1
|
Chen Z, Tai Y, Deng C, Sun Y, Chen H, Luo T, Lin J, Chen W, Xu H, Song G, Tang Q, Lu J, Zhu X, Wen S, Wang J. Innovative sarcoma therapy using multifaceted nano-PROTAC-induced EZH2 degradation and immunity enhancement. Biomaterials 2025; 321:123344. [PMID: 40262462 DOI: 10.1016/j.biomaterials.2025.123344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/05/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Sarcomas are highly malignant tumors characterized by their heterogeneity and resistance to conventional therapies, which significantly limit treatment options. EZH2 is highly expressed in sarcomas, but targeting it is difficult. In this study, we uncovered the non-canonical transcriptional mechanisms of EZH2 in sarcoma and highlighted the essential role of EZH2 in regulating YAP1 through non-canonical transcriptional pathways in the progression of sarcoma. Building on this, we developed YM@VBM, a novel and versatile nano-PROTAC (proteolysis-targeting chimera), by integrating a polyphenol-vanadium oxide system with the EZH2 degrader YM281 PROTAC, encapsulated in methoxy polyethylene glycol-NH2 to enhance biocompatibility. To further facilitate targeted drug delivery to tumors, YM@VBM nano-PROTACs were incorporated into microneedle patches. Our engineered YM@VBM exhibited multiple functionalities, including the peroxidase-like activity to generate reactive oxygen species, depletion of glutathione, and photothermal effects, specifically targeting sarcoma characteristics. YM@VBM significantly enhanced targeting efficacy via inducing potent EZH2 degradation. Most importantly, it can also activate anti-tumor immunity via excluding myeloid-derived suppressor cells, maturing dendritic cells, and forming tertiary lymphoid structures. Hence, we reveal that YM@VBM presents a promising treatment strategy for sarcoma, offering a multifaceted approach to combat this challenging malignancy.
Collapse
Affiliation(s)
- Zhihao Chen
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Yi Tai
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China; Surgical Department of Colorectal Cancer, Zhejiang Cancer Hospital, 1st BanShan East Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, PR China
| | - Chuangzhong Deng
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Yameng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Hongmin Chen
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Tianqi Luo
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Jiaming Lin
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Weiqing Chen
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Huaiyuan Xu
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Guohui Song
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Qinglian Tang
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Jinchang Lu
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Xiaojun Zhu
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China.
| | - Jin Wang
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, PR China.
| |
Collapse
|
2
|
Gong G, Huang H, Tong Z, Zheng Y, Bian D, Zhang Y. Implant derived high local concentration of magnesium inhibits tumorigenicity of osteosarcoma. Biomaterials 2025; 320:123263. [PMID: 40132359 DOI: 10.1016/j.biomaterials.2025.123263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/25/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Osteosarcoma (OS) is a fatal malignant tumor that occurs in bone, whose main treatment is surgical resection. With anti-tumor and osteogenic effects, Magnesium (Mg) is a promising biodegradable metal for postoperative treatment in OS, however, its anti-OS effect and mechanism still need to be explored. Here, while holding the ability to promote osteogenesis, Mg metal at the same time significantly reduces the proliferation, migration and invasion of various OS cells (UMR106, 143B, K7M2) in vitro. Similarly, it inhibits the growth and lung metastasis of UMR106 induced tumors in xenograft models in vivo. The mRNA-seq analysis shows that Mg significantly inhibits Wnt-pathway (increased APC, Axin2 and GSK3β to induce degradation of β-catenin) in typical OS, which is further verified by western blotting and immunofluorescence analyses. A Mg2+ concentration of 240 mg/L, either from Mg metal extract or Mg salt (MgCl2), equivalently exhibits significantly increased APC, Axin2, GSK3β and decreased β-catenin, and then inhibits tumorigenicity of typical OS cells. This work reveals that a local high concentration of Mg can inhibit OS by down-regulating Wnt-pathway, and meanwhile favors for normal health bone, which demonstrates a new approach and mechanism in the treatment of OS with Mg-based biodegradable metals.
Collapse
Affiliation(s)
- Gencheng Gong
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Orthopedics, Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - He Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhipei Tong
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yufeng Zheng
- Department of Orthopedics, Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Dong Bian
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yu Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Orthopedics, Guangdong Engineering Technology Research Center of Functional Repair of Bone Defects and Biomaterials, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
3
|
Li G, Chen W, Liu D, Tang S. Recent advances in medicinal chemistry strategies for the development of METTL3 inhibitors. Eur J Med Chem 2025; 290:117560. [PMID: 40147343 DOI: 10.1016/j.ejmech.2025.117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
N6-methyladenosine (m6A), the most abundant RNA modification in eukaryotic cells, exerts a critical influence on RNA function and gene expression. It has attracted considerable attention within the rapidly evolving field of epitranscriptomics. METTL3 is a key enzyme for m6A modification and is essential for maintaining normal m6A levels. High expression of METTL3 is closely associated with various cancers, including gastric cancer, liver cancer, and leukemia. Inhibiting METTL3 has shown potential in slowing cancer progression, thereby driving the development of METTL3 inhibitors. In this work, we summarize recent advancements in the development of METTL3 inhibitor, with a focus on medicinal chemistry strategies employed during discovery and optimization phases. We explore the application of structure-activity relationship (SAR) studies and protein-targeted degradation techniques, while addressing key challenges associated with their characterization and clinical translation. This review underscores the therapeutic potential of METTL3 inhibitors in modulating epitranscriptomic pathways and aims to offer perspectives for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Gengwu Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shibing Tang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; State Key Laboratory of Respiratory Disease, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
4
|
Xu X, Cheng Y, Yang Z, Yin Y, Qian Y, Yang H, Zhu S, Tian H, Zhuang Y, Zhu S, Yang P, Qin S, Shen W. Wogonin potentiates the irradiation effect on hepatocellular carcinoma by activating the Hippo-Yes-associated protein/transcriptional co-activator with PDZ-binding motif pathway. Int Immunopharmacol 2025; 157:114740. [PMID: 40318272 DOI: 10.1016/j.intimp.2025.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVE To investigate whether wogonin increases the radiosensitivity of hepatocellular carcinoma (HCC) cells by activating Hippo-Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling. METHODS HCC cells were treated with irradiation and wogonin; their proliferation and apoptosis were evaluated. Xenograft models were established to assess the radio-synergistic effects of wogonin; we evaluated whether wogonin influences the efficacy of radiotherapy in HCC cells by activating Hippo-YAP/TAZ signaling. RESULTS Fifty micromolar wogonin enhanced the radiosensitivity of HCC cells; 4-Gy X-rays promoted apoptosis in HCC cells. Wogonin pretreatment significantly increased radiosensitivity. In xenograft models, tumor weight and volume in the 100 mg/kg wogonin plus irradiation group were significantly reduced; pYAP and pTAZ levels were downregulated in HCC cells treated with radiotherapy. Following treatment with 4-Gy X-rays and 100 μM wogonin, the relative pYAP/total YAP and pTAZ/total TAZ ratios increased. We identified the possible target genes of YAP/TAZ: AXL, CCN1, and CCN2. WB results revealed the upregulation of AXL, CCN1, and CCN2 in the irradiation group. However, in the group receiving irradiation and wogonin, the protein expression levels of AXL, CCN1, and CCN2 were downregulated. XMU-MP-1 inhibited pYAP and pTAZ expression in the combination treatment group, thereby promoting AXL, CCN1, and CCN2 expression. The proliferative ability of HCC cells in the wogonin plus irradiation group was partially recovered following treatment with XMU-MP-1. Apoptosis in HCC cells was reversed after pretreatment with 2 μM XMU-MP-1 in the wogonin plus irradiation group. CONCLUSION Wogonin may modulate Hippo-YAP/TAZ signaling and enhance the radiosensitivity of HCCs.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Radiotherapy, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China; Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yan Cheng
- School of Computer Science and Engineering, Taizhou Institute of Science & Technology, Taizhou 225300, Jiangsu, China
| | - Zeyu Yang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215006, Jiangsu, China
| | - Yong Yin
- Department of Science and Technology, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Yonghong Qian
- Department of Radiotherapy, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Haiyu Yang
- Department of Clinical Laboratory, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Shusheng Zhu
- Department of Thoracic Surgery, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Hu Tian
- Department of Science and Technology, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Yanshuang Zhuang
- Department of Science and Technology, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Shimin Zhu
- Department of Radiotherapy, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Pingjin Yang
- Department of Clinical Laboratory, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Songbing Qin
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| | - Weigan Shen
- Department of Cell Biology, Yangzhou University Medical College, Yangzhou 225100, Jiangsu, China.
| |
Collapse
|
5
|
Chen H, Huang M, Li J, Zhang S, Sun C, Luo W, Yu L. LncRNA APTR amplification serves as a potential glioma biomarker and promotes glioma progression via miR-6734-5p/ TCF7/LEF1 axis. Noncoding RNA Res 2025; 12:42-55. [PMID: 40103614 PMCID: PMC11914771 DOI: 10.1016/j.ncrna.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Background Alu-mediated p21 transcriptional regulator (APTR) overexpression is detected in different human cancers; however, few reports have investigated APTR gene amplification conditions. Furthermore, whether APTR amplification is related to glioma malignancy and the underlying mechanism remain unknown. Methods APTR amplification and expression levels in 153 glioma samples were analyzed using qPCR. Correlations between APTR and patient prognosis were evaluated using Kaplan-Meier survival and COX regression analyses. Both in vitro and in vivo phenotypic assays were performed to confirm the carcinogenic effects of APTR in glioblastoma (GBM) cells. RNA-sequencing and RNA immunoprecipitation and luciferase reporter assays were performed to confirm APTR as a competing endogenous RNA (ceRNA) and to identify the downstream axis of APTR. Results Our results suggest that APTR amplification and overexpression are novel independent diagnostic biomarkers for predicting poor prognosis in patients with gliomas. APTR knockdown significantly repressed the proliferation and invasion of GBM cells, both in vitro and in vivo. APTR was demonstrated to absorb miR-6734-5p and upregulate TCF7 and LEF1 expression. Taken together, these results suggest that APTR promotes the malignant phenotypes of GBM by inducing TCF7 and LEF1 expression. Conclusion We identified APTR as a novel prognostic biomarker in patients with gliomas and confirmed that APTR is a ceRNA that promotes glioma progression via the APTR/miR-6734-5p/TCF7/LEF1 axis.
Collapse
Affiliation(s)
- Heng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Mengzhen Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Jiayi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Shanshan Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System of Education Ministry, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
6
|
Liu Z, Han J, Su S, Zeng Q, Wu Z, Yuan J, Yang J. Histone lactylation facilitates MCM7 expression to maintain stemness and radio-resistance in hepatocellular carcinoma. Biochem Pharmacol 2025; 236:116887. [PMID: 40118288 DOI: 10.1016/j.bcp.2025.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Cancer stem cells (CSCs) play an essential role in tumor initiation and therapy resistance. Histone lactylation as a novel epigenetic modification could regulate the gene transcription process during tumor progression. Nevertheless, researches have not well examined its role in maintaining CSC properties. Our study identified Minichromosome maintenance complex component 7 (MCM7) as a candidate gene in Hepatocellular carcinoma (HCC) with diagnostic and prognostic values, and Real-time quantitative PCR (qRT-PCR), Western blot (WB), and Immunohistochemistry (IHC) assays ascertained its obviously higher expressions in HCC cells and tissues. Ectopic of MCM7 could increase the expression of CSC-related genes and enhance spheroid both in size and in number. Suppression of MCM7 could strengthen the efficacy of radiotherapy verified by Cell counting kit-8 (CCK-8) and colony formation assays. The subcutaneous xenograft model indicated that suppression of MCM7 could inhibit CSC properties and the efficacy of radiotherapy in vivo. Mechanistically, histone lactylation could facilitate MCM7 expression, and both messenger RNA (mRNA) and protein level of MCM7 expression presented an obvious decrease due to 2-DG (glycolysis inhibitor) treatment and an obvious increase due to Rotenone (glycolysis activator) treatment. Rescue experiments verified that histone lactylation was necessary for MCM7 to promote CSC properties and radio-resistance in HCC. Arsenic trioxide (ATO) targeting MCM7 could inhibit the CSC phenotypes and enhance the efficacy of radiotherapy in vivo and in vitro. Collectively, histone lactylation could transcriptionally activate MCM7 to accelerate proliferation and radio-resistance through enhancing CSC properties. ATO targeting MCM7 could inhibit CSCs phenotypes and synergistically increase the efficacy of radiation therapy.
