primarily through the interplay of genetic and environmental influences; there is an urgent need in elucidating the pathogenic mechanisms of these diseases and deploy personalized treatments. Traditional and long-established model systems rarely reproduce either tissue complexity or human physiology faithfully; these shortcomings underscore the need for better models. Organoids represent a promising research model, helping us gain a more profound understanding of the digestive organs; this model can also be used to provide patients with precise and individualized treatment and to build rapid in vitro test models for drug screening or gene/cell therapy, linking basic research with clinical treatment. Over the past few decades, the use of organoids has led to an advanced understanding of the composition of each digestive organ and has facilitated disease modeling, chemotherapy dose prediction, CRISPR-Cas9 genetic intervention, high-throughput drug screening, and identification of SARS-CoV-2 targets, pathogenic infection. However, the existing organoids of the digestive system mainly include the epithelial system. In order to reveal the pathogenic mechanism of digestive diseases, it is necessary to establish a completer and more physiological organoid model. Combining organoids and advanced techniques to test individualized treatments of different formulations is a promising approach that requires further exploration. This review highlights the advancements in the field of organoid technology from the perspectives of disease modeling and personalized therapy.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanying Guo
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutao Jin
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Han X, Liu T, Zhai J, Liu C, Wang W, Nie C, Wang Q, Zhu X, Zhou H, Tian W. Association between EPHA5 methylation status in peripheral blood leukocytes and the risk and prognosis of gastric cancer. PeerJ 2022; 10:e13774. [PMID: 36164608 PMCID: PMC9508887 DOI: 10.7717/peerj.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/01/2022] [Indexed: 01/19/2023] Open
Abstract
Purpose Altered DNA methylation, genetic alterations, and environmental factors are involved in tumorigenesis. As a tumor suppressor gene, abnormal EPHA5 methylation was found in gastric cancer (GC) tissues and was linked to the initiation, progression and prognosis of GC. In this study, the EPHA5 methylation level in peripheral blood leukocytes (PBLs) was detected to explore its relationship with GC risk and prognosis. Methods A total of 366 GC cases and 374 controls were selected as the subjects of this study to collect their environmental factors, and the EPHA5 methylation status was detected through the methylation-sensitive high-resolution melting method. Logistic regression analysis was utilized to evaluate the associations among EPHA5 methylation, environmental factors and GC risk. Meanwhile, the propensity score (PS) was used to adjust the imbalance of some independent variables. Results After PS adjustment, EPHA5 Pm (positive methylation) was more likely to increase the GC risk than EPHA5 Nm (negative methylation) (ORb = 1.827, 95% CI [1.202-2.777], P = 0.005). EPHA5 Pm had a more significant association with GC risk in the elderly (ORa = 2.785, 95% CI [1.563-4.961], P = 0.001) and H. pylori-negative groups (ORa = 2.758, 95% CI [1.369-5.555], P = 0.005). Moreover, the combined effects of EPHA5 Pm and H. pylori infection (ORc a = 3.543, 95% CI [2.233-5.621], P < 0.001), consumption of alcohol (ORc a = 2.893, 95% CI [1.844-4.539], P < 0.001), and salty food intake (ORc a = 4.018, 95% CI [2.538-6.362], P < 0.001) on increasing the GC risk were observed. In addition, no convincing association was found between EPHA5 Pm and the GC prognosis. Conclusions EPHA5 methylation in PBLs and its combined effects with environmental risk factors are related to the GC risk.
Collapse
|
26
|
Wizenty J, Müllerke S, Kolesnichenko M, Heuberger J, Lin M, Fischer AS, Mollenkopf HJ, Berger H, Tacke F, Sigal M. Gastric stem cells promote inflammation and gland remodeling in response to Helicobacter pylori via Rspo3-Lgr4 axis. EMBO J 2022; 41:e109996. [PMID: 35767364 PMCID: PMC9251867 DOI: 10.15252/embj.2021109996] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is a pathogen that colonizes the stomach and causes chronic gastritis. Helicobacter pylori can colonize deep inside gastric glands, triggering increased R‐spondin 3 (Rspo3) signaling. This causes an expansion of the “gland base module,” which consists of self‐renewing stem cells and antimicrobial secretory cells and results in gland hyperplasia. The contribution of Rspo3 receptors Lgr4 and Lgr5 is not well explored. Here, we identified that Lgr4 regulates Lgr5 expression and is required for H. pylori‐induced hyperplasia and inflammation, while Lgr5 alone is not. Using conditional knockout mice, we reveal that R‐spondin signaling via Lgr4 drives proliferation of stem cells and also induces NF‐κB activity in the proliferative stem cells. Upon exposure to H. pylori, the Lgr4‐driven NF‐κB activation is responsible for the expansion of the gland base module and simultaneously enables chemokine expression in stem cells, resulting in gland hyperplasia and neutrophil recruitment. This demonstrates a connection between R‐spondin‐Lgr and NF‐κB signaling that links epithelial stem cell behavior and inflammatory responses to gland‐invading H. pylori.
Collapse
Affiliation(s)
- Jonas Wizenty
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Stefanie Müllerke
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Marina Kolesnichenko
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Heuberger
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Manqiang Lin
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Anne-Sophie Fischer
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hilmar Berger
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Sigal
- Division of Gastroenterology and Hepatology, Medical Department, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| |
Collapse
|
27
|
Sun F, Yu X, Ju R, Wang Z, Wang Y. Antitumor responses in gastric cancer by targeting B7H3 via chimeric antigen receptor T cells. Cancer Cell Int 2022; 22:50. [PMID: 35101032 PMCID: PMC8802437 DOI: 10.1186/s12935-022-02471-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/16/2022] [Indexed: 12/31/2022] Open
Abstract
Background Gastric cancer (GC) has a poor prognosis and limited therapeutic options. As a new promising cancer therapeutic approach, chimeric antigen receptor (CAR)-T cells represent a potential GC treatment. We investigated the antitumor activity of CAR-T cells target-B7H3 in GC. Methods In our study, expression of B7H3 was examined in GC tissues and explored the tumoricidal potential of B7H3-targeting CAR-T cells in GC. B7H3-directed CAR-T cells with a humanized antigen-recognizing domain was generated. The anti-tumor effects of this CAR-T cell were finally investigated in vitro and in vivo. Results Our results show that B7H3-directed CAR-T cells efficiently killed GC tumor cells. In addition, we found that B7H3 is correlated with tumor cell stemness, and anti-B7H3 CAR-T can simultaneously target stem cell-like GC cells to improve the treatment outcome. Conclusions Our study indicates that B7H3 is an attractive target for GC therapy, and B7H3 has high potential for clinical application. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02471-8.
Collapse
Affiliation(s)
- Fengqiang Sun
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Xiaomei Yu
- Department of Obstetrics, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Ruixue Ju
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Zhanzhao Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Yuhui Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, 261000, Shandong, China.
| |
Collapse
|