1
|
Childs CJ, Poling HM, Chen K, Tsai YH, Wu A, Vallie A, Eiken MK, Huang S, Sweet CW, Schreiner R, Xiao Z, Spencer RC, Paris SA, Conchola AS, Villanueva JW, Anderman MF, Holloway EM, Singh A, Giger RJ, Mahe MM, Loebel C, Helmrath MA, Walton KD, Rafii S, Spence JR. Coordinated differentiation of human intestinal organoids with functional enteric neurons and vasculature. Cell Stem Cell 2025; 32:640-651.e9. [PMID: 40043706 PMCID: PMC11973701 DOI: 10.1016/j.stem.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/11/2024] [Accepted: 02/07/2025] [Indexed: 03/20/2025]
Abstract
Human intestinal organoids (HIOs) derived from human pluripotent stem cells co-differentiate both epithelial and mesenchymal lineages in vitro but lack important cell types such as neurons, endothelial cells, and smooth muscle, which limits translational potential. Here, we demonstrate that the intestinal stem cell niche factor, EPIREGULIN (EREG), enhances HIO differentiation with epithelium, mesenchyme, enteric neuroglial populations, endothelial cells, and organized smooth muscle in a single differentiation, without the need for co-culture. When transplanted into a murine host, HIOs mature and demonstrate enteric nervous system function, undergoing peristaltic-like contractions indicative of a functional neuromuscular unit. HIOs also form functional vasculature, demonstrated in vitro using microfluidic devices and in vivo following transplantation, where HIO endothelial cells anastomose with host vasculature. These complex HIOs represent a transformative tool for translational research in the human gut and can be used to interrogate complex diseases as well as for testing therapeutic interventions with high fidelity to human pathophysiology.
Collapse
Affiliation(s)
- Charlie J Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Holly M Poling
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati College of Engineering and Applied Science, Cincinnati, OH, USA
| | - Kevin Chen
- Hartman Institute for Therapeutic Organ Regeneration, Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yu-Hwai Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Angeline Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Abigail Vallie
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Madeline K Eiken
- Department of Biomedical Engineering, University of Michigan and University of Michigan College of Engineering, Ann Arbor, MI, USA
| | - Sha Huang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Caden W Sweet
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ryan Schreiner
- Hartman Institute for Therapeutic Organ Regeneration, Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Zhiwei Xiao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ryan C Spencer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samantha A Paris
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ansley S Conchola
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonathan W Villanueva
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Meghan F Anderman
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Akaljot Singh
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maxime M Mahe
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Université de Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan and University of Michigan College of Engineering, Ann Arbor, MI, USA; Department of Materials Science and Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
| | - Michael A Helmrath
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katherine D Walton
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shahin Rafii
- Hartman Institute for Therapeutic Organ Regeneration, Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan and University of Michigan College of Engineering, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Jeffery N, Al Nimri O, Houghton JAL, Globa E, Wakeling MN, Flanagan SE, Hattersley AT, Patel KA, De Franco E. Widening the phenotypic spectrum caused by pathogenic PDX1 variants in individuals with neonatal diabetes. BMJ Open Diabetes Res Care 2024; 12:e004439. [PMID: 39542526 PMCID: PMC11575358 DOI: 10.1136/bmjdrc-2024-004439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
INTRODUCTION Biallelic PDX1 variants are a rare cause of isolated pancreatic agenesis and neonatal diabetes (NDM) without exocrine pancreatic insufficiency, with 17 cases reported in the literature. RESEARCH DESIGN AND METHODS To determine the phenotypic variability caused by this rare genetic aetiology, we investigated 19 individuals with NDM resulting from biallelic disease-causing PDX1 variants. RESULTS Of the 19 individuals, 8 (42%) were confirmed to have exocrine insufficiency requiring replacement therapy. Twelve individuals (63.2%) had extrapancreatic features, including 8 (42%) with conditions affecting the duodenum and/or hepatobiliary tract. Defects in duodenum development are consistent with previous Pdx1 ablation studies in mice which showed abnormal rostral duodenum development. CONCLUSIONS Our findings show that recessive PDX1 variants can cause a syndromic form of NDM, highlighting the need for clinical assessment of extrapancreatic features in individuals with NDM caused by PDX1 variants.