Collapse
Affiliation(s)
- Zijian Liu
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaqi Han
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shitong Su
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiwen Zeng
- Institute of Organ Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingsheng Yuan
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Organ Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jian Yang
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Organ Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Song H, Sun X, Wang X, Xie T, Zheng Z, Ji Y, Cui Y. β-elemene Ameliorates Cisplatin Resistance of Gastric Cancer via Regulating Exosomal METTL3-m6A-ARF6 Axis. Cell Biochem Biophys 2025; 83:2047-2058. [PMID: 39602058 DOI: 10.1007/s12013-024-01615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
The medial overall survival is low in patients with gastric cancer (GC) at advanced stage, in which drug resistance plays an important role. β-elemene has been established as the suppressed role on GC cell proliferation, however, the concrete mechanism of it remains unclear in cisplatin (DDP)-resistance GC. Cell counting kit-8 (CCK8) assay was used to measure the half maximal inhibitory concentration (IC50) values of DDP in DDP-resistance GC cell lines. Cell apoptotic rates and invasive ability were tested by flow cytometry and transwell assay. Western blot and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) were utilized to detect the protein and mRNA levels of methyltransferase like-3 (METTL3) and ADP ribosylation factor 6 (ARF6). SRAMP websites and methylated RNA immunoprecipitation (MeRIP) assay were applied to predicted m6A sites and verified m6A levels of ARF6 respectively. RNA immunoprecipitation (RIP) was used to explore the interaction between these two molecules. Xenograft tumor models were constructed to demonstrate the effects of β-elemene in vivo. β-elemene improved drug sensitivity and curbed malignant cell activities of DDP-resistance GC cells in vitro. ARF6 was upregulated in DDP-resistance GC cells and tissues, and its overexpression could abrogate the effects on DDP-resistant GC cells mediated by β-elemene treatment. Intracellular and exosomal METLL3 expression were elevated in and from DDP-resistance GC cell lines. Exosomal METTL3 released from DDP-resistance GC cells could counteract the effects of β-elemene on DDP-resistance GC cells partly via regulating ARF6 expression in the m6A-dependent manner. β-elemene could suppress DDP-resistance tumor growth in vivo. In conclusion, β-elemene could repress tumor growth and drug resistance via exosomal METTL3-m6A-ARF6 axis.
Collapse
Affiliation(s)
- Huicong Song
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Xuefeng Sun
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Xiaohua Wang
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Tianhai Xie
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Zhihui Zheng
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Ying Ji
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Yanyan Cui
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China.
| |
Collapse
|
8
|
Dou S, Huo Y, Gao M, Li Q, Kou B, Chai M, Liu X. Patient-derived xenograft model: Applications and challenges in liver cancer. Chin Med J (Engl) 2025:00029330-990000000-01551. [PMID: 40387157 DOI: 10.1097/cm9.0000000000003480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Indexed: 05/20/2025] Open
Abstract
ABSTRACT Liver cancer is one of the most common malignant tumors worldwide. Currently, the available treatment methods cannot fully control its recurrence and mortality rate. Establishing appropriate animal models for liver cancer is crucial for developing new treatment technologies and strategies. The patient-derived xenograft (PDX) model preserves the tumor's microenvironment and heterogeneity, which makes it advantageous for biological research, drug evaluation, personalized medicine, and other purposes. This article reviews the development, preparation techniques, application fields, and challenges of PDX models in liver cancer, providing insights for the research and exploration of PDX models in diagnostic and therapeutic strategies of liver cancer.
Collapse
Affiliation(s)
- Shuangshuang Dou
- Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Cheng Y, Gong Y, Li X, Zeng F, Liu B, Chen W, Zhang F, Chen H, Zhu W, Li H, Zhou L, Wu T, Zhou W. A spreadable self-gelling hemostatic powder sensitizes CAR-NK cell therapy to prevent hepatocellular carcinoma recurrence postresection. J Nanobiotechnology 2025; 23:353. [PMID: 40380326 PMCID: PMC12082949 DOI: 10.1186/s12951-025-03424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/30/2025] [Indexed: 05/19/2025] Open
Abstract
Adoptive natural killer cell therapy (ANKCT) harbors great potential for combating postsurgical hepatocellular carcinoma (HCC) recurrence, but its efficacy is limited by tumor microenvironment (TME)-meditated repression on NK cell function and insufficient NK cell homing to tumor sites. Therefore, herein we develop a nanocomposite sprayable self-gelling powder enabling liver-localized codelivery of three FDA-approved drugs including calcitriol (Cal), gemcitabine (Gem), and tazemetostat (Taz) to address these challenges. This powder can be laparoscopically spread to liver wound sites, where it rapidly absorbs interfacial liquid to form a bulk adhesive pressure-resistant hydrogel in situ, implying its application potential in minimally surgery. Moreover, its application to liver resection bed significantly sensitizes allogenic NK and EpCAM chimeric antigen receptor modified-NK-92 (EpCAM-CAR-NK) cell infusion to prevent HCC recurrence in orthotopic Heap1-6 tumor-bearing and patient-derived tumor xenograft (PDX) HCC murine models. Additionally, this powder can allow for an effective hemostatic effect in rat and porcine models due to its powerful tissue adhesion-seal and erythrocyte-aggregating effects. Altogether, our newly developed hemostatic self-gelling powder can significantly sensitize ANKCT to combat HCC recurrence in a manner compatible with surgical treatment of HCC.
Collapse
Affiliation(s)
- Yusheng Cheng
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Department of Biotherapy, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China
| | - Yihang Gong
- Department of Hepatic Surgery and Liver Transplantation Center, Organ Transplantation Institute, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xin Li
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Department of Biotherapy, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China
| | - Fanxin Zeng
- Department of Hepatic Surgery and Liver Transplantation Center, Organ Transplantation Institute, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Bo Liu
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Department of Biotherapy, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China
| | - Wenjie Chen
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhang
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haofei Chen
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China
| | - Weixiong Zhu
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Hui Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Tiangen Wu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, PR China.
- Hubei Provincial Clinical Research Center for Minimally Invasive Diagnosis and Treatment of Hepatobiliary and Pancreatic Diseases, Wuhan, Hubei, 430071, PR China.
| | - Wence Zhou
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China.
- Department of General Surgery, Department of Biotherapy, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Province Precision Diagnosis and Treatment Engineering Research Center of Hepatobiliary Pancreatic Diseases, Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Wang X, Zhong W, Wang Q, Song P, Lin X, Li B, Yin Y, Yang C, Li M. Lysionotin promoted apoptosis of hepatocellular carcinoma cells via inducing autophagy. Discov Oncol 2025; 16:788. [PMID: 40377756 PMCID: PMC12084452 DOI: 10.1007/s12672-025-02503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/25/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma is a prevalent malignant tumor with a high mortality rate. Natural plants hold promise for its treatment, however, the mechanism of lysionotin induced apoptosis in liver cancer cells unclearly. This study aims to investigate the microenvironment alterations and the efficacy of lysionotin in liver cancer. METHODS Transmission electron microscopy, and laser confocal microscopy were employed to investigate the effect of lysionotin on autophagy in HCC cells. The molecular mechanism through which lysionotin induces autophagy and autophagy-induced apoptosis was ascertained by transcriptome sequencing, immunoblotting and Hoechst 33258 staining. RESULTS RNA sequencing analysis, electron microscopy and laser confocal microscopy revealed that lysionotin initiate autophagy in liver cancer cells. Immunoblotting indicated that lysionotin markedly enhances the activation of LC3-II in HCC cells, resulting in the activation of key effector molecules ATG12, Beclin-1 and the degradation of P62. Combined with autophagy inhibitors CQ and 3-MA significantly inhibited lysionotin-induced cell apoptosis. Immunoblotting and Hoechst staining disclosed that the activation of autophagy by lysionotin might be associated with the suppression of the mTOR-AKT signaling pathway. The treatment of mTOR inhibitor RAPA and activator 1485 demonstrated that inhibiting mTOR activation significantly augments the pro-apoptotic effect of lysionotin on liver cancer cells, while mTOR activator could rescue the effect of lysionotin on cells. CONCLUSIONS The findings suggest that the activation of autophagy by lysionotin may represent one of the pivotal mechanisms underlying its therapeutic efficacy against HCC and its synergistic enhancement of RAPA's antitumor effects.
Collapse
Affiliation(s)
- Xiaoxue Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Weiwei Zhong
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | | | - Peng Song
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Xia Lin
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Bohan Li
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Chunyan Yang
- School of Stomatology, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Minjing Li
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Chung SW, Kim JS, Choi WM, Choi J, Lee D, Shim JH, Lim YS, Lee HC, Kim KM. Synergistic Effects of Transarterial Chemoembolization and Lenvatinib on HIF-1α Ubiquitination and Prognosis Improvement in Hepatocellular Carcinoma. Clin Cancer Res 2025; 31:2046-2055. [PMID: 39992640 DOI: 10.1158/1078-0432.ccr-24-1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/09/2024] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
PURPOSE A recent trial has shown that adding transarterial chemoembolization (TACE) to lenvatinib therapy results in enhanced therapeutic efficacy in hepatocellular carcinoma (HCC). We aimed to assess the effectiveness of the lenvatinib and TACE combination in a real-world clinical context for managing HCC and to elucidate the molecular pathways involved. EXPERIMENTAL DESIGN This retrospective analysis included 199 patients diagnosed with HCC and having intrahepatic lesions between 2018 and 2021. The cohort was divided into those who received lenvatinib plus TACE (n = 62, combination group) and those who received lenvatinib monotherapy (n = 137, monotherapy group). To further explore the underlying mechanisms, Huh-7 cells were exposed to lenvatinib or a vehicle for 48 hours under normoxic or hypoxic conditions. RESULTS Propensity score-matched analysis revealed a significant improvement in both overall survival (adjusted HR, 0.38; 95% confidence interval, 0.24-0.59; P < 0.001) and progression-free survival (adjusted HR, 0.41; 95% confidence interval, 0.26-0.64; P < 0.001) in the combination group compared with the monotherapy group. In laboratory experiments, under hypoxic conditions, lenvatinib notably attenuated hypoxia-inducible factor-1α (HIF-1α) protein levels in Huh-7 cells without altering its mRNA levels. Intriguingly, lenvatinib facilitated the mouse double minute 2 homolog-mediated ubiquitination and subsequent degradation of HIF-1α. Additionally, cell viability assays confirmed a significant decrease in Huh-7 cell survival following lenvatinib treatment under hypoxic conditions. CONCLUSIONS The combination of lenvatinib and TACE significantly improved survival in patients with HCC. The mechanistic foundation seems to be the lenvatinib-triggered degradation of HIF-1α via the mouse double minute 2 homolog-dependent ubiquitination pathway, highlighting a potential therapeutic target in HCC treatment.
