1
|
Liang W, Zhou C, Deng Y, Fu L, Zhao J, Long H, Ming W, Shang J, Zeng B. The current status of various preclinical therapeutic approaches for tendon repair. Ann Med 2024; 56:2337871. [PMID: 38738394 PMCID: PMC11095292 DOI: 10.1080/07853890.2024.2337871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Tendons are fibroblastic structures that link muscle and bone. There are two kinds of tendon injuries, including acute and chronic. Each form of injury or deterioration can result in significant pain and loss of tendon function. The recovery of tendon damage is a complex and time-consuming recovery process. Depending on the anatomical location of the tendon tissue, the clinical outcomes are not the same. The healing of the wound process is divided into three stages that overlap: inflammation, proliferation, and tissue remodeling. Furthermore, the curing tendon has a high re-tear rate. Faced with the challenges, tendon injury management is still a clinical issue that must be resolved as soon as possible. Several newer directions and breakthroughs in tendon recovery have emerged in recent years. This article describes tendon injury and summarizes recent advances in tendon recovery, along with stem cell therapy, gene therapy, Platelet-rich plasma remedy, growth factors, drug treatment, and tissue engineering. Despite the recent fast-growing research in tendon recovery treatment, still, none of them translated to the clinical setting. This review provides a detailed overview of tendon injuries and potential preclinical approaches for treating tendon injuries.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Yongjun Deng
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jinxiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
2
|
Sharun K, Banu SA, El-Husseiny HM, Abualigah L, Pawde AM, Dhama K, Amarpal. Exploring the applications of platelet-rich plasma in tissue engineering and regenerative medicine: evidence from goat and sheep experimental research. Connect Tissue Res 2024; 65:364-382. [PMID: 39246090 DOI: 10.1080/03008207.2024.2397657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Platelet-rich plasma (PRP) has emerged as a promising therapeutic approach in regenerative medicine. It contains various growth factors and bioactive molecules that play pivotal roles in tissue repair, regeneration, and inflammation modulation. This comprehensive narrative review delves into the therapeutic potential of PRP in experimental goat and sheep research, exploring recent advancements, challenges, and future prospects in the field. PRP has been explored for its application in musculoskeletal injuries, wound healing, and orthopedic conditions. Studies have demonstrated the ability of PRP to accelerate tissue healing, reduce inflammation, and improve the overall quality of healing. Recent advancements in PRP technology have led to the development of novel formulations and delivery methods to enhance its therapeutic efficacy. PRP has shown promise in tendon and ligament injuries, osteoarthritis, and bone fractures in experimental goat and sheep research. Despite these advancements, several challenges and opportunities exist to harness the full therapeutic potential of PRP in regenerative medicine. Standardizing PRP preparation protocols, including blood collection techniques, centrifugation parameters, and activation methods, is essential to ensure consistency and reproducibility of the findings. Moreover, further research is needed to elucidate the optimal dosing, frequency, and timing of PRP administration for different clinical indications. Research conducted in goat and sheep models provides evidence supporting the translational potential of PRP in tissue engineering and regenerative medicine. By harnessing the regenerative properties of PRP and leveraging insights from preclinical studies, researchers can develop innovative therapeutic strategies to address unmet clinical needs and improve patient outcomes in diverse medical specialties.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Toukh, Elqaliobiya, Egypt
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Fuchu-shi, Japan
| | - Laith Abualigah
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk, Saudi Arabia
- MEU Research Unit, Middle East University, Amman, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
3
|
Albahrawy M, Abouelnasr K, Mosbah E, Zaghloul A, Abass M. Biostimulation effect of platelet-rich fibrin augmented with decellularized bovine pericardium on full-thickness cutaneous wound healing in Donkeys (Equus asinus). BMC Vet Res 2023; 19:166. [PMID: 37730587 PMCID: PMC10512557 DOI: 10.1186/s12917-023-03733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