Collapse
Affiliation(s)
- Nicola Jeffery
- Department of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Omar Al Nimri
- Department of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Jayne A L Houghton
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Evgenia Globa
- Department of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
- Ukrainian Scientific and Practical Center of Endocrine Surgery, Transplantation of Endocrine Organs and Tissues of the Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Matthew N Wakeling
- Department of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Sarah E Flanagan
- Department of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| | - Kashyap Amratlal Patel
- Department of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
- Diabetes and Endocrinology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Elisa De Franco
- Department of Clinical and Biomedical Sciences, University of Exeter Faculty of Health and Life Sciences, Exeter, UK
| |
Collapse
|
3
|
Nwako JG, McCauley HA. Enteroendocrine cells regulate intestinal homeostasis and epithelial function. Mol Cell Endocrinol 2024; 593:112339. [PMID: 39111616 PMCID: PMC11401774 DOI: 10.1016/j.mce.2024.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
Enteroendocrine cells (EECs) are well-known for their systemic hormonal effects, especially in the regulation of appetite and glycemia. Much less is known about how the products made by EECs regulate their local environment within the intestine. Here, we focus on paracrine interactions between EECs and other intestinal cells as they regulate three essential aspects of intestinal homeostasis and physiology: 1) intestinal stem cell function and proliferation; 2) nutrient absorption; and 3) mucosal barrier function. We also discuss the ability of EECs to express multiple hormones, describe in vitro and in vivo models to study EECs, and consider how EECs are altered in GI disease.
Collapse
Affiliation(s)
- Jennifer G Nwako
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA
| | - Heather A McCauley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, 111 Mason Farm Road, Molecular Biology Research Building 5341C, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Zhao J, Liang S, Cen HH, Li Y, Baker RK, Ruprai B, Gao G, Zhang C, Ren H, Tang C, Chen L, Liu Y, Lynn FC, Johnson JD, Kieffer TJ. PDX1+ cell budding morphogenesis in a stem cell-derived islet spheroid system. Nat Commun 2024; 15:5894. [PMID: 39003281 PMCID: PMC11246529 DOI: 10.1038/s41467-024-50109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Remarkable advances in protocol development have been achieved to manufacture insulin-secreting islets from human pluripotent stem cells (hPSCs). Distinct from current approaches, we devised a tunable strategy to generate islet spheroids enriched for major islet cell types by incorporating PDX1+ cell budding morphogenesis into staged differentiation. In this process that appears to mimic normal islet morphogenesis, the differentiating islet spheroids organize with endocrine cells that are intermingled or arranged in a core-mantle architecture, accompanied with functional heterogeneity. Through in vitro modelling of human pancreas development, we illustrate the importance of PDX1 and the requirement for EphB3/4 signaling in eliciting cell budding morphogenesis. Using this new approach, we model Mitchell-Riley syndrome with RFX6 knockout hPSCs illustrating unexpected morphogenesis defects in the differentiation towards islet cells. The tunable differentiation system and stem cell-derived islet models described in this work may facilitate addressing fundamental questions in islet biology and probing human pancreas diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada.
| | - Shenghui Liang
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Haoning Howard Cen
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Yanjun Li
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
| | - Robert K Baker
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Balwinder Ruprai
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Guang Gao
- Imaging Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Chloe Zhang
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Huixia Ren
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Liangyi Chen
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, 510631, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Francis C Lynn
- BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - James D Johnson
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Life Sciences Institute, Departments of Cellular & Physiological Sciences and Surgery, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Sanchez JG, Rankin S, Paul E, McCauley HA, Kechele DO, Enriquez JR, Jones NH, Greeley SAW, Letourneau-Friedberg L, Zorn AM, Krishnamurthy M, Wells JM. RFX6 regulates human intestinal patterning and function upstream of PDX1. Development 2024; 151:dev202529. [PMID: 38587174 PMCID: PMC11128285 DOI: 10.1242/dev.202529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.