Collapse
Affiliation(s)
- Sung Won Chung
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jin Sun Kim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Won-Mook Choi
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jonggi Choi
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Danbi Lee
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ju Hyun Shim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Suk Lim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Han Chu Lee
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kang Mo Kim
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Zhao B, Zhou Y, Cheng N, Zheng X, Chen G, Qi X, Zhang X, Wang F, Zhuang Q, Assaraf YG, Liu X, Wang Y, Zeng Y. Targeted inhibition of PDGFRA with avapritinib, markedly enhances lenvatinib efficacy in hepatocellular carcinoma in vitro and in vivo: clinical implications. J Exp Clin Cancer Res 2025; 44:139. [PMID: 40336047 PMCID: PMC12057143 DOI: 10.1186/s13046-025-03386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/06/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Lenvatinib, a tyrosine kinase receptor inhibitor, has emerged as a frontline therapeutic strategy for the management of advanced hepatocellular carcinoma (HCC). However, the modest response rate observed with lenvatinib and the rapid emergence of chemoresistance highlight the urgent need to elucidate the underlying molecular mechanisms. Herein we aimed at identifying the molecular mechanisms underlying lenvatinib resistance in HCC and investigated the efficacy of targeted combination therapies to surmount this chemoresistance. METHODS We utilized CRISPR/Cas9 gene knockout screening combined with transcriptome sequencing of lenvatinib-resistant HCC cell lines to identify resistance-associated genes. PDGFRA overexpression was validated in human lenvatinib-resistant HCC cells. We further corroborated the in vitro and in vivo role of PDGFRA in lenvatinib resistance using a PDGFRA inhibitor, avapritinib, employing a mouse orthotopic HCC model, patient-derived organoids (PDO), and patient-derived xenografts (PDX). The association between PDGFRA expression and patient prognosis was also assessed. Mechanistic studies were conducted to elucidate the signaling pathways contributing to lenvatinib resistance mediated by PDGFRA. RESULTS PDGFRA overexpression was identified as a key determinant of lenvatinib-resistance in HCC cells. Consistently, ectopic PGDGFRA overexpression conferred lenvatinib resistance upon HCC cells. Treatment with the PDGFRA inhibitor avapritinib sensitized HCC cells to lenvatinib in mouse orthotopic HCC, PDO, and PDX models. Increased PDGFRA expression was correlated with poor prognosis in HCC patients. Mechanistic studies revealed that lenvatinib treatment or PDGFRA overexpression promoted HCC resistance through the PTEN/AKT/GSK-3β/β-catenin signaling pathway. CONCLUSIONS Our findings demonstrate that PDGFRA overexpression mediates lenvatinib resistance in HCC and that targeting PDGFRA with avapritinib, surmounts this resistance. Furthermore, the PTEN/AKT/GSK-3β/β-catenin pathway was implicated in lenvatinib resistance, providing a potential therapeutic strategy for HCC patients displaying lenvatinib resistance. Further clinical studies are warranted to validate these findings and to explore the clinical application of PDGFRA-targeted therapies in HCC treatment.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Animals
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Quinolines/pharmacology
- Quinolines/therapeutic use
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Mice
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Drug Resistance, Neoplasm
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction/drug effects
- Disease Models, Animal
Collapse
Affiliation(s)
- Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yang Zhou
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Niangmei Cheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xin Qi
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiangzhi Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China.
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
13
|
Guo Q, Qin H, Chen Z, Zhang W, Zheng L, Qin T. Key roles of ubiquitination in regulating critical regulators of cancer stem cell functionality. Genes Dis 2025; 12:101311. [PMID: 40034124 PMCID: PMC11875185 DOI: 10.1016/j.gendis.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
The ubiquitin (Ub) system, a ubiquitous presence across eukaryotes, plays a crucial role in the precise orchestration of diverse cellular protein processes. From steering cellular signaling pathways and orchestrating cell cycle progression to guiding receptor trafficking and modulating immune responses, this process plays a crucial role in regulating various biological functions. The dysregulation of Ub-mediated signaling pathways in prevalent cancers ushers in a spectrum of clinical outcomes ranging from tumorigenesis and metastasis to recurrence and drug resistance. Ubiquitination, a linchpin process mediated by Ub, assumes a central mantle in molding cellular signaling dynamics. It navigates transitions in biological cues and ultimately shapes the destiny of proteins. Recent years have witnessed an upsurge in the momentum surrounding the development of protein-based therapeutics aimed at targeting the Ub system under the sway of cancer stem cells. The article provides a comprehensive overview of the ongoing in-depth discussions regarding the regulation of the Ub system and its impact on the development of cancer stem cells. Amidst the tapestry of insights, the article delves into the expansive roles of E3 Ub ligases, deubiquitinases, and transcription factors entwined with cancer stem cells. Furthermore, the spotlight turns to the interplay with pivotal signaling pathways the Notch, Hedgehog, Wnt/β-catenin, and Hippo-YAP signaling pathways all play crucial roles in the regulation of cancer stem cells followed by the specific modulation of Ub-proteasome.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, Henan 450008, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| |
Collapse
|
14
|
Martinez-Marin D, Stroman GC, Fulton CJ, Pruitt K. Frizzled receptors: gatekeepers of Wnt signaling in development and disease. Front Cell Dev Biol 2025; 13:1599355. [PMID: 40376615 PMCID: PMC12078226 DOI: 10.3389/fcell.2025.1599355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/21/2025] [Indexed: 05/18/2025] Open
Abstract
Frizzled (FZD) receptors are a subset of G-protein-coupled receptors (GPCRs), the largest class of human cell surface receptors and a major target of FDA-approved drugs. Activated by Wnt ligands, FZDs regulate key cellular processes such as proliferation, differentiation, and polarity, positioning them at the intersection of developmental biology and disease, including cancer. Despite their significance, FZD signaling remains incompletely understood, particularly in distinguishing receptor-specific roles across canonical and non-canonical Wnt pathways. Challenges include defining ligand-receptor specificity, elucidating signal transduction mechanisms, and understanding the influence of post translational modifications and the cellular context. Structural dynamics, receptor trafficking, and non-canonical signaling contributions also remain areas of active investigation. Recent advances in structural biology, transcriptomics, and functional genomics are beginning to address these gaps, while emerging therapeutic approaches-such as small-molecule modulators and antibodies-highlight the potential of FZDs as drug targets. This review synthesizes current insights into FZD receptor biology, examines ongoing controversies, and outlines promising directions for future research and therapeutic development.
Collapse
Affiliation(s)
| | | | | | - Kevin Pruitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
15
|
He B, Hu Y, Wu Y, Wang C, Gao L, Gong C, Li Z, Gao N, Yang H, Xiao Y, Yang S. Helicobacter pylori CagA elevates FTO to induce gastric cancer progression via a "hit-and-run" paradigm. Cancer Commun (Lond) 2025; 45:608-631. [PMID: 39960839 PMCID: PMC12067399 DOI: 10.1002/cac2.70004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection contributes significantly to gastric cancer (GC) progression. The intrinsic mechanisms of H. pylori-host interactions and their role in promoting GC progression need further investigation. In this study, we explored the potential role of fat mass and obesity-associated protein (FTO) in mediating Cytotoxin-associated gene A (CagA)-induced GC progression. METHODS The effects of H. pylori infection on N6-methyladenosine (m6A) modification were evaluated in both human samples and GC cell lines. The function of FTO in the progression of GC was elucidated through in vitro and in vivo studies. A series of techniques, including methylated RNA immunoprecipitation sequencing, RNA sequencing, RNA binding protein immunoprecipitation, and chromatin immunoprecipitation assays, were utilized to investigate the mechanism by which FTO mediates the capacity of cagA-positive H. pylori to promote GC progression. Furthermore, the therapeutic potential of the FTO inhibitor meclofenamic acid (MA) in impeding GC progression was evaluated across GC cells, animal models, and human GC organoids. RESULTS Infection with cagA-positive H. pylori upregulated the expression of FTO, which was essential for CagA-mediated GC metastasis and significantly associated with a poor prognosis in GC patients. Mechanistically, CagA delivered by H. pylori enhanced FTO transcription via Jun proto-oncogene. Elevated FTO induced demethylation of m6A and inhibited the degradation of heparin-binding EGF-like growth factor (HBEGF), thereby facilitating the epithelial-mesenchymal transition (EMT) process in GC cells. Interestingly, eradication of H. pylori did not fully reverse the increases in FTO and HBEGF levels induced by cagA-positive H. pylori. However, treatment with a combination of antibiotics and MA substantially inhibited cagA-positive H. pylori-induced EMT and prevented GC metastasis. CONCLUSION Our study revealed that FTO mediates the "hit-and-run" mechanism of CagA-induced GC progression, which suggests that the therapeutic targeting of FTO could offer a promising approach to the prevention of CagA-induced cancer progression.
Collapse
Affiliation(s)
- Bing He
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Yiyang Hu
- Department of OncologyThe General Hospital of Western Theater CommandChengduSichuanP. R. China
| | - Yuyun Wu
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Chao Wang
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Limin Gao
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Chunli Gong
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Zhibin Li
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Nannan Gao
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Huan Yang
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Yufeng Xiao
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
| | - Shiming Yang
- Department of GastroenterologyXinqiao HospitalArmy Military Medical UniversityChongqingP. R. China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay LaboratoryChongqingP. R. China
| |
Collapse
|
16
|
Li X, Han M, Zhu H, Pan Y, Su C, Liu Y, Liao Z, Zhang B, Chen X. m 6A-Mediated TMCO3 Promotes Hepatocellular Carcinoma Progression by Facilitating the Membrane Translocation and Activation of AKT. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2504187. [PMID: 40285646 DOI: 10.1002/advs.202504187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Indexed: 04/29/2025]
Abstract
The transmembrane and coiled-coil domains 3 (TMCO3) are highly expressed in many tumors. However, the underlying mechanisms governing the way in which TMCO3 affects the progression of hepatocellular carcinoma (HCC) remain unclear. This study screens out the molecule TMCO3 with high N6-methyladenosine (m6A) modification level in tumor samples compared to the adjacent non-cancerous tissues of three pairs of HCC patients through Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq) and RNA sequencing (RNA-seq). Subsequently, the oncogenic effect of TMCO3 in HCC is verified through in vivo and in vitro experiments. AlkB Homolog 5 (ALKBH5), an m6A demethylase of TMCO3 is then screened out. The following experiments demonstrate that TMCO3 can activate AKT directly through the Phosphatidylinositol-3-Kinase (PI3K) pathway, thus promoting the progression of HCC. Meanwhile, the phosphorylation site on TMCO3: the 85th amino acid-serine, and mutation of this site can directly impair the activity and membrane translocation of AKT is found. Finally, the carcinogenic effect of TMCO3 is further elucidated in HCC through the orthotopic treatment model and the hydrodynamic tail vein injection treatment model. The findings can provide a potential target for targeted AKT treatment in patients with HCC and verify a possible prognostic marker in HCC.
Collapse
Affiliation(s)
- Xinxin Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Mengzhen Han
- Department of General Surgery, Ezhou Central Hospital, Ezhou, Hubei, 436099, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, 430030, China
| |
Collapse
|
17
|
Artika IM, Arianti R, Demény MÁ, Kristóf E. RNA modifications and their role in gene expression. Front Mol Biosci 2025; 12:1537861. [PMID: 40351534 PMCID: PMC12061695 DOI: 10.3389/fmolb.2025.1537861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Post-transcriptional RNA modifications have recently emerged as critical regulators of gene expression programs. Understanding normal tissue development and disease susceptibility requires knowledge of the various cellular mechanisms which control gene expression in multicellular organisms. Research into how different RNA modifications such as in N6-methyladenosine (m6A), inosine (I), 5-methylcytosine (m5C), pseudouridine (Ψ), 5-hydroxymethylcytosine (hm5C), N1-methyladenosine (m1A), N6,2'-O-dimethyladenosine (m6Am), 2'-O-methylation (Nm), N7-methylguanosine (m7G) etc. affect the expression of genes could be valuable. This review highlights the current understanding of RNA modification, methods used to study RNA modification, types of RNA modification, and molecular mechanisms underlying RNA modification. The role of RNA modification in modulating gene expression in both physiological and diseased states is discussed. The potential applications of RNA modification in therapeutic development are elucidated.
Collapse
Affiliation(s)
- I. Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Rini Arianti
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Universitas Muhammadiyah Bangka Belitung, Pangkalpinang, Indonesia
| | - Máté Á. Demény
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Kristóf
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Gan L, Kong Y, Shi H, Zhang C, Tian C, Chen H. METTL3 Promotes Cutaneous T-Cell Lymphoma Progression by Regulating ARHGEF12 Expression. Int J Mol Sci 2025; 26:3640. [PMID: 40332203 PMCID: PMC12027205 DOI: 10.3390/ijms26083640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 05/08/2025] Open
Abstract
Recent studies have identified N6-methyladenosine (m6A) RNA methylation as a key regulatory mechanism in tumor progression. This study aimed to elucidate the biological function and clinical relevance of the m6A methyltransferase METTL3 in cutaneous T-cell lymphoma (CTCL). Our findings demonstrated that METTL3 expression is upregulated in CTCL, and its knockdown suppresses CTCL progression. Mechanistically, the downregulation of METTL3-mediated m6A modification on ARHGEF12 mRNA accelerated its degradation, a process that is closely associated with tumor behaviors. These results suggest that METTL3 may serve as a potential therapeutic target in CTCL.