AIM The current research aimed to evaluate the potential effect of adding platelet-rich fibrin (PRF) to the decellularized bovine pericardium (DBP) on the distal limb of donkeys' full-thickness cutaneous wounds healing (Equus asinus). MATERIALS AND METHODS Healthy male donkeys (n = 12) were used in this study. Under general anesthesia, 6 cm2 full-thickness incisions were made on the middle dorsolateral surface of both forelimbs' metacarpi. The left forelimbs were control wounds, while the right wounds were treated with PRF/DBP. Control wounds were bandaged with a standard dressing after saline irrigation and were evaluated at days 4, 7, 10, 13, 16, 19, 22, 25, and 28 post-wounding. PRF/DBP-treated wounds were dressed with a combination of PRF/DBP at the first, second, and third weeks post-wounding. Clinical and histopathological examinations of the wounds were performed to assess the healing process. Additionally, the immunohistochemical evaluation and gene expression profiles of myofibroblastic and angiogenic genes (transforming growth factor-β1, vascular endothelial growth factor-A, fibroblast growth factor 7 (FGF-7), and collagen type 3α1) were analyzed. RESULTS PRF/DBP wounds had a significantly faster healing process (61.3 ± 2.6 days) than control wounds (90.3 ± 1.4 days) (p < 0.05). The immunohistochemical examination and gene expression profile revealed significant enrichment in PRF/DBP wounds compared to control wounds. CONCLUSION PRF/DBP dressing can be considered a natural and cost-effective biomaterial for enhancing the recovery of donkeys' distal limb injuries.
Collapse
Affiliation(s)
- Mohammed Albahrawy
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Khaled Abouelnasr
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Esam Mosbah
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Adel Zaghloul
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Marwa Abass
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
4
|
Zhang G, Zhou X, Hu S, Jin Y, Qiu Z. Large animal models for the study of tendinopathy. Front Cell Dev Biol 2022; 10:1031638. [PMID: 36393858 PMCID: PMC9640604 DOI: 10.3389/fcell.2022.1031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Tendinopathy has a high incidence in athletes and the aging population. It can cause pain and movement disorders, and is one of the most difficult problems in orthopedics. Animal models of tendinopathy provide potentially efficient and effective means to develop understanding of human tendinopathy and its underlying pathological mechanisms and treatments. The selection of preclinical models is essential to ensure the successful translation of effective and innovative treatments into clinical practice. Large animals can be used in both micro- and macro-level research owing to their similarity to humans in size, structure, and function. This article reviews the application of large animal models in tendinopathy regarding injuries to four tendons: rotator cuff, patellar ligament, Achilles tendon, and flexor tendon. The advantages and disadvantages of studying tendinopathy with large animal models are summarized. It is hoped that, with further development of animal models of tendinopathy, new strategies for the prevention and treatment of tendinopathy in humans will be developed.
Collapse
Affiliation(s)
- Guorong Zhang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xuyan Zhou
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Hu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| |
Collapse
|
5
|
Huang Y, Cadet ER, King MW, Cole JH. Comparison of the mechanical properties and anchoring performance of polyvinylidene fluoride and polypropylene barbed sutures for tendon repair. J Biomed Mater Res B Appl Biomater 2022; 110:2258-2265. [PMID: 35674273 PMCID: PMC9546200 DOI: 10.1002/jbm.b.35074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 03/16/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
Abstract
Polyvinylidene fluoride (PVDF) has been considered as an alternative suture material to replace polypropylene (PP) due to its superior biocompatibility and mechanical properties, but it has never been examined for use in barbed sutures, particularly for tendon repair. This study fabricated size 2–0 PVDF and PP bidirectional barbed sutures and compared their mechanical properties and anchoring performance in patellar tendons. The mechanical properties were evaluated via tensile testing, and the anchoring performance of the barbed sutures was assessed by a tendon suture pullout test. Sixty porcine patellar tendons were harvested, transected to mimic a full‐thickness injury, and repaired using a cross‐locked cruciate suturing technique. The ultimate tensile force was 60% higher for the PVDF barbed sutures (22.4 ± 2.1 N) than for the PP barbed sutures (14.0 ± 1.7 N). The maximum pullout force was 35% higher for PVDF barbed sutures (70.8 ± 7.8 N) than for PP barbed sutures (52.4 ± 5.8 N). The force needed to form a 2‐mm gap, indicative of repair failure, was similar between the PVDF (29.2 ± 5.0 N) and PP (25.6 ± 3.1 N) barbed sutures, but both were greater than the 2‐mm‐gap forces for non‐barbed sutures of the same size. In this study, PVDF barbed sutures provided better mechanical properties and improved tissue anchoring performance compared to the barbed PP sutures for porcine patellar tendon repair, demonstrating that PVDF monofilament sutures can be barbed and used effectively for tendon repair.