Collapse
Affiliation(s)
- J. Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Scott Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Emily Paul
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Heather A. McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel O. Kechele
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Jacob R. Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Nana-Hawa Jones
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Siri A. W. Greeley
- Division of Endocrinology, University of Chicago, Chicago, IL 60637, USA
| | | | - Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Mansa Krishnamurthy
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
6
|
Gilbert PM, Hofmann S, Ng HH, Vankelecom H, Wells JM. Organoids in endocrine and metabolic research: current and emerging applications. Nat Rev Endocrinol 2024; 20:195-201. [PMID: 38182746 DOI: 10.1038/s41574-023-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Affiliation(s)
- Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Sandra Hofmann
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.
| | - Huck-Hui Ng
- Laboratory of Precision Disease Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, KU Leuven, Leuven, Belgium.
| | - James M Wells
- Division of Developmental Biology, Division of Endocrinology, Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Forster VJ, Aronson M, Zhang C, Chung J, Sudhaman S, Galati MA, Kelly J, Negm L, Ercan AB, Stengs L, Durno C, Edwards M, Komosa M, Oldfield LE, Nunes NM, Pedersen S, Wellum J, Siddiqui I, Bianchi V, Weil BR, Fox VL, Pugh TJ, Kamihara J, Tabori U. Biallelic EPCAM deletions induce tissue-specific DNA repair deficiency and cancer predisposition. NPJ Precis Oncol 2024; 8:69. [PMID: 38467830 PMCID: PMC10928233 DOI: 10.1038/s41698-024-00537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
We report a case of Mismatch Repair Deficiency (MMRD) caused by germline homozygous EPCAM deletion leading to tissue-specific loss of MSH2. Through the use of patient-derived cells and organoid technologies, we performed stepwise in vitro differentiation of colonic and brain organoids from reprogrammed EPCAMdel iPSC derived from patient fibroblasts. Differentiation of iPSC to epithelial-colonic organoids exhibited continuous increased EPCAM expression and hypermethylation of the MSH2 promoter. This was associated with loss of MSH2 expression, increased mutational burden, MMRD signatures and MS-indel accumulation, the hallmarks of MMRD. In contrast, maturation into brain organoids and examination of blood and fibroblasts failed to show similar processes, preserving MMR proficiency. The combined use of iPSC, organoid technologies and functional genomics analyses highlights the potential of cutting-edge cellular and molecular analysis techniques to define processes controlling tumorigenesis and uncovers a new paradigm of tissue-specific MMRD, which affects the clinical management of these patients.
Collapse
Affiliation(s)
- V J Forster
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Aronson
- Zane Cohen Centre, Sinai Health System and Faculty of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - C Zhang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - J Chung
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - S Sudhaman
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - M A Galati
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - J Kelly
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - L Negm
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - A B Ercan
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - L Stengs
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - C Durno
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Edwards
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Komosa
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - N M Nunes
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - S Pedersen
- University Health Network, Toronto, ON, Canada
| | - J Wellum
- University Health Network, Toronto, ON, Canada
| | - I Siddiqui
- Department of Paediatric Laboratory Medicine and Pathobiology, Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - V Bianchi
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - B R Weil
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - V L Fox
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - T J Pugh
- University Health Network, Toronto, ON, Canada
| | - J Kamihara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - U Tabori
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Murray A, Rodas Marquez SP, Krishnamurthy M, Lopez-Nunez O, Gurria JP, Trout AT, Almazan S, Mutyala K, Grisotti G, Shah A, Howell J. Multifocal Insulinoma as the Unique Presenting Feature of Multiple Endocrine Neoplasia Type 1 in an Adolescent. Horm Res Paediatr 2024; 98:75-83. [PMID: 38442699 PMCID: PMC11374928 DOI: 10.1159/000538211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