Collapse
MESH Headings
- Humans
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Gene Expression Regulation, Neoplastic
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/metabolism
- Cell Line, Tumor
- Disease Progression
- Rho Guanine Nucleotide Exchange Factors/genetics
- Rho Guanine Nucleotide Exchange Factors/metabolism
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Cell Proliferation
- Skin Neoplasms/pathology
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Animals
- Female
- Male
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Chen
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; (L.G.); (Y.K.); (H.S.); (C.Z.); (C.T.)
| |
Collapse
|
19
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Zhang W, Hong X, Xiao Y, Wang H, Zeng X. Sorafenib resistance and therapeutic strategies in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2025; 1880:189310. [PMID: 40187502 DOI: 10.1016/j.bbcan.2025.189310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent and lethal cancers globally. While surgical resection and liver transplantation offer potential cures for early-stage HCC, the majority of patients are diagnosed at advanced stages where such interventions are not viable. Sorafenib, a multi-target kinase inhibitor, has been a cornerstone in the treatment of advanced HCC since its approval in 2007. Despite its significant clinical impact, less than half of the treated patients derive long-term benefits due to the emergence of resistance and associated side effects. This review focuses on the role of sorafenib, an FDA-approved multi-target kinase inhibitor, in treating advanced HCC, discusses the mechanisms underlying its therapeutic effects and associated resistance, and explores additional therapeutic strategies being investigated to improve patient outcomes.
Collapse
Affiliation(s)
- Weijing Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xuechuan Hong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaodong Zeng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
| |
Collapse
|
21
|
Sun T, Geng S, Ru Q, Zheng Y. METTL3 and HERC4: Elevated Expression and Impact on Hepatocellular Carcinoma Progression. Cancer Biother Radiopharm 2025; 40:173-184. [PMID: 39611657 DOI: 10.1089/cbr.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Background: Methyltransferase-like 3 (METTL3) and HECT and RLD domain containing E3 ubiquitin protein ligase 4 (HERC4) have been studied in the field of oncology; however, their roles and interaction in hepatocellular carcinoma (HCC) await elucidation. Methods: Initially, METTL3 and HERC4 expressions in normal and HCC samples were predicted employing the UALCAN database, and the targeting relationship between these two was explored via coimmunoprecipitation assay. Following the quantification on N6-methyladenosine (m6A) enrichment, the localization of METTL3 and HERC4 on HCC cells was visualized via immunofluorescence assay. The effects of METTL3 and HERC4 on HCC cells proliferation and migration were determined in vitro assays. METTL3 and HERC4 expressions were quantified via quantitative polymerase chain reaction, and those of metastasis-related proteins N-cadherin and vimentin were calculated with immunoblotting assay. Furthermore, the levels of angiogenic factors such as vascular endothelial growth factor and basic fibroblast growth factor were measured by enzyme-linked immunosorbent assay. Results: METTL3 and HERC4 expressed highly in HCC and their expressions were positively correlated with tumor grade. METTL3 overexpression enhanced the expression of HERC4 and promoted the proliferation and migration abilities of HCC cells. Specifically, METTL3 overexpression increased vimentin and N-cadherin expressions, while its silencing did conversely. Besides, HERC4 overexpression reversed the effects of METTL3 silencing on the proliferation and migration as well as the levels of angiogenic factors in HCC cells. Conclusion: This study reveals the upregulation of METTL3 and HERC4 expression in HCC and their role in HCC by enhancing the proliferation, migration, and angiogenesis potential of HCC cells.
Collapse
Affiliation(s)
- Tao Sun
- Department of Infectious Disease, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiyu Geng
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingjing Ru
- Department of Infectious Disease, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Zheng
- Department of Infectious Disease, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
22
|
Yi N, Zhang L, Huang X, Ma J, Gao J. Lenvatinib-activated NDUFA4L2/IL33/PADI4 pathway induces neutrophil extracellular traps that inhibit cuproptosis in hepatocellular carcinoma. Cell Oncol (Dordr) 2025; 48:487-504. [PMID: 39585643 PMCID: PMC11996955 DOI: 10.1007/s13402-024-01013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Lenvatinib is a potent first-line therapy for patients with hepatocellular carcinoma (HCC), but it also increased the number of neutrophils in HCC tumor microenvironment. METHODS CitH3, MPO-DNA, elastase and MPO activity were measured for assessing neutrophil extracellular traps (NETs) in vivo and in vitro. Cell cuproptosis was assessed by measurement of copper content, FDX1, and pyruvate. The functions of lenvatinib, DNase I, interleukin 33 (IL33) neutralizing antibody and GPX4 in tumor growth were explored in mice. RESULTS Lenvatinib induced NETs in the HCC tumor microenvironment via HCC cells, but not through the direct stimulation of neutrophils. In addition, NET clearance by DNase I improves the efficacy of lenvatinib therapy in HCC mouse models. Mechanistically, lenvatinib promoted the expression and secretion of IL33 by HCC cells that triggered NET formation. Moreover, IL33 knockdown in Hepa1-6 cells improved lenvatinib efficacy in Hepa1-6-bearing HCC model mice and reduced NET formation in the tumor microenvironment. Subsequently, lenvatinib increased IL33 production by increasing the NDUFA4L2 expression in HCC cells. Furthermore, we found that IL33 triggered NET formation in neutrophils by increasing the protein expression of PADI4 via the Akt/mTOR signaling pathway. Rapamycin inhibition of mTOR reduced PADI4 expression and NET formation. Consistently, PADI4 inhibition by the selective PAD4 inhibitor GSK484 hydrochloride (GSK484) improved lenvatinib response to HCC therapy. Importantly, NETs contribute to lenvatinib resistance by inhibiting cuproptosis, but not apoptosis, pyroptosis, or ferroptosis in HCC cells. Treatment with GSK484 reversed the inhibitory effects of NETs on cuproptosis and sensitized the HCC cells to lenvatinib. CONCLUSIONS Our study revealed that lenvatinib-induced NETs inhibited the cuproptosis of HCC cells, suggesting that targeting the IL33/PADI4/NET axis represents a promising therapeutic strategy for ameliorating lenvatinib resistance in HCC.
Collapse
Affiliation(s)
- Nan Yi
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China
| | - Lingyun Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiangbo Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China
| | - Jilei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China.
| | - Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
23
|
He X, Li Y, Li J, Li Y, Chen S, Yan X, Xie Z, Du J, Chen G, Song J, Mei Q. HDAC2-Mediated METTL3 Delactylation Promotes DNA Damage Repair and Chemotherapy Resistance in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413121. [PMID: 39950833 PMCID: PMC11984901 DOI: 10.1002/advs.202413121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Indexed: 04/12/2025]
Abstract
The current treatment of triple-negative breast cancer (TNBC) is still primarily based on platinum-based chemotherapy. However, TNBC cells frequently develop resistance to platinum and experience relapse after drug withdrawal. It is crucial to specifically target and eliminate cisplatin-tolerant cells after platinum administration. Here, it is reported that upregulated N 6-methyladenosine (m6A) modification drives the development of resistance in TNBC cells during cisplatin treatment. Mechanistically, histone deacetylase 2 (HDAC2) mediates delactylation of methyltransferase-like 3 (METTL3), facilitating METTL3 interaction with Wilms'-tumor-1-associated protein and subsequently increasing m6A of transcript-associated DNA damage repair. This ultimately promotes cell survival under cisplatin. Furthermore, pharmacological inhibition of HDAC2 using Tucidinostat can enhance the sensitivity of TNBC cells to cisplatin therapy. This study not only elucidates the biological function of lactylated METTL3 in tumor cells but also highlights its negative regulatory effect on cisplatin resistance. Additionally, it underscores the nonclassical functional mechanism of Tucidinostat as a HDAC inhibitor for improving the efficacy of cisplatin against TNBC.
Collapse
Affiliation(s)
- Xiaoniu He
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
| | - Yuanpei Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jian Li
- Institute of Molecular Medicine and Experimental ImmunologyUniversity Clinic of Rheinische Friedrich‐Wilhelms‐University53127BonnGermany
| | - Yu Li
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Sijie Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Xia Yan
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
| | - Zhangrong Xie
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Jiangfeng Du
- Department of Medical ImagingShanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Guoan Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhen518055China
| | - Jianbo Song
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
| | - Qi Mei
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
24
|
Jiang X, Ge X, Huang Y, Xie F, Chen C, Wang Z, Tao W, Zeng S, Lv L, Zhan Y, Bao L. Drug resistance in TKI therapy for hepatocellular carcinoma: Mechanisms and strategies. Cancer Lett 2025; 613:217472. [PMID: 39832650 DOI: 10.1016/j.canlet.2025.217472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Tyrosine kinase inhibitors (TKIs) are such as sorafenib the first-line therapeutic drugs for patients with advanced hepatocellular carcinoma. However, patients with TKI-resistant advanced liver cancer are insensitive to TKI treatment, resulting in limited survival benefits. This paper comprehensively reviewed the mechanisms underlying TKI resistance in hepatocytes, investigating activation of tumor signaling pathways, epigenetic regulation, tumor microenvironment, and metabolic reprogramming. Based on resistance mechanisms, it also reviews preclinical and clinical studies of drug resistance strategies and summarizes targeted therapy combined with immunotherapy currently in investigational clinical trials. Understanding the interactions and clinical studies of these resistance mechanisms offers new hope for improving and prolonging patient survival.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Xiaoying Ge
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Yueying Huang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Fangyuan Xie
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Chun Chen
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Zijun Wang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Wanru Tao
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Sailiang Zeng
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Lei Lv
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Yangyang Zhan
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| | - Leilei Bao
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.
| |
Collapse
|
25
|
Pu X, Zhang C, Jin J, Jin Y, Ren J, Zhou S, Patel H, Chen J, Wu B, Chen L, Qian H, Lin T. Phase separation of EEF1E1 promotes tumor stemness via PTEN/AKT-mediated DNA repair in hepatocellular carcinoma. Cancer Lett 2025; 613:217508. [PMID: 39884379 DOI: 10.1016/j.canlet.2025.217508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
This study aimed to investigate the associations of liquid-liquid phase separation (LLPS) and tumor stemness in hepatocellular carcinomas (HCC). LLPS-related genes were extracted from DrLLPS, LLPSDB and PhaSepDB databases. Stemness index (mRNAsi) was calculated based on the data from TCGA and Progenitor Cell Biology Consortium. Through some series of bioinformatics methods, we first found that stemness index mRNAsi was associated with worse survival outcomes, immune infiltration and therapy sensitivity in HCC. G2M checkpoint and DNA repair pathways were significantly activated with high mRNAsi. Totally, 71 differentially expressed LLPS genes in HCC were correlated with mRNAsi, and a mRNAsi-associated LLPS gene signature (KPNA2, EEF1E1 and ATIC) was identified to predict prognosis for HCC patients. mRNAsi-associated LLPS genes contributed to cluster HCC patients into four molecular clusters that markedly differed on survival, immune infiltration and therapy sensitivity. Further in vivo and in vitro experiments showed that EEF1E1 was highly expressed in HepG2 and HCCLM3 cells, and EEF1E1 silencing observably inhibited tumor cell growth, liver cancer stem cells (CSCs) markers (CD133, EpCAM and SOX2) expression, enhanced DNA damage marker γH2AX expression by activating PTEN/AKT pathway. EEF1E1 could undergo LLPS condensates, and roles of EEF1E1 on tumor cells were partly reversed after inhibiting LLPS using 1, 6-hexanediol. In conclusion, EEF1E1 was identified as a phase separation protein and involves in tumor stemness and DNA damage repair in HCC. EEF1E1 and its LLPS condensate may be novel targets to elaborate the underlying mechanisms of CSCs propagation in HCC.