Collapse
Affiliation(s)
- Yihan Huang
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina, USA
| | - Edwin R Cadet
- Raleigh Orthopaedic Clinic, Raleigh, North Carolina, USA.,Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Martin W King
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina, USA.,College of Textiles, Donghua University, Shanghai, China
| | - Jacqueline H Cole
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Viganò M, Ragni E, Marmotti A, de Girolamo L. The effects of orthobiologics in the treatment of tendon pathologies: a systematic review of preclinical evidence. J Exp Orthop 2022; 9:31. [PMID: 35394237 PMCID: PMC8994001 DOI: 10.1186/s40634-022-00468-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose The aim of this systematic review is to explore the current available knowledge about tendon disorders and orthobiologics derived by preclinical experiments to evaluate their role and efficacy in the different stages and conditions related to the tendon healing processes. Methods The systematic review was performed according to the PRISMA guidelines. Different electronic databases (MEDLINE, Web of Science, EMBASE) were searched for studies investigating orthobiologics (PRP and cell-based products from adipose tissue or bone marrow) in animal models or veterinary clinical trials for tendon pathologies (complete/partial tendon ruptures, rotator cuff tears, tendinopathy, enthesis-related injuries). Data regarding the specific product used, the treatment site/pathology, the host and the model were collected. The results were classified into the following categories: histological, biomechanical, molecular and imaging. Results A large pool of preclinical studies on tendon disorders have been found on platelet-rich plasma (PRP), while data about stromal vascular fraction (SVF) and bone marrow concentrate (BMAC) are still limited and frequently focused on expanded cells, rather than orthobiologics prepared at the point of care. The effect of PRP is related to an acceleration of the healing process, without improvements in the final structure and properties of repaired tendon. Cell-based products have been reported to produce more durable results, but the level of evidence is currently insufficient to draw clear indications. Conclusions The preclinical results about orthobiologics applications to tendon pathologies would support the rationale of their clinical use and encourage the performance of clinical trials aimed to confirm these data in human subjects. Supplementary Information The online version contains supplementary material available at 10.1186/s40634-022-00468-w.
Collapse
Affiliation(s)
- Marco Viganò
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Enrico Ragni
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
| | - Antonio Marmotti
- San Luigi Gonzaga Hospital, Orthopedics and Traumatology Department, University of Turin - Medical School, Turin, Italy
| | - Laura de Girolamo
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| |
Collapse
|
7
|
Li ZJ, Yang QQ, Zhou YL. Basic Research on Tendon Repair: Strategies, Evaluation, and Development. Front Med (Lausanne) 2021; 8:664909. [PMID: 34395467 PMCID: PMC8359775 DOI: 10.3389/fmed.2021.664909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
Tendon is a fibro-elastic structure that links muscle and bone. Tendon injury can be divided into two types, chronic and acute. Each type of injury or degeneration can cause substantial pain and the loss of tendon function. The natural healing process of tendon injury is complex. According to the anatomical position of tendon tissue, the clinical results are different. The wound healing process includes three overlapping stages: wound healing, proliferation and tissue remodeling. Besides, the healing tendon also faces a high re-tear rate. Faced with the above difficulties, management of tendon injuries remains a clinical problem and needs to be solved urgently. In recent years, there are many new directions and advances in tendon healing. This review introduces tendon injury and sums up the development of tendon healing in recent years, including gene therapy, stem cell therapy, Platelet-rich plasma (PRP) therapy, growth factor and drug therapy and tissue engineering. Although most of these therapies have not yet developed to mature clinical application stage, with the repeated verification by researchers and continuous optimization of curative effect, that day will not be too far away.