INTRODUCTION Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant inherited disorder defined by the presence of two of the following endocrinopathies: primary hyperparathyroidism, anterior pituitary tumors, and duodenopancreatic neuroendocrine tumors (NETs). NETs, which can secrete hormones including insulin, gastrin, and glucagon, among others, are common in patients with MEN1 and are a major cause of morbidity and premature death. NETs are more common later in life, with very few cases described in children. Here, we describe a unique case of an adolescent with multifocal pancreatic NETs as the single presenting feature of MEN1. CASE PRESENTATION A 13-year-old healthy male presented with severe weakness, altered mental status, and syncope in the setting of a venous blood glucose (BG) of 36 mg/dL. Workup showed an elevated insulin level (14 μIU/mL) when BG was 39 mg/dL with positive response to glucagon, concerning for hyperinsulinism. Diazoxide and chlorothiazide were started but not well tolerated secondary to emesis. Three suspected NETs were identified by magnetic resonance imaging and 68-Ga DOTATATE PET-CT imaging, including the largest, a 2.1 cm mass in the pancreatic head. A fourth mass in the pancreatic tail was identified via intraoperative ultrasound. All lesions were successfully enucleated and excised, and glucose levels normalized off diazoxide by post-op day 2. While the primary lesion stained for insulin and somatostatin by immunofluorescence (IF), consistent with his clinical presentation, the additional tumors expressed glucagon, somatostatin, pancreatic polypeptide, and chromogranin A but were negative for insulin. Genetic testing confirmed a pathogenic heterozygous mutation in MEN1 (c.969C>A, p.Tyr323). He had no other signs of MEN-associated comorbidities on screening. DISCUSSION/CONCLUSION This case demonstrates that young patients with MEN1 can present with multifocal NETs. These NETs may have polyhormonal expression patterns despite a clinical presentation consistent with one primary hormone. Our patient had clinical symptoms and laboratory evaluation consistent with an insulinoma but was found to have four NETs, each with different IF staining patterns. Advanced preoperative and intraoperative imaging is important to identify and treat all present NETs. Moreover, serum hormone levels pre- and posttreatment could help evaluate whether NETs are actively secreting hormones into the bloodstream or simply expressing them within the pancreas. Finally, this case highlights the importance of genetic testing for MEN1 in all young patients with insulinomas. INTRODUCTION Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant inherited disorder defined by the presence of two of the following endocrinopathies: primary hyperparathyroidism, anterior pituitary tumors, and duodenopancreatic neuroendocrine tumors (NETs). NETs, which can secrete hormones including insulin, gastrin, and glucagon, among others, are common in patients with MEN1 and are a major cause of morbidity and premature death. NETs are more common later in life, with very few cases described in children. Here, we describe a unique case of an adolescent with multifocal pancreatic NETs as the single presenting feature of MEN1. CASE PRESENTATION A 13-year-old healthy male presented with severe weakness, altered mental status, and syncope in the setting of a venous blood glucose (BG) of 36 mg/dL. Workup showed an elevated insulin level (14 μIU/mL) when BG was 39 mg/dL with positive response to glucagon, concerning for hyperinsulinism. Diazoxide and chlorothiazide were started but not well tolerated secondary to emesis. Three suspected NETs were identified by magnetic resonance imaging and 68-Ga DOTATATE PET-CT imaging, including the largest, a 2.1 cm mass in the pancreatic head. A fourth mass in the pancreatic tail was identified via intraoperative ultrasound. All lesions were successfully enucleated and excised, and glucose levels normalized off diazoxide by post-op day 2. While the primary lesion stained for insulin and somatostatin by immunofluorescence (IF), consistent with his clinical presentation, the additional tumors expressed glucagon, somatostatin, pancreatic polypeptide, and chromogranin A but were negative for insulin. Genetic testing confirmed a pathogenic heterozygous mutation in MEN1 (c.969C>A, p.Tyr323). He had no other signs of MEN-associated comorbidities on screening. DISCUSSION/CONCLUSION This case demonstrates that young patients with MEN1 can present with multifocal NETs. These NETs may have polyhormonal expression patterns despite a clinical presentation consistent with one primary hormone. Our patient had clinical symptoms and laboratory evaluation consistent with an insulinoma but was found to have four NETs, each with different IF staining patterns. Advanced preoperative and intraoperative imaging is important to identify and treat all present NETs. Moreover, serum hormone levels pre- and posttreatment could help evaluate whether NETs are actively secreting hormones into the bloodstream or simply expressing them within the pancreas. Finally, this case highlights the importance of genetic testing for MEN1 in all young patients with insulinomas.