Collapse
Affiliation(s)
- Xiaofan Pu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Chaolei Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Junbin Jin
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Yifeng Jin
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Jianghao Ren
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Senhao Zhou
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY 11439, USA
| | - Jingyun Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Bicheng Wu
- The First School of Medicine, School of Information and Engieering, Wenzhou Medical University, Wenzhou, 325000, China
| | - Leyi Chen
- School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Haoran Qian
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Tianyu Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
26
|
Wen J, Wu X, Shu Z, Wu D, Yin Z, Chen M, Luo K, Liu K, Shen Y, Le Y, Shu Q. Clusterin-mediated polarization of M2 macrophages: a mechanism of temozolomide resistance in glioblastoma stem cells. Stem Cell Res Ther 2025; 16:146. [PMID: 40128761 PMCID: PMC11934612 DOI: 10.1186/s13287-025-04247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Glioblastoma remains one of the most lethal malignancies, largely due to its resistance to standard chemotherapy such as temozolomide. This study investigates a novel resistance mechanism involving glioblastoma stem cells (GSCs) and the polarization of M2-type macrophages, mediated by the extracellular vesicle (EV)-based transfer of Clusterin. Using 6-week-old male CD34+ humanized huHSC-(M-NSG) mice (NM-NSG-017) and glioblastoma cell lines (T98G and U251), we demonstrated that GSC-derived EVs enriched with Clusterin induce M2 macrophage polarization, thereby enhancing temozolomide resistance in glioblastoma cells. Single-cell and transcriptome sequencing revealed close interactions between GSCs and M2 macrophages, highlighting Clusterin as a key mediator. Our findings indicate that Clusterin-rich EVs from GSCs drive glioblastoma cell proliferation and resistance to temozolomide by modulating macrophage phenotypes. Targeting this pathway could potentially reverse resistance mechanisms, offering a promising therapeutic approach for glioblastoma. This study not only sheds light on a critical pathway underpinning glioblastoma resistance but also lays the groundwork for developing therapies targeting the tumor microenvironment. Our results suggest a paradigm shift in understanding glioblastoma resistance, emphasizing the therapeutic potential of disrupting EV-mediated communication in the tumor microenvironment.
Collapse
Affiliation(s)
- Jianping Wen
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China.
| | - Xia Wu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Zhicheng Shu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Dongxu Wu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Zonghua Yin
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Minglong Chen
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Kun Luo
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Kebo Liu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Yulong Shen
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Yi Le
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Qingxia Shu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China.
| |
Collapse
|
27
|
Cui B, Tu S, Li H, Zeng Z, Xiao R, Guo J, Liang X, Liu C, Pan L, Chen W, Ge M, Zhong X, Ye L, Chen H, Zhang Q, Xu Y. METTL3 knockout accelerates hepatocarcinogenesis via inhibiting endoplasmic reticulum stress response. FEBS Open Bio 2025. [PMID: 40103332 DOI: 10.1002/2211-5463.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common causes of cancer-related deaths worldwide. Previous studies showed that N6-methyladenosine (m6A), the most abundant chemical modification in eukaryotic RNAs, is implicated in HCC progression. Using liver-specific conditional knockout mice, we found that the loss of METTL3, the core catalytic subunit of m6A methyltransferase, significantly promoted hepatic tumor initiation under various oncogenic challenges, contrary to the previously reported oncogenic role of METTL3 in liver cancer cell lines or xenograft models. Mechanistically, we hypothesized that METTL3 deficiency accelerated HCC initiation by inhibiting m6A deposition on MANF transcripts, impairing nuclear export and thus MANF protein levels, which led to insufficient endoplasmic reticulum (ER) stress response pathway activation. Our findings suggest a tumor-suppressive role for METTL3 in the early stages of HCC, emphasizing the importance of understanding the dynamic role of epigenetic regulation in tumorigenesis and targeted therapy.
Collapse
Affiliation(s)
- Bo Cui
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Silin Tu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haibo Li
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhancheng Zeng
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruiqi Xiao
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Guo
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqi Liang
- Cell-Gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijie Pan
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-Gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mian Ge
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofen Zhong
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaxin Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-Gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Chen T, Ye W, Gao S, Li Y, Luan J, Lv X, Wang S. Emerging importance of m6A modification in liver cancer and its potential therapeutic role. Biochim Biophys Acta Rev Cancer 2025; 1880:189299. [PMID: 40088993 DOI: 10.1016/j.bbcan.2025.189299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
Liver cancer refers to malignant tumors that form in the liver and is usually divided into several types, the most common of which is hepatocellular carcinoma (HCC), which originates in liver cells. Other rare types of liver cancer include intrahepatic cholangiocarcinoma (iCCA). m6A modification is a chemical modification of RNA that usually manifests as the addition of a methyl group to adenine in the RNA molecule to form N6-methyladenosine. This modification exerts a critical role in various biological processes by regulating the metabolism of RNA, affecting gene expression. Recent studies have shown that m6A modification is closely related to the occurrence and development of liver cancer, and m6A regulators can further participate in the pathogenesis of liver cancer by regulating the expression of key genes and the function of specific cells. In this review, we provided an overview of the latest advances in m6A modification in liver cancer research and explored in detail the specific functions of different m6A regulators. Meanwhile, we deeply analyzed the mechanisms and roles of m6A modification in liver cancer, aiming to provide novel insights and references for the search for potential therapeutic targets. Finally, we discussed the prospects and challenges of targeting m6A regulators in liver cancer therapy.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
29
|
Chen W, Zhang J, Ma W, Liu N, Wu T. METTL3-Mediated m6A Modification Regulates the Polycomb Repressive Complex 1 Components BMI1 and RNF2 in Hepatocellular Carcinoma Cells. Mol Cancer Res 2025; 23:190-201. [PMID: 39625677 PMCID: PMC11873720 DOI: 10.1158/1541-7786.mcr-24-0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/15/2024] [Accepted: 11/27/2024] [Indexed: 03/04/2025]
Abstract
Methyltransferase-like 3 (METTL3) is a primary RNA methyltransferase that catalyzes N6-methyladenosine (m6A) modification. The current study aims to further delineate the effect and mechanism of METTL3 in hepatocellular carcinoma (HCC). By using a murine model of hepatocellular cancer development induced via hydrodynamic tail vein injection, we showed that METTL3 enhanced HCC development. In cultured human HCC cell lines (Huh7 and PLC/PRF/5), we observed that stable knockdown of METTL3 by short hairpin RNA significantly decreased tumor cell proliferation, colony formation, and invasion, in vitro. When Huh7 and PLC/PRF/5 cells with short hairpin RNA knockdown of METTL3 were inoculated into the livers of SCID mice, we found that METTL3 knockdown significantly inhibited the growth of HCC xenograft tumors. These findings establish METTL3 as an important oncogene in HCC. Through m6A sequencing, RNA sequencing, and subsequent validation studies, we identified BMI1 and RNF2, two key components of the polycomb repressive complex 1, as direct downstream targets of METTL3-mediated m6A modification in HCC cells. Our data indicated that METTL3 catalyzed m6A modification of BMI1 and RNF2 mRNAs which led to increased mRNA stability via the m6A reader proteins IGF2BP1/2/3. Furthermore, we showed that the METTL3 inhibitor, STM2457, significantly inhibited HCC cell growth in vitro and in mice. Collectively, this study provides novel evidence that METTL3 promotes HCC development and progression through m6A modification of BMI1 and RNF2. Our findings suggest that the METTL3-m6A-BMI1/RNF2 signaling axis may represent a new therapeutic target for the treatment of HCC. Implications: The METTL3-m6A-BMI1/RNF2 signaling axis promotes HCC development and progression.
Collapse
Affiliation(s)
- Weina Chen
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jinqiang Zhang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Nianli Liu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
30
|
Jin X, Lv Y, Bie F, Duan J, Ma C, Dai M, Chen J, Lu L, Xu S, Zhou J, Li S, Bi J, Wang F, Xie D, Cai M. METTL3 confers oxaliplatin resistance through the activation of G6PD-enhanced pentose phosphate pathway in hepatocellular carcinoma. Cell Death Differ 2025; 32:466-479. [PMID: 39472692 PMCID: PMC11894169 DOI: 10.1038/s41418-024-01406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 03/12/2025] Open
Abstract
Oxaliplatin-based therapeutics is a widely used treatment approach for hepatocellular carcinoma (HCC) patients; however, drug resistance poses a significant clinical challenge. Epigenetic modifications have been implicated in the development of drug resistance. In our study, employing siRNA library screening, we identified that silencing the m6A writer METTL3 significantly enhanced the sensitivity to oxaliplatin in both in vivo and in vitro HCC models. Further investigations through combined RNA-seq and non-targeted metabolomics analysis revealed that silencing METTL3 impeded the pentose phosphate pathway (PPP), leading to a reduction in NADPH and nucleotide precursors. This disruption induced DNA damage, decreased DNA synthesis, and ultimately resulted in cell cycle arrest. Mechanistically, METTL3 was found to modify E3 ligase TRIM21 near the 3'UTR with N6-methyladenosine, leading to reduced RNA stability upon recognition by YTHDF2. TRIM21, in turn, facilitated the degradation of the rate-limiting enzyme of PPP, G6PD, through the ubiquitination-proteasome pathway. Importantly, high expression of METTL3 was significantly associated with adverse prognosis and oxaliplatin resistance in HCC patients. Notably, treatment with the specific METTL3 inhibitor, STM2457, significantly improved the efficacy of oxaliplatin. These findings underscore the critical role of the METTL3/TRIM21/G6PD axis in driving oxaliplatin resistance and present a promising strategy to overcome chemoresistance in HCC.
Collapse
Affiliation(s)
- Xiaohan Jin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
- State Key Laboratory of Respiratory Disease, Institute of Pulmonary Diseases, Department of Oncology, Guangzhou Chest Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Yongrui Lv
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Fengjie Bie
- Breast Disease Specialist Hospital of Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Jinling Duan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Chao Ma
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Miaomiao Dai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jiewei Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Lianghe Lu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuidan Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jie Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Si Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jiong Bi
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengwei Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| | - Muyan Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| |
Collapse
|
31
|
Tang C, Tang C, Zhu X, Wang S, Yang Y, Miao Y, Zhao X, Jia L, Yang J, Su Y, Wang L, Wu C. Loss of AXIN1 regulates response to lenvatinib through a WNT/KDM5B/p15 signalling axis in hepatocellular carcinoma. Br J Pharmacol 2025; 182:1394-1409. [PMID: 39653061 DOI: 10.1111/bph.17413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND AND PURPOSE As a highly heterogeneous cancer, hepatocellular carcinoma (HCC) shows different response rates to the multi-kinase inhibitor lenvatinib. Thus, it is important to explore genetic biomarkers for precision lenvatinib therapy in HCC. EXPERIMENTAL APPROACH The effect and mechanism of AXIN1 mutation on HCC were revealed by cell proliferation assay, long-term clone formation assay, sphere formation assay and small molecule inhibitor library screening. A new therapeutic strategy targeting HCC with AXIN1 mutation was evaluated in humanized models (patient-derived xenograft [PDX] and patient-derived organoid [PDO]). KEY RESULTS Based on The Cancer Genome Atlas (TCGA) data, we screened 6 most frequently lost tumour suppressor genes in HCC (TP53, ARID1A, AXIN1, CDKN2A, ARID2 and PTEN) and identified AXIN1 as the most crucial gene for lenvatinib sensitivity. Further study showed that AXIN1-knockout HCC cells had a more malignant phenotype and lower sensitivity to lenvatinib in vitro and in vivo. Mechanistically, the WNT pathway and its target gene c-Myc were activated when AXIN1 was missing, and the expression of tumour suppressor p15 was inhibited by transcription co-repressors c-Myc and Miz-1, resulting in the exacerbation of the resistant phenotype. Screening of a library of epigenetic-related enzyme inhibitors showed that a KDM5B inhibitor up-regulated p15 expression, leading to increased sensitivity to lenvatinib in vitro and in vivo. CONCLUSION AND IMPLICATIONS AXIN1-deficient patients have a lower response to lenvatinib, which may be associated with suppression of p15 mediated by WNT pathway activation. KDM5B inhibitors can restore p15 levels, resulting in efficient killing of resistant cells in HCC.