Collapse
Affiliation(s)
- Zhi Jie Li
- Research for Frontier Medicine and Hand Surgery Research Center, The Nanomedicine Research Laboratory, Research Center of Clinical Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Qian Qian Yang
- Research for Frontier Medicine and Hand Surgery Research Center, The Nanomedicine Research Laboratory, Research Center of Clinical Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - You Lang Zhou
- Research for Frontier Medicine and Hand Surgery Research Center, The Nanomedicine Research Laboratory, Research Center of Clinical Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| |
Collapse
|
8
|
The shift in macrophages polarisation after tendon injury: A systematic review. J Orthop Translat 2019; 21:24-34. [PMID: 32071872 PMCID: PMC7013123 DOI: 10.1016/j.jot.2019.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background The role of macrophages (Mφs) in tendon injury healing is controversy. The aims of this study were to determine whether there is a shift in Mφs polarisation after an acute and chronic tendon injury and to assess whether the Mφs polarisation between the partial and complete rupture is different. Methods This systematic review of the scientific literature was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Cochrane guidelines. PubMed database and Excerpta Medica Database (EMBASE) were used for specific search criteria. Only studies measuring Mφs using specific cell markers in Achilles tendon tissue and rotator cuff tendon tissue were included, respectively. Results Five Achilles tendon injury studies and four rotator cuff injury studies were included. Expression of the pan Mϕs marker Cluster of Differentiation (CD) 68 was significantly upregulated in acute Achilles tendon ruptures compared to intact tendons, while no significant changes were found in Mφs polarisation markers CD80 (M1 Mφs) and CD206 (M2 Mφs). High levels of CD86 (M1 Mφs) and CD206 were observed in acute partial rupture. Expression of CD68 and CD206 were significantly upregulated in chronic rotator cuff tendinopathy and downregulated as structural failure increases. A low level of CD206 was observed in complete tendon rupture regardless of acute or chronic injury. Discussion and conclusion In spite of the limited number of articles included, findings from this study suggested that the process of inflammation plays an important role in acute Achilles tendon injuries, indicated by the increased expression of CD68+ Mφs. Low levels of CD206+ Mφs were constantly observed in complete Achilles tendon rupture, while high levels of CD80+ Mφs and CD206+ Mφs were observed in partial Achilles tendon rupture, which suggested the potential correlation between M2 Mφs and tendon structure. For chronic rotator cuff injury, CD68+ Mφs and CD206+ Mφs were higher in tendinopathic tissues in comparison to the intact control tissues. Both CD68+ Mφs and CD206+ Mφs has an inverse relation to the structural failure in the torn rotator cuff tendon. After tendon rupture, the time point of biopsy specimen collection is an important factor, which could occur in the acute phase or chronic phase. Collectively, the understanding of the roles in Mφs after tendon injury is inadequate, and more research efforts should be devoted to this direction. The translational potential of this article This article provided a potential implication on how pan Mφs or M2 Mφs might be associated with ruptured or torn tendon structure. Managing Mφs numbers and phenotypes may lead to possible novel therapeutic approaches to the management of early tendinopathy, early acute tendon rupture, hence, promote healing after restoration surgery.