Collapse
Affiliation(s)
- Alison Murray
- Department of Endocrinology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Mansa Krishnamurthy
- Department of Endocrinology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Oscar Lopez-Nunez
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Juan P. Gurria
- Department of General and Thoracic Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew T. Trout
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Susan Almazan
- Department of Endocrinology, Dayton Children’s Hospital, Dayton, OH, USA
| | | | - Gabriella Grisotti
- Department of General and Thoracic Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amy Shah
- Department of Endocrinology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jonathan Howell
- Department of Endocrinology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
9
|
Poplaski V, Bomidi C, Kambal A, Nguyen-Phuc H, Di Rienzi SC, Danhof HA, Zeng XL, Feagins LA, Deng N, Vilar E, McAllister F, Coarfa C, Min S, Kim HJ, Shukla R, Britton R, Estes MK, Blutt SE. Human intestinal organoids from Cronkhite-Canada syndrome patients reveal link between serotonin and proliferation. J Clin Invest 2023; 133:e166884. [PMID: 37909332 PMCID: PMC10617781 DOI: 10.1172/jci166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 08/29/2023] [Indexed: 11/03/2023] Open
Abstract
Cronkhite-Canada Syndrome (CCS) is a rare, noninherited polyposis syndrome affecting 1 in every million individuals. Despite over 50 years of CCS cases, the etiopathogenesis and optimal treatment for CCS remains unknown due to the rarity of the disease and lack of model systems. To better understand the etiology of CCS, we generated human intestinal organoids (HIOs) from intestinal stem cells isolated from 2 patients. We discovered that CCS HIOs are highly proliferative and have increased numbers of enteroendocrine cells producing serotonin (also known as 5-hydroxytryptamine or 5HT). These features were also confirmed in patient tissue biopsies. Recombinant 5HT increased proliferation of non-CCS donor HIOs and inhibition of 5HT production in the CCS HIOs resulted in decreased proliferation, suggesting a link between local epithelial 5HT production and control of epithelial stem cell proliferation. This link was confirmed in genetically engineered HIOs with an increased number of enteroendocrine cells. This work provides a new mechanism to explain the pathogenesis of CCS and illustrates the important contribution of HIO cultures to understanding disease etiology and in the identification of novel therapies. Our work demonstrates the principle of using organoids for personalized medicine and sheds light on how intestinal hormones can play a role in intestinal epithelial proliferation.
Collapse
Affiliation(s)
- Victoria Poplaski
- Program in Translational Biology and Molecular Medicine
- Department of Molecular Virology and Microbiology, and
| | | | - Amal Kambal
- Department of Molecular Virology and Microbiology, and
| | | | - Sara C. Di Rienzi
- Department of Molecular Virology and Microbiology, and
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, and
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, and
| | - Linda A. Feagins
- Department of Internal Medicine, Center for Inflammatory Bowl Diseases, The University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Nan Deng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston Texas, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston Texas, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston Texas, USA
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center and
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Soyoun Min
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hyun Jung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richa Shukla
- Department of Medicine, Section of Gasteroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert Britton
- Department of Molecular Virology and Microbiology, and
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, and
- Department of Medicine, Section of Gasteroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston Texas, USA
| | | |
Collapse
|
10
|
Zheng R, Zhang L, Parvin R, Su L, Chi J, Shi K, Ye F, Huang X. Progress and Perspective of CRISPR-Cas9 Technology in Translational Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300195. [PMID: 37356052 PMCID: PMC10477906 DOI: 10.1002/advs.202300195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Indexed: 06/27/2023]
Abstract