Collapse
MESH Headings
- Xenograft Model Antitumor Assays
- Organoids
- Tumor Cells, Cultured
- Primary Cell Culture
- Axin Protein/genetics
- Axin Protein/metabolism
- Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors
- Jumonji Domain-Containing Histone Demethylases/metabolism
- Wnt Proteins/metabolism
- Cyclin-Dependent Kinase Inhibitor p15/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Precision Medicine/methods
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Humans
- Animals
- Mice
- Genes, Tumor Suppressor
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic/drug effects
- Male
- Mice, Inbred BALB C
- RNA-Seq
- Loss of Function Mutation
- Down-Regulation
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Drug Synergism
- Adult
- Middle Aged
Collapse
Affiliation(s)
- Chengfang Tang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Chu Tang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Xuanchi Zhu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Simeng Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Yuan Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Yu Miao
- Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoyao Zhao
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Lina Jia
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Jingyu Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Su
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lihui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| | - Chunfu Wu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, China
| |
Collapse
|
32
|
Xu J, Liu Y. Nanomaterials for liver cancer targeting: research progress and future prospects. Front Immunol 2025; 16:1496498. [PMID: 40092984 PMCID: PMC11906451 DOI: 10.3389/fimmu.2025.1496498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/07/2025] [Indexed: 03/19/2025] Open
Abstract
The incidence and mortality rates of liver cancer in China remain elevated. Although early-stage liver cancer is amenable to surgical resection, a significant proportion of patients are diagnosed at advanced stages. Currently, in addition to surgical resection for hepatocellular carcinoma, the primary treatment modalities predominantly include chemotherapy. The widespread use of chemotherapy, which non-selectively targets both malignant and healthy cells, often results in substantial immunosuppression. Simultaneously, the accumulation of chemotherapeutic agents can readily induce drug resistance upon reaching the physiological threshold, thereby diminishing the efficacy of these treatments. Besides chemotherapy, there exist targeted therapy, immunotherapy and other therapeutic approaches. Nevertheless, the development of drug resistance remains an inevitable challenge. To address these challenges, we turn to nanomedicine, an emerging and widely utilized discipline that significantly influences medical imaging, antimicrobial strategies, drug delivery systems, and other related areas. Stable and safe nanomaterials serve as effective carriers for delivering anticancer drugs. They enhance the precision of drug targeting, improve bioavailability, and minimize damage to healthy cells. This review focuses on common nanomaterial carriers used in hepatocellular carcinoma (HCC) treatment over the past five years. The following is a summary of the three drugs: Sorafenib, Gefitinib, and lenvatinib. Each drug employs distinct nanomaterial delivery systems, which result in varying levels of bioavailability, drug release rates, and therapeutic efficacy.
Collapse
Affiliation(s)
| | - Yefu Liu
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Dalian University of
Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
33
|
Easwaran VB, Pai KMS, Pai KSR. Mesenchymal Stem Cell-Derived Exosomes in Cancer Resistance Against Therapeutics. Cancers (Basel) 2025; 17:831. [PMID: 40075675 PMCID: PMC11898417 DOI: 10.3390/cancers17050831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are specialized cells that can differentiate into various types of cells. MSCs can be utilized to treat cancer. However, a MSC is considered a double-edged sword, because it can promote tumor progression and support cancer cell growth. Likewise, MSC-derived exosomes (MSC-Exos) carry various intracellular materials and transfer them to other cells. MSC-Exos could also cause tumor progression, including brain cancer, breast cancer, hepatic cancer, lung cancer, and colorectal cancer, and develop resistance against therapies, mainly chemotherapy, radiotherapy, and immunotherapy. An MSC-Exo promotes tumor development and causes drug resistance in various cancer types. The mechanisms involved in cancer drug resistance vary depending on the cancer cell heterogeneity and complexity. In this article, we have explained the various biomarkers and mechanisms involved in the tumor and resistance development through MSC-Exos in different cancer types.
Collapse
Affiliation(s)
- Vignesh Balaji Easwaran
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - K Maya S Pai
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - K. Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| |
Collapse
|
34
|
Chen X, Song X, Zheng X, Qian T, Zhang B, Wu L, Lian Q, Chen J, Luo Q, Xu W, Peng L, Xie C. Nucleolar NOL9 regulated by DNA methylation promotes hepatocellular carcinoma growth through activation of Wnt/β-catenin signaling pathway. Cell Death Dis 2025; 16:100. [PMID: 39955289 PMCID: PMC11830072 DOI: 10.1038/s41419-025-07393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Ribosome biogenesis (RiboSis) and ribosomal stress are critical in tumor progression, positioning RiboSis as a promising therapeutic target for cancer treatment and for overcoming drug resistance. In this study, we examined the role of RiboSis in the progression from hepatitis B virus (HBV) infection to HBV-related hepatocellular carcinoma (HCC), focusing specifically on nucleolar protein 9 (NOL9) and its influence on HCC pathogenesis and therapeutic response. Our findings showed that NOL9 was significantly upregulated in HCC tissues, correlating with larger tumor sizes and more advanced pathological grades. High levels of NOL9 expression were associated with unfavorable prognosis in both the TCGA-LIHC and our HCC cohorts. Functional assays indicated that NOL9 regulated HCC cell proliferation and apoptosis; specifically, NOL9 knockdown inhibited cell proliferation and promoted apoptosis, while overexpression enhanced these processes. In vivo studies confirmed that NOL9 depletion reduced tumor growth. Mechanistically, NOL9 expression was regulated by DNA methylation and the transcription factor ZNF384. Our DNA methylation analysis revealed an inverse correlation between NOL9 expression and methylation at specific CpG sites, implicating DNMT1 in its epigenetic regulation. Additionally, NOL9-mediated cell proliferation was dependent on activation of the Wnt/β-catenin signaling pathway. This study highlights the multifaceted role of NOL9 in HCC pathogenesis, underscoring its potential as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xiyao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xin Song
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xingrong Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tinglin Qian
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Boxiang Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lina Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qinghai Lian
- Department of Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jia Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qiumin Luo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenxiong Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
35
|
Shi Z, Hu C, Liu J, Cheng W, Chen X, Liu X, Bao Y, Tian H, Yu B, Gao F, Ye F, Jin X, Sun C, Li Q. Single-Cell Sequencing Reveals the Role of Radiation-Induced Stemness-Responsive Cancer Cells in the Development of Radioresistance. Int J Mol Sci 2025; 26:1433. [PMID: 40003899 PMCID: PMC11855645 DOI: 10.3390/ijms26041433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Increased stemness of cancer cells exacerbates radioresistance, thereby greatly limiting the efficacy of radiotherapy. In order to study the changes in cancer cell stemness during radiotherapy, we established a radioresistance model of human non-small cell lung cancer A549 cells and obtained A549 radioresistant cells (A549-RR). We sampled the cells at different time points during the modeling process and investigated the heterogeneity of each group of cells using single-cell sequencing. Cells in the early stages of fractionated irradiation were found to be significantly up-regulated in stemness, and a subpopulation of cells producing this response was screened and referred to as "radiation-induced stemness-responsive cancer cells". They were undergoing stemness response, energy metabolism reprogramming, and progressively differentiating into cells with more diverse and malignant phenotypes in order to attenuate the killing effect of radiation. Furthermore, we demonstrated that such responses might be driven by the activation of the EGFR-Hippo signaling pathway axis, which also plays a crucial role in the development of radioresistance. Our study reveals the dynamic evolution of cell subpopulation in cancer cells during fractionated radiotherapy; the early stage of irradiation can determine the destiny of the radiation-induced stemness-responsive cancer cells. The activation of stemness-like phenotypes during the development of radioresistance is not the result of dose accumulation but occurs during the early stage of radiotherapy with relatively low-dose irradiation. The degree of the radiation-induced stemness response of cancer cells mediated by the EGFR-Hippo signaling pathway might be a potential predictor of the efficacy of radiotherapy and the development of radioresistance.
Collapse
Affiliation(s)
- Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- College of Biopharmaceutical and Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiadi Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wei Cheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaohua Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yanyu Bao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haidong Tian
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Feifei Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Fei Ye
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
36
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
37
|
Fu CL, Zhao ZW, Zhang QN. The crosstalk between cellular survival pressures and N6-methyladenosine modification in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2025; 24:67-75. [PMID: 39155161 DOI: 10.1016/j.hbpd.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Within the tumor microenvironment, survival pressures are prevalent with potent drivers of tumor progression, angiogenesis, and therapeutic resistance. N6-methyladenosine (m6A) methylation has been recognized as a critical post-transcriptional mechanism regulating various aspects of mRNA metabolism. Understanding the intricate interplay between survival pressures and m6A modification provides new insights into the molecular mechanisms underlying hepatocellular carcinoma (HCC) progression and highlights the potential for targeting the survival pressures-m6A axis in HCC diagnosis and treatment. DATA SOURCES A literature search was conducted in PubMed, MEDLINE, and Web of Science for relevant articles published up to April 2024. The keywords used for the search included hepatocellular carcinoma, cellular survival, survival pressure, N6-methyladenosine, tumor microenvironment, stress response, and hypoxia. RESULTS This review delves into the multifaceted roles of survival pressures and m6A RNA methylation in HCC, highlighting how survival pressures modulate the m6A landscape, the impact of m6A modification on survival pressure-responsive gene expression, and the consequent effects on HCC cell survival, proliferation, metastasis, and resistance to treatment. Furthermore, we explored the therapeutic potential of targeting this crosstalk, proposing strategies that leverage the understanding of survival pressures and m6A RNA methylation mechanisms to develop novel, and more effective treatments for HCC. CONCLUSIONS The interplay between survival pressures and m6A RNA methylation emerges as a complex regulatory network that influences HCC pathogenesis and progression.
Collapse
Affiliation(s)
- Chu-Li Fu
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zheng-Wei Zhao
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Qiang-Nu Zhang
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
38
|
Peng S, Li C, He Y, Xue L, Guo X. Regulatory roles of RNA binding proteins in the Hippo pathway. Cell Death Discov 2025; 11:36. [PMID: 39890775 PMCID: PMC11785755 DOI: 10.1038/s41420-025-02316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/25/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
The Hippo pathway represents a highly conserved evolutionary pathway, dysfunction of which has been implicated in various diseases. RNA-binding proteins (RBPs) intricately modulate gene expression through interacting with non-coding RNAs or other proteins. To data, while an array of RBPs have been identified as modulators of the Hippo pathway, there remains a notable absence of a comprehensive review addressing the mechanistic regulations of RBPs in the transduction of Hippo signaling. Herein, this review aims to consolidate recent advances and elucidate the intricate mechanisms underlying RBPs binding to target RNA. It also explores the dynamic interplay between RBPs, non-coding RNAs, TFs, and DNA on chromatin. Additionally, it also outlines future perspectives, including the essential non-canonical functions of RBPs and emerging roles of non-canonical RBPs as transcription factors (TFs) in genes transcription. Overall, this review provides mechanistic insights into the roles of eukaryotic RBP proteins in the regulation of crucial signaling cascades.
Collapse
Affiliation(s)
- Shuchang Peng
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Basic Medical Sciences, Hunan Normal University, Changsha, China
- The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| | - Chenglin Li
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yanwen He
- Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha, China.
| | - Lei Xue
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China.
| | - Xiaowei Guo
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Basic Medical Sciences, Hunan Normal University, Changsha, China.
- The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China.
| |
Collapse
|
39
|
Wang D, Yu X, Yang Y. Investigating SNHG3 as a potential therapeutic approach for HCC stem cells. Gene 2025; 935:149022. [PMID: 39427830 DOI: 10.1016/j.gene.2024.149022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Hepatocellular Carcinoma (HCC) is a common malignant tumor worldwide. Long Non-Coding RNA (lncRNA) has gained attention in tumor biology, and this study aims to investigate the role of lncRNA SNHG3 in HCC, specifically in the self-renewal and maintenance of liver cancer stem cells. METHODS The expression of lncRNA SNHG3 was analyzed in HCC and adjacent normal tissue using the TCGA database. The expression levels of SNHG3 in HCC cell lines (Hep3B, HepG2, Huh7) were detected using qRT-PCR and Western blot techniques. Functional assays, including CCK-8, soft agar colony formation, and tumor sphere formation, were performed to evaluate the impact of SNHG3 on HCC stem cell functionality. MeRIP-qPCR was also used to investigate the regulatory role of SNHG3 in m6A modification of ITGA6 mRNA mediated by METTL3. RESULTS The study found that SNHG3 was significantly upregulated in HCC tissue and cell lines compared to normal liver tissue. SNHG3 expression correlated with the pathological stage, metastasis status, and tumor size of liver cancer. Inhibiting SNHG3 reduced proliferation, colony formation, and tumor sphere formation ability in HCC stem cells. SNHG3 also played a role in regulating the m6A modification and expression of ITGA6 through METTL3. CONCLUSION This study emphasizes the upregulation of lncRNA SNHG3 and its role in HCC stem cell self-renewal. SNHG3 may regulate the m6A modification of ITGA6 mRNA through its interaction with METTL3, impacting the function of liver cancer stem cells. These findings support the potential of targeting SNHG3 as a therapeutic approach for HCC.