Collapse
|
9
|
Choi RK, Smith MM, Smith S, Little CB, Clarke EC. Functionally distinct tendons have different biomechanical, biochemical and histological responses to in vitro unloading. J Biomech 2019; 95:109321. [DOI: 10.1016/j.jbiomech.2019.109321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/02/2019] [Accepted: 08/15/2019] [Indexed: 01/29/2023]
|
10
|
Barbon S, Stocco E, Macchi V, Contran M, Grandi F, Borean A, Parnigotto PP, Porzionato A, De Caro R. Platelet-Rich Fibrin Scaffolds for Cartilage and Tendon Regenerative Medicine: From Bench to Bedside. Int J Mol Sci 2019; 20:ijms20071701. [PMID: 30959772 PMCID: PMC6479320 DOI: 10.3390/ijms20071701] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Nowadays, research in Tissue Engineering and Regenerative Medicine is focusing on the identification of instructive scaffolds to address the requirements of both clinicians and patients to achieve prompt and adequate healing in case of injury. Among biomaterials, hemocomponents, and in particular Platelet-rich Fibrin matrices, have aroused widespread interest, acting as delivery platforms for growth factors, cytokines and immune/stem-like cells for immunomodulation; their autologous origin and ready availability are also noteworthy aspects, as safety- and cost-related factors and practical aspects make it possible to shorten surgical interventions. In fact, several authors have focused on the use of Platelet-rich Fibrin in cartilage and tendon tissue engineering, reporting an increasing number of in vitro, pre-clinical and clinical studies. This narrative review attempts to compare the relevant advances in the field, with particular reference being made to the regenerative role of platelet-derived growth factors, as well as the main pre-clinical and clinical research on Platelet-rich Fibrin in chondrogenesis and tenogenesis, thereby providing a basis for critical revision of the topic.
Collapse
Affiliation(s)
- Silvia Barbon
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy.
- LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy.
| | - Elena Stocco
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy.
- LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy.
| | - Veronica Macchi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy.
- LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy.
| | - Martina Contran
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy.
| | - Francesca Grandi
- Complex Operative Unit-Pediatric Surgery, Hospital of Bolzano, Via L. Böhler 5, 39100 Bolzano, Italy.
| | - Alessio Borean
- Department of Immunohematology and Transfusion Medicine, San Martino Hospital, 32100 Belluno, Italy.
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, 35131 Padua, Italy.
| | - Andrea Porzionato
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy.
- LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy.
| | - Raffaele De Caro
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy.
- LifeLab Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy.
| |
Collapse
|
11
|
Effectiveness of Allogeneic Platelet-Rich Fibrin on Second-Intention Wound Healing of Experimental Skin Defect in Distal Limb in Donkeys (Equus asinus). J Equine Vet Sci 2019. [DOI: 10.1016/j.jevs.2018.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Haen TX, Roux A, Soubeyrand M, Laporte S. Shear waves elastography for assessment of human Achilles tendon's biomechanical properties: an experimental study. J Mech Behav Biomed Mater 2017; 69:178-184. [PMID: 28086149 DOI: 10.1016/j.jmbbm.2017.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Achilles tendon is the most frequently ruptured tendon, but its optimal treatment is increasingly controversial. The mechanical properties of the healing tendon should be studied further. Shear waves elastography (SWE) measures the shear modulus, which is proven to be correlated to elastic modulus in animal tendons. The aim of our study was to study whether the shear moduli of human cadaveric Achilles tendon, given by SWE, were correlated with the apparent elastic moduli of those tendons given by tensile tests. MATERIALS AND METHODS Fourteen cadaveric lower-limbs were studied. An elastographic study of the Achilles tendon (AT) was first done in clinical-like conditions. SWE was performed at three successive levels (0, 3 and 6cm from tendon insertion) with elastographic probe oriented parallel to tendon fibers, blindly, for three standardized ankle positions (25° plantar flexion, neutral position, and maximal dorsal flexion). The mean shear moduli were collected through blind offline data-analysis. Then, AT with triceps were harvested. They were subjected to tensile tests. A continuous SWE of the Achilles tendon was performed simultaneously. The apparent elastic modulus was obtained from the experimental stress-strain curve, and correlation with shear modulus (given by SWE) was studied. RESULTS Average shear moduli of harvested AT, given by SWE made an instant before the tensile tests, were significantly correlated with shear moduli of the same AT made at the same level, previously in clinical-like condition (p<0.05), only in neutral position. There was a statistical correlation (p<0.005) and a correlation coefficient R² equal to 0.95±0.05, between shear moduli (SWE) and apparent elastic moduli (tensile tests), for 11 tendons (3 tendons were inoperable due to technical error), before a constant disruption in the correlation curves. DISCUSSION We demonstrated a significant correlation between SWE of Achilles tendon performed in clinical-like conditions (in neutral position) and SWE performed in harvested tendon. We also found a correlation between SWE performed on harvested tendon and apparent elastic moduli obtained with tensile tests (for 11 specimens). As a consequence, we can suppose that SWE of AT in clinical-like conditions is related to tensile tests. To our knowledge, the ability of SWE to reliably assess biomechanical properties of a tendon or muscle was, so far, only demonstrated in animal models. CONCLUSION SWE can provide biomechanical information of the human AT non-invasively.