Translational medicine aims to improve human health by exploring potential treatment methods developed during basic scientific research and applying them to the treatment of patients in clinical settings. The advanced perceptions of gene functions have remarkably revolutionized clinical treatment strategies for target agents. However, the progress in gene editing therapy has been hindered due to the severe off-target effects and limited editing sites. Fortunately, the development in the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system has renewed hope for gene therapy field. The CRISPR-Cas9 system can fulfill various simple or complex purposes, including gene knockout, knock-in, activation, interference, base editing, and sequence detection. Accordingly, the CRISPR-Cas9 system is adaptable to translational medicine, which calls for the alteration of genomic sequences. This review aims to present the latest CRISPR-Cas9 technology achievements and prospect to translational medicine advances. The principle and characterization of the CRISPR-Cas9 system are firstly introduced. The authors then focus on recent pre-clinical and clinical research directions, including the construction of disease models, disease-related gene screening and regulation, and disease treatment and diagnosis for multiple refractory diseases. Finally, some clinical challenges including off-target effects, in vivo vectors, and ethical problems, and future perspective are also discussed.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Lexiang Zhang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
| | - Rokshana Parvin
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
| | - Lihuang Su
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Junjie Chi
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Keqing Shi
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| | - Fangfu Ye
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health); Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000P. R. China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Xiaoying Huang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Division of Pulmonary MedicineThe First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiang325000P. R. China
- Wenzhou Key Laboratory of Interdiscipline and Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000P. R. China
| |
Collapse
|
11
|
Zhang Y, Fang X, Wei J, Miao R, Wu H, Ma K, Tian J. PDX-1: A Promising Therapeutic Target to Reverse Diabetes. Biomolecules 2022; 12:1785. [PMID: 36551213 PMCID: PMC9775243 DOI: 10.3390/biom12121785] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022] Open
Abstract
The pancreatic duodenum homeobox-1 (PDX-1) is a transcription factor encoded by a Hox-like homeodomain gene that plays a crucial role in pancreatic development, β-cell differentiation, and the maintenance of mature β-cell functions. Research on the relationship between PDX-1 and diabetes has gained much attention because of the increasing prevalence of diabetes melitus (DM). Recent studies have shown that the overexpression of PDX-1 regulates pancreatic development and promotes β-cell differentiation and insulin secretion. It also plays a vital role in cell remodeling, gene editing, and drug development. Conversely, the absence of PDX-1 increases susceptibility to DM. Therefore, in this review, we summarized the role of PDX-1 in pancreatic development and the pathogenesis of DM. A better understanding of PDX-1 will deepen our knowledge of the pathophysiology of DM and provide a scientific basis for exploring PDX-1 as a potential target for treating diabetes.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
12
|
Almeida RS, Wisnieski F, Takao Real Karia B, Smith MAC. CRISPR/Cas9 Genome-Editing Technology and Potential Clinical Application in Gastric Cancer. Genes (Basel) 2022; 13:2029. [PMID: 36360266 PMCID: PMC9690943 DOI: 10.3390/genes13112029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 10/09/2023] Open
Abstract
Gastric cancer is the subject of clinical and basic studies due to its high incidence and mortality rates worldwide. Due to the diagnosis occurring in advanced stages and the classic treatment methodologies such as gastrectomy and chemotherapy, they are extremely aggressive and limit the quality of life of these patients. CRISPR/Cas9 is a tool that allows gene editing and has been used to explore the functions of genes related to gastric cancer, in addition to being used in the treatment of this neoplasm, greatly increasing our understanding of cancer genomics. In this mini-review, we seek the current status of the CRISPR/Cas9 gene-editing technology in gastric cancer research and clinical research.
Collapse
Affiliation(s)
- Renata Sanches Almeida
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
| | - Fernanda Wisnieski
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
- Discipline of Gastroenterology, Department of Medicine, Federal University of São Paulo, Rua Loefgreen, 1726, São Paulo 04040002, Brazil
| | - Bruno Takao Real Karia
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
| | - Marilia Arruda Cardoso Smith
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
| |
Collapse
|