Collapse
Affiliation(s)
- Dingmao Wang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China
| | - Xiao Yu
- The 2nd Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Haikou People's Hospital, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou 570208, PR China.
| |
Collapse
|
40
|
Nayak A, Streiff H, Gonzalez I, Adekoya OO, Silva I, Shenoy AK. Wnt Pathway-Targeted Therapy in Gastrointestinal Cancers: Integrating Benchside Insights with Bedside Applications. Cells 2025; 14:178. [PMID: 39936971 PMCID: PMC11816596 DOI: 10.3390/cells14030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
The Wnt signaling pathway is critical in the onset and progression of gastrointestinal (GI) cancers. Anomalies in this pathway, often stemming from mutations in critical components such as adenomatous polyposis coli (APC) or β-catenin, lead to uncontrolled cell proliferation and survival. In the case of colorectal cancer, dysregulation of the Wnt pathway drives tumor initiation and growth. Similarly, aberrant Wnt signaling contributes to tumor development, metastasis, and resistance to therapy in other GI cancers, such as gastric, pancreatic, and hepatocellular carcinomas. Targeting the Wnt pathway or its downstream effectors has emerged as a promising therapeutic strategy for combating these highly aggressive GI malignancies. Here, we review the dysregulation of the Wnt signaling pathway in the pathogenesis of GI cancers and further explore the therapeutic potential of targeting the various components of the Wnt pathway. Furthermore, we summarize and integrate the preclinical evidence supporting the therapeutic efficacy of potent Wnt pathway inhibitors with completed and ongoing clinical trials in GI cancers. Additionally, we discuss the challenges of Wnt pathway-targeted therapies in GI cancers to overcome these concerns for effective clinical translation.
Collapse
|
41
|
Zhang Y, Lian X, Xu H, Zhu S, Zhang H, Ni Z, Fu T, Liu S, Tao L, Zhou Y, Zhu F. OrgXenomics: an integrated proteomic knowledge base for patient-derived organoid and xenograft. Nucleic Acids Res 2025; 53:D504-D515. [PMID: 39373514 PMCID: PMC11701540 DOI: 10.1093/nar/gkae861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Patient-derived models (PDMs, particularly organoids and xenografts) are irreplaceable tools for precision medicine, from target development to lead identification, then to preclinical evaluation, and finally to clinical decision-making. So far, PDM-based proteomics has emerged to be one of the cutting-edge directions and massive data have been accumulated. However, such PDM-based proteomic data have not been provided by any of the available databases, and proteomics profiles of all proteins in proteomic study are also completely absent from existing databases. Herein, an integrated database named 'OrgXenomics' was thus developed to provide the proteomic data for PDMs, which was unique in (a) explicitly describing the establishment detail for a wide array of models, (b) systematically providing the proteomic profiles (expression/function/interaction) for all proteins in studied proteomic analysis and (c) comprehensively giving the raw data for diverse organoid/xenograft-based proteomic studies of various diseases. Our OrgXenomics was expected to server as one good complement to existing proteomic databases, and had great implication for the practice of precision medicine, which could be accessed at: https://idrblab.org/orgxenomics/.
Collapse
Affiliation(s)
- Yintao Zhang
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Hangwei Xu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Sisi Zhu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Zhang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Ziheng Ni
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Shuiping Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
42
|
Xu C, Liang L, Liu G, Feng Y, Xu B, Zhu D, Jia W, Wang J, Zhao W, Ling X, Zhou Y, Ding W, Kong L. Predicting hepatocellular carcinoma outcomes and immune therapy response with ATP-dependent chromatin remodeling-related genes, highlighting MORF4L1 as a promising target. Cancer Cell Int 2025; 25:4. [PMID: 39757177 DOI: 10.1186/s12935-024-03629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to be a major cause of cancer-related death worldwide, primarily due to delays in diagnosis and resistance to existing treatments. Recent research has identified ATP-dependent chromatin remodeling-related genes (ACRRGs) as promising targets for therapeutic intervention across various types of cancer. This development offers potential new avenues for addressing the challenges in HCC management. METHODS This study integrated bioinformatics analyses and experimental approaches to explore the role of ACRRGs in HCC. We utilized data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), applying machine learning algorithms to develop a prognostic model based on ACRRGs' expression. Experimental validation was conducted using quantitative real-time Polymerase Chain Reaction (qRT-PCR), Western blotting, and functional assays in HCC cell lines and xenograft models. RESULTS Our bioinformatics analysis identified four key ACRRGs-MORF4L1, HDAC1, VPS72, and RUVBL2-that serve as prognostic markers for HCC. The developed risk prediction model effectively distinguished between high-risk and low-risk patients, showing significant differences in survival outcomes and predicting responses to immunotherapy in HCC patients. Experimentally, MORF4L1 was demonstrated to enhance cancer stemness by activating the Hedgehog signaling pathway, as supported by both in vitro and in vivo assays. CONCLUSION ACRRGs, particularly MORF4L1, play crucial roles in modulating HCC progression, offering new insights into the molecular mechanisms driving HCC and potential therapeutic targets. Our findings advocate for the inclusion of chromatin remodeling dynamics in the strategic development of precision therapies for HCC.
Collapse
Affiliation(s)
- Chao Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Litao Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Guoqing Liu
- Children's Hospital of Nanjing Medical University, No. 72, Guangzhou Road, Nanjing, 210008, Jiangsu, China
| | - Yanzhi Feng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Bin Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Deming Zhu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Wenbo Jia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Wenhu Zhao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Xiangyu Ling
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yongping Zhou
- Department of Hepatobiliary Surgery, Wuxi No.2 People's Hospital, No. 68 Zhongshan Road, Wuxi, China.
| | - Wenzhou Ding
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Lianbao Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| |
Collapse
|
43
|
Wu H, Chen S, Li X, Li Y, Shi H, Qing Y, Shi B, Tang Y, Yan Z, Hao Y, Wang D, Liu W. RNA modifications in cancer. MedComm (Beijing) 2025; 6:e70042. [PMID: 39802639 PMCID: PMC11718328 DOI: 10.1002/mco2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
RNA modifications are emerging as critical cancer regulators that influence tumorigenesis and progression. Key modifications, such as N6-methyladenosine (m6A) and 5-methylcytosine (m5C), are implicated in various cellular processes. These modifications are regulated by proteins that write, erase, and read RNA and modulate RNA stability, splicing, translation, and degradation. Recent studies have highlighted their roles in metabolic reprogramming, signaling pathways, and cell cycle control, which are essential for tumor proliferation and survival. Despite these scientific advances, the precise mechanisms by which RNA modifications affect cancer remain inadequately understood. This review comprehensively examines the role RNA modifications play in cancer proliferation, metastasis, and programmed cell death, including apoptosis, autophagy, and ferroptosis. It explores their effects on epithelial-mesenchymal transition (EMT) and the immune microenvironment, particularly in cancer metastasis. Furthermore, RNA modifications' potential in cancer therapies, including conventional treatments, immunotherapy, and targeted therapies, is discussed. By addressing these aspects, this review aims to bridge current research gaps and underscore the therapeutic potential of targeting RNA modifications to improve cancer treatment strategies and patient outcomes.
Collapse
Affiliation(s)
- Han Wu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Shi Chen
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Xiang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Yuyang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - He Shi
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Yiwen Qing
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Bohe Shi
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Yifei Tang
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Zhuoyi Yan
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Yang Hao
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Weiwei Liu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| |
Collapse
|
44
|
Yue P, He Y, Zuo R, Gong W, Wang Y, Chen L, Luo Y, Feng Y, Gao Y, Liu Z, Chen P, Guo H. CCDC34 maintains stemness phenotype through β-catenin-mediated autophagy and promotes EGFR-TKI resistance in lung adenocarcinoma. Cancer Gene Ther 2025; 32:104-121. [PMID: 39587349 DOI: 10.1038/s41417-024-00843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Despite recent advances in treatment strategy, lung cancer remains the leading cause of cancer-related mortality worldwide, and it is a serious threat to human health. Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer, and approximately 40-50% of patients with LUAD in Asian populations have epidermal growth factor receptor (EGFR) mutations. The use of EGFR tyrosine kinase inhibitors (EGFR-TKIs) has revolutionarily improved the prognosis of patients with EGFR-mutated LUAD. However, acquired drug resistance is the main cause of treatment failure. Therefore, new therapeutic strategies are necessary to address the resistance to EGFR-TKIs in patients with LUAD. Cancer stemness-related factors lead to multiple-drug resistance in cancer treatment, including EGFR-TKI resistance. Coiled-coil domain-containing 34 (CCDC34) serves as an oncogene in several types of cancer. However, the role and molecular mechanism of CCDC34 in the malignant progression of LUAD have not been reported to date. In the present study, we found that CCDC34 may be associated with LUAD stemness through weighted gene co-expression network analysis (WGCNA). Furthermore, we demonstrated that CCDC34 promoted LUAD stemness properties through β-catenin-mediated regulation of ATG5-induced autophagy, which was conducive to acquired EGFR-TKI resistance in LUAD in vitro and in vivo. Knockdown CCDC34 can synergistically inhibit tumor growth when combined with EGFR-TKIs. This study reveals a positive association between CCDC34 and the stemness phenotype of LUAD, providing new insights into overcoming EGFR-TKI resistance in LUAD by inhibiting CCDC34 expression.
Collapse
Affiliation(s)
- Ping Yue
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Ran Zuo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Wenchen Gong
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yu Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuanying Feng
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuan Gao
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Zhiyong Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Peng Chen
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
45
|
Dai Q, Zhu J, Yang J, Zhang CY, Yang WJ, Pan BS, Yang XR, Guo W, Wang BL. Construction of a Cancer Stem Cell related Histone Acetylation Regulatory Genes Prognostic Model for Hepatocellular Carcinoma via Bioinformatics Analysis: Implications for Tumor Chemotherapy and Immunity. Curr Stem Cell Res Ther 2025; 20:103-122. [PMID: 38561604 DOI: 10.2174/011574888x305642240327041753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Cancer stem cells (CSC) play an important role in the development of Liver Hepatocellular Carcinoma (LIHC). However, the regulatory mechanisms between acetylation- associated genes (HAGs) and liver cancer stem cells remain unclear. OBJECTIVE To identify a set of histone acetylation genes (HAGs) with close associations to liver cancer stem cells (LCSCs), and to construct a prognostic model that facilitates more accurate prognosis assessments for LIHC patients. METHODS LIHC expression data were downloaded from the public databases. Using mRNA expression- based stemness indices (mRNAsi) inferred by One-Class Logistic Regression (OCLR), Differentially Expressed Genes (DEGs) (mRNAsi-High VS. mRNAsi-Low groups) were intersected with DEGs (LIHC VS. normal samples), as well as histone acetylation-associated genes (HAGs), to obtain mRNAsi-HAGs. A risk model was constructed employing the prognostic genes, which were acquired through univariate Cox and Least Shrinkage and Selection Operator (LASSO) regression analyses. Subsequently, independent prognostic factors were identified via univariate and multivariate Cox regression analyses and then a nomogram for prediction of LIHC survival was developed. Additionally, immune infiltration and drug sensitivity analysis were performed to explore the relationships between prognostic genes and immune cells. Finally, the expressions of selected mRNAsi-HAGs were validated in the LIHC tumor sphere by quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) assay and western blot analysis. RESULTS Among 13 identified mRNAsi-HAGs, 3 prognostic genes (HDAC1, HDAC11, and HAT1) were selected to construct a risk model (mRNAsi-HAGs risk score = 0.02 * HDAC1 + 0.09 * HAT1 + 0.05 * HDAC11). T-stage, mRNAsi, and mRNAsi-HAGs risk scores were identified as independent prognostic factors to construct the nomogram, which was proved to predict the survival probability of LIHC patients effectively. We subsequently observed strongly positive correlations between mRNAsi-HAGs risk score and tumor-infiltrating T cells, B cells and macrophages/monocytes. Moreover, we found 8 drugs (Mitomycin C, IPA 3, FTI 277, Bleomycin, Tipifarnib, GSK 650394, AICAR and EHT 1864) had significant correlations with mRNAsi-HAGs risk scores. The expression of HDAC1 and HDAC11 was higher in CSC-like cells in the tumor sphere. CONCLUSION This study constructed a mRNAsi and HAGs-related prognostic model, which has implications for potential immunotherapy and drug treatment of LIHC.