Collapse
Affiliation(s)
- T X Haen
- Arts et Metiers ParisTech, Institut de Biomécanique Humaine Georges Charpak, 151 bd de l'Hôpital, 75013 Paris, France; Service de Chirurgie Orthopédique, Hôpital Raymond Poincaré (A.P.-H.P), 104 bd Raymond Poincaré, 92380 Garches (Paris area), France.
| | - A Roux
- Arts et Metiers ParisTech, Institut de Biomécanique Humaine Georges Charpak, 151 bd de l'Hôpital, 75013 Paris, France
| | - M Soubeyrand
- Service de Chirurgie Orthopédique, Hôpital de Bicêtre (A.P.-H.P.), 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre (Paris area), France
| | - S Laporte
- Arts et Metiers ParisTech, Institut de Biomécanique Humaine Georges Charpak, 151 bd de l'Hôpital, 75013 Paris, France
| |
Collapse
|
13
|
Müller SA, Dürselen L, Heisterbach P, Evans C, Majewski M. Effect of a Simple Collagen Type I Sponge for Achilles Tendon Repair in a Rat Model. Am J Sports Med 2016; 44:1998-2004. [PMID: 27159286 DOI: 10.1177/0363546516641942] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Several sophisticated approaches to tendon engineering have been investigated as ways to improve tendon healing with the early formation of repair tissue with possibly a high amount of type I collagen. Besides the new formation of collagen type I, there is evidence for the natural integration of surrounding collagen type I from healthy tendon parts into the healing defect. However, the simple application of a type I collagen sponge to the healing site to increase the amount of local collagen type I has not been investigated. HYPOTHESIS Healing of the rat Achilles tendon can be accelerated by an additional supply of collagen type I, resulting in increased tear resistance. STUDY DESIGN Controlled laboratory study. METHODS The right Achilles tendons of 42 rats were transected. In half of the animals, a type I collagen sponge was placed into the gap. Animals were allowed to move freely in their cages to simulate early functional therapy. After 1, 2, and 4 weeks, tendon length, width, maximal load to failure, and stiffness were measured and the healing site studied histologically according to the Bonar score. Inflammation was evaluated by the appearance of macrophages and neutrophilic and eosinophilic granulocytes. RESULTS Defects receiving collagen sponges showed improved healing, with significantly stronger (29.5 vs 5.0 N, respectively, at 1 week; P = .00003), shorter (11.6 vs 14.5 mm, respectively, at 4 weeks; P = .005), thicker (10.0 vs 1.8 mm(2), respectively, at 1 week; P = .00002), and less stiff (19.5 vs 30.5 N/mm, respectively, at 4 weeks; P = .02) tendons than control tendons. Overall, the biomechanical properties of the collagen-treated tendons appeared to be significantly closer to those of native, uninjured tendons compared with tendons in the control group. Histologically, no inflammatory reaction due to the collagen sponge was found. CONCLUSION Tendon healing was accelerated by the type I collagen sponge. Moreover, the mechanical properties of collagen-treated tendons appeared to be significantly closer to those of normal, uninjured tendons compared with control tendons without collagen treatment. CLINICAL RELEVANCE As a simple type I collagen sponge seems to increase the amount of local collagen type I, the careful use of such sponges might be an option for tendon augmentation during Achilles tendon surgery.
Collapse
Affiliation(s)
- Sebastian A Müller
- Department of Orthopedic Surgery, University of Basel, Basel, Switzerland
| | - Lutz Dürselen
- Institute of Orthopedic Research and Biomechanics, University of Ulm, Ulm, Germany
| | | | - Chris Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Martin Majewski
- Department of Orthopedic Surgery, University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Wang JHC, Nirmala X. Application of Tendon Stem/Progenitor Cells and Platelet-Rich Plasma to Treat Tendon Injuries. ACTA ACUST UNITED AC 2016; 26:68-72. [PMID: 27574378 DOI: 10.1053/j.oto.2015.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tendon injuries like tendinopathy are a serious healthcare problem in the United States. However, current treatments for tendon injuries are largely palliative. Biologics treatments, including tendon stem/progenitor cells (TSCs) and platelet rich plasma (PRP) hold great potential to effectively treat tendon injuries. TSCs are tendon specific stem cells and have the ability to differentiate into tenocytes, the resident tendon cells responsible for tendon homeostasis and tendon repair in case of an injury. TSCs can also self-renew and thus can replenish the tendon with tendon cells (TSCs and tenocytes) to maintain a healthy tendon. The action of PRP can be complementary; PRP can augment and accelerate tendon healing by supplying abundant growth factors contained in platelets, and fibrin matrix, which functions as a natural conducive scaffold to facilitate tissue healing. This article provides a summary of the findings in recent basic and clinical studies on the applications of TSCs and PRP to the treatment of tendon injuries. It also outlines the challenges facing their applications in clinical settings. In particular, the controversy surrounding the efficacy of PRP treatment for tendon injuries are analyzed and solutions are suggested.
Collapse
Affiliation(s)
- James H-C Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Xavier Nirmala
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
15
|
Şen B, Güler S, Çeçen B, Kumtepe E, Bağrıyanık A, Özkal S, Ali Özcan M, Özsan H, Şanlı N, Tatari MH. The Effect of Autologous Platelet Rich Plasma in the Treatment of Achilles Tendon Ruptures: An Experimental Study on Rabbits. Balkan Med J 2016; 33:94-101. [PMID: 26966624 DOI: 10.5152/balkanmedj.2015.15549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/03/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Achilles tendon ruptures are characterized by a long recovery period, high re-rupture rate and late return to work. To overcome these difficulties and augment tendon repair, many agents have been used. AIMS To determine the effect of autologous platelet rich plasma (PRP) in the treatment of Achilles tendon ruptures in rabbits. STUDY DESIGN Animal experimentation. METHODS The study included 14 New Zealand albino rabbits that were divided randomly into 2 groups, A and B, each containing seven rabbits. On day zero, all 28 Achilles tendons were tenotomized and repaired. In group A, the tendons were injected with PRP post-surgery, whereas those in group B were left untreated. On day 28, the right tendons in both groups were examined histopathologically via both light and electron microscopy, and the left tendons were subjected to biomechanical testing. RESULTS The histological and biomechanical findings in both light and electron microscopy in group A were better than those in group B, but the difference was not significant. According to Tang's scale, the mean value in Group A was 3.57, while it was 3.0 in Group B. The mean value of Group A for the length of collagen bands was 48.09 nm while the mean value of Group B was 46.58 nm (p=0.406). In biomechanical tests, although stiffness values were higher in group A, the difference between groups was not significant. In addition, maximum load values did not differ between groups A and B. CONCLUSION PRP had no effect on the healing process 28 days post-Achilles tendon rupture.