Collapse
Grants
- 81772263, 81972000, 81872355, 82072715, 82172348 National Natural Science Foundation of China
- 82202608, 81902139 National Natural Science Foundation of China Youth Fund
- 2018ZSLC05, 2020ZSLC54, 2020ZSLC31 Specialized Fund for the clinical research of Zhongshan Hospital affiliated Fudan University
- 2021ZSCX28 Science Foundation of Zhongshan Hospital, Fudan University
- 2021ZSGG08 Excellent backbone of Zhongshan Hospital, Fudan University
- shslczdzk03302 construction project of clinical key disciplines in Shanghai
- YDZX20193502000002 Key medical and health projects of Xiamen
- BSZK-2023-A18 Shanghai Baoshan Medical Key Specialty
- 2019YFC1315800, 2019YFC1315802 National Key R&D Program of China
- 81830102 State Key Program of National Natural Science of China
- 2019CXJQ02 Shanghai Municipal Health Commission Collaborative Innovation Cluster Project
- 19441905000, 21140900300 Shanghai Science and Technology Commission
Collapse
Affiliation(s)
- Qian Dai
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun-Yan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Wen-Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bai-Shen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bei-Li Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Tu S, Zou Y, Yang M, Zhou X, Zheng X, Jiang Y, Wang H, Chen B, Qian Q, Dou X, Bao J, Tian L. Ferroptosis in hepatocellular carcinoma: Mechanisms and therapeutic implications. Biomed Pharmacother 2025; 182:117769. [PMID: 39689515 DOI: 10.1016/j.biopha.2024.117769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
Ferroptosis is a novel form of oxidative cell death, in which highly expressed unsaturated fatty acids on the cell membrane are catalyzed by divalent iron or ester oxygenase to promote liposome peroxidation. This process reduces cellular antioxidant capacity, increases lipid reactive oxygen species, and leads to the accumulation of intracellular ferrous ions, which disrupts intracellular redox homeostasis and ultimately causes oxidative cell death. Studies have shown that ferroptosis induces an immune response that has a dual role in liver disease, ferroptosis also offers a promising strategy for precise cancer therapy. Ferroptosis regulators are beneficial in maintaining cellular homeostasis and tissue health, have shown efficacy in treating diseases of the hepatic system. However, the mechanisms of action and molecular regulatory pathways of ferroptosis in hepatocellular carcinoma (HCC) have not been fully elucidated. Therefore, deciphering the role of ferroptosis and its mechanisms in HCC progression is crucial for treating the disease. In this review, we introduce the morphological features and biochemical functions of ferroptosis, outline the molecular regulatory pathways of ferroptosis, and highlights the therapeutic potential of ferroptosis inhibitors and modulators to target it in HCC.
Collapse
Affiliation(s)
- Shanjie Tu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yuchao Zou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Meiqi Yang
- Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, Liaoning, PR China
| | - Xinlei Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xu Zheng
- The First Affiliated Hospital of Henan University of TCM, Zhengzhou, Henan, PR China
| | - Yuwei Jiang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Haoran Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Buyang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Qianyu Qian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Jianfeng Bao
- The Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Lulu Tian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
47
|
Xia Q, Liu G, Lin W, Zhang J. microRNA-2117 Negatively Regulates Liver Cancer Stem Cells Expansion and Chemoresistance Via Targeting SOX2. Mol Carcinog 2025; 64:33-43. [PMID: 39400383 PMCID: PMC11636587 DOI: 10.1002/mc.23824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Cancer stem cells (CSCs) are involved in the regulation of tumor initiation, progression, recurrence, and chemoresistance. However, the role of microRNAs (miRNAs) in liver CSCs has not been fully understood. Here we show that miR-2117 is downregulated in liver CSCs and predicts the poor prognosis of hepatocellular carcinoma (HCC) patients. Biofunction studies found that knockdown miR-2117 facilitates liver CSCs self-renewal and tumorigenesis. Conversely, forced miR-2117 expression suppresses liver CSCs self-renewal and tumorigenesis. Mechanistically, we find that transcription factor SOX2 is required for miR-2117-mediated liver CSCs expansion. The correlation between miR-2117 and SOX2 was confirmed in human HCC tissues. More importantly, miR-2117 overexpression HCC cells are more sensitive to CDDP treatment. Analysis of patients' cohort further demonstrates that miR-2117 may predict transcatheter arterial chemoembolization benefits in HCC patients. Our findings revealed the crucial role of miR-2117 in liver CSCs expansion, rendering miR-2117 as an optimal therapeutic target for HCC.
Collapse
Affiliation(s)
- Qing Xia
- Department of General Surgery, Hwa Mei Hospital (Ningbo No.2 Hospital)University of Chinese Academy of SciencesNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang ProvinceNingboChina
| | - Guanghua Liu
- Department of General SurgeryXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Interventional RadiologyXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Wenbo Lin
- Department of Orthopedic Surgery, Changzheng HospitalNavy Medical UniversityShanghaiChina
| | - Jin Zhang
- Department of General SurgeryThird Affiliated Hospital of Second Military Medical UniversityShanghaiChina
| |
Collapse
|
48
|
Ma X, Zhou K, Yan T, Hu L, Xie S, Zheng H, Tong Y, Zhang H, Wang Y, Gong Z, Chen C, Tian Y, Guo L, Lu R. Calpain 2 promotes Lenvatinib resistance and cancer stem cell traits via both proteolysis-dependent and independent approach in hepatocellular carcinoma. MOLECULAR BIOMEDICINE 2024; 5:74. [PMID: 39739077 PMCID: PMC11688263 DOI: 10.1186/s43556-024-00242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
Lenvatinib, an approved first-line regimen, has been widely applied in hepatocellular carcinoma (HCC). However, clinical response towards Lenvatinib was limited, emphasizing the importance of understanding the underlying mechanism of its resistance. Herein, we employed integrated bioinformatic analysis to identify calpain-2 (CAPN2) as a novel key regulator for Lenvatinib resistance in HCC, and its expression greatly increased in both Lenvatinib-resistant HCC cell lines and clinical samples. Further in vitro and in vivo experiments indicated that knocking down CAPN2 greatly sensitized HCC cells to Lenvatinib treatment, while overexpression of CAPN2 achieved opposite effects in a Lenvatinib-sensitive HCC cell line. Interestingly, we observed a close relationship between CAPN2 expression and cancer stem cell (CSC) traits in HCC cells, evidenced by impaired sphere-forming and CSC-related marker expressions after CAPN2 knockdown, and verse vice. Mechanistically, we strikingly discovered that CAPN2 exerted its function by both enzyme-dependent and enzyme-independent manner simultaneously: activating β-Catenin signaling through its enzyme activity, and preventing GLI1/GLI2 degradation through direct binding to YWHAE in an enzyme-independent manner, which disrupting the association between YWHAE and GLI1/GLI2 to inhibit YWHAE-induced degradation of GLIs. Notably, further co-immunoprecipitation assays revealed that YWHAE could promote the protein stability of CAPN2 via recruiting a deubiquitinase COPS5 to prevent ubiquitination-induced degradation of CAPN2. In summary, our data demonstrated that CAPN2 promoted Lenvatinib resistance via both catalytic activity-dependent and -independent approaches. Reducing CAPN2 protein rather than inhibiting its activity might be a promising strategy to improve Lenvatinib treatment efficiency in HCC.
Collapse
Affiliation(s)
- Xiaolu Ma
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Kaixia Zhou
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Tianqing Yan
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Ling Hu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Suhong Xie
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Hui Zheng
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Ying Tong
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Heng Zhang
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Zhiyun Gong
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Cuncun Chen
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Yanan Tian
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| | - Lin Guo
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| | - Renquan Lu
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 200032, China
| |
Collapse
|
49
|
Wang J, Zhang H, Li J, Ni X, Yan W, Chen Y, Shi T. Exosome-derived proteins in gastric cancer progression, drug resistance, and immune response. Cell Mol Biol Lett 2024; 29:157. [PMID: 39719600 PMCID: PMC11667977 DOI: 10.1186/s11658-024-00676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer (GC) represents a prevalent malignancy globally, often diagnosed at advanced stages owing to subtle early symptoms, resulting in a poor prognosis. Exosomes are extracellular nano-sized vesicles and are secreted by various cells. Mounting evidence indicates that exosomes contain a wide range of molecules, such as DNA, RNA, lipids, and proteins, and play crucial roles in multiple cancers including GC. Recently, with the rapid development of mass spectrometry-based detection technology, researchers have paid increasing attention to exosomal cargo proteins. In this review, we discussed the origin of exosomes and the diagnostic and prognostic roles of exosomal proteins in GC. Moreover, we summarized the biological functions of exosomal proteins in GC processes, such as proliferation, metastasis, drug resistance, stemness, immune response, angiogenesis, and traditional Chinese medicine therapy. In summary, this review synthesizes current advancements in exosomal proteins associated with GC, offering insights that could pave the way for novel diagnostic and therapeutic strategies for GC in the foreseeable future.
Collapse
Affiliation(s)
- Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huan Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
| | - Juntao Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangyu Ni
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenying Yan
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China.
- Center for Systems Biology, Soochow University, Suzhou, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou, China.
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of The First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
50
|
Zhao Y, Du J, Zhuo J, Zhang Q, Dai L, Tang Y, Wang Y, Sheng A, Yao H, Liu W. CYB561 a potential prognostic biomarker for liver hepatocellular carcinoma. Clin Exp Med 2024; 25:23. [PMID: 39708189 DOI: 10.1007/s10238-024-01522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/05/2024] [Indexed: 12/23/2024]
Abstract
Liver hepatocellular carcinoma (LIHC) is a malignancy characterized by a high rate of recurrence, metastasis, and poor prognosis. Cytochrome b561 (CYB561) has been previously reported to be associated with tumor progression, but it has not been revealed in LIHC. The aim of this study was to investigate the prognostic value and potential function of CYB561 in LICH. The expression level, clinical correlation, prognosis, and biological function of CYB561 in LIHC were analyzed using The Cancer Genome Atlas(TCGA), Gene Expression Omnibus (GEO), TIMER2, Kaplan-Meier Plotter, and GEPIA2 databases. The expression of CYB561 in LIHC tissue samples was analyzed by immunohistochemical staining. The effect of CYB561 on the proliferation and migration of LIHC cells was investigated by using CYB561 knockdown in vitro. GSE149614 dataset was used to analyze the expression distribution of CYB561 in LIHC on a single-cell dimension. This study showed that CYB561 mRNA and protein were highly expressed in LIHC. High expression of CYB561 suggests poor prognosis in LICH patients and is an independent risk factor for LIHC. Wound-healing experiment, transwell experiment, and clonal formation experiment confirmed that CYB561 knockdown could inhibit the proliferation and migration of LIHC cells. Functional enrichment analysis showed that CYB561 was related to biological processes such as cell adhesion and immune response. KEGG enrichment analysis showed that CYB561 interacts with tumor-related signaling pathways. Single-cell analysis showed that CYB561 was mainly expressed in hepatocytes. Cells with high CYB561 expression had a higher degree of malignancy. Our study found that abnormal expression of CYB561 in LIHC suggested poor prognosis of LIHC and was related to tumor migration and proliferation. CYB561 is a potential prognostic predictor or therapeutic biomarker.
Collapse
Affiliation(s)
- Yanchun Zhao
- Department of Outpatient, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Jingfang Du
- Department of Outpatient, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Jian Zhuo
- School of Clinical Medicine, The Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Quanai Zhang
- School of Clinical Medicine, The Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Luxian Dai
- Department of Breast Surgery, Yangzhou Maternal and Child Health Care Hospital Affliated to Yangzhou University, Yangzhou, 225007, Jiangsu, China
| | - Yubao Tang
- Department of Breast Surgery, Yangzhou Maternal and Child Health Care Hospital Affliated to Yangzhou University, Yangzhou, 225007, Jiangsu, China
| | - Yao Wang
- Department of Breast Surgery, Yangzhou Maternal and Child Health Care Hospital Affliated to Yangzhou University, Yangzhou, 225007, Jiangsu, China
| | - Ankang Sheng
- Department of Breast Surgery, Yangzhou Maternal and Child Health Care Hospital Affliated to Yangzhou University, Yangzhou, 225007, Jiangsu, China
| | - Hanyu Yao
- Department of Breast Surgery, Yangzhou Maternal and Child Health Care Hospital Affliated to Yangzhou University, Yangzhou, 225007, Jiangsu, China
| | - Weiguang Liu
- Department of Breast Surgery, Yangzhou Maternal and Child Health Care Hospital Affliated to Yangzhou University, Yangzhou, 225007, Jiangsu, China.
| |
Collapse
|