Collapse
Affiliation(s)
- Baran Şen
- Department of Orthopaedics and Traumatology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Serkan Güler
- Department of Orthopaedics and Traumatology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Berivan Çeçen
- Department of Biomechanics, Dokuz Eylül University Institute of Health Science, İzmir, Turkey
| | - Erdem Kumtepe
- Department of Biomechanics, Dokuz Eylül University Institute of Health Science, İzmir, Turkey
| | - Alper Bağrıyanık
- Department of Histology and Embriology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Sermin Özkal
- Department of Pathology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - M Ali Özcan
- Department of Hematology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Hayri Özsan
- Department of Hematology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Namık Şanlı
- Department of Hematology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - M Hasan Tatari
- Department of Orthopaedics and Traumatology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
16
|
Decellularized and Engineered Tendons as Biological Substitutes: A Critical Review. Stem Cells Int 2016; 2016:7276150. [PMID: 26880985 PMCID: PMC4736572 DOI: 10.1155/2016/7276150] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/10/2015] [Indexed: 12/18/2022] Open
Abstract
Tendon ruptures are a great burden in clinics. Finding a proper graft material as a substitute for tendon repair is one of the main challenges in orthopaedics, for which the requirement of a biological scaffold would be different for each clinical application. Among biological scaffolds, the use of decellularized tendon-derived matrix increasingly represents an interesting approach to treat tendon ruptures. We analyzed in vitro and in vivo studies focused on the development of efficient protocols for the decellularization and for the cell reseeding of the tendon matrix to obtain medical devices for tendon substitution. Our review considered also the proper tendon source and preclinical animal models with the aim of entering into clinical trials. The results highlight a wide panorama in terms of allogenic or xenogeneic tendon sources, specimen dimensions, physical or chemical decellularization techniques, and the cell type variety for reseeding from terminally differentiated to undifferentiated mesenchymal stem cells and their static or dynamic culture employed to generate implantable constructs tested in different animal models. We try to identify the most efficient approach to achieve an optimal biological scaffold for biomechanics and intrinsic properties, resembling the native tendon and being applicable in clinics in the near future, with particular attention to the Achilles tendon substitution.
Collapse
|
17
|
Kuffler DP. Platelet-Rich Plasma Promotes Axon Regeneration, Wound Healing, and Pain Reduction: Fact or Fiction. Mol Neurobiol 2015; 52:990-1014. [PMID: 26048672 DOI: 10.1007/s12035-015-9251-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/25/2022]
Abstract
Platelet-rich plasma (PRP) has been tested in vitro, in animal models, and clinically for its efficacy in enhancing the rate of wound healing, reducing pain associated with injuries, and promoting axon regeneration. Although extensive data indicate that PRP-released factors induce these effects, the claims are often weakened because many studies were not rigorous or controlled, the data were limited, and other studies yielded contrary results. Critical to assessing whether PRP is effective are the large number of variables in these studies, including the method of PRP preparation, which influences the composition of PRP; type of application; type of wounds; target tissues; and diverse animal models and clinical studies. All these variables raise the question of whether one can anticipate consistent influences and raise the possibility that most of the results are correct under the circumstances where PRP was tested. This review examines evidence on the potential influences of PRP and whether PRP-released factors could induce the reported influences and concludes that the preponderance of evidence suggests that PRP has the capacity to induce all the claimed influences, although this position cannot be definitively argued. Well-defined and rigorously controlled studies of the potential influences of PRP are required in which PRP is isolated and applied using consistent techniques, protocols, and models. Finally, it is concluded that, because of the purported benefits of PRP administration and the lack of adverse events, further animal and clinical studies should be performed to explore the potential influences of PRP.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd. Del Valle, San Juan, 00901, Puerto Rico,
| |
Collapse
|
18
|
New and emerging strategies in platelet-rich plasma application in musculoskeletal regenerative procedures: general overview on still open questions and outlook. BIOMED RESEARCH INTERNATIONAL 2015; 2015:846045. [PMID: 26075269 PMCID: PMC4436449 DOI: 10.1155/2015/846045] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
Abstract
Despite its pervasive use, the clinical efficacy of platelet-rich plasma (PRP) therapy and the different mechanisms of action have yet to be established. This overview of the literature is focused on the role of PRP in bone, tendon, cartilage, and ligament tissue regeneration considering basic science literature deriving from in vitro and in vivo studies. Although this work provides evidence that numerous preclinical studies published within the last 10 years showed promising results concerning the application of PRP, many key questions remain unanswered and controversial results have arisen. Additional preclinical studies are needed to define the dosing, timing, and frequency of PRP injections, different techniques for delivery and location of delivery, optimal physiologic conditions for injections, and the concomitant use of recombinant proteins, cytokines, additional growth factors, biological scaffolds, and stems cells to develop optimal treatment protocols that can effectively treat various musculoskeletal conditions.
Collapse
|
19
|
Williams PN, Moran G, Bradley JP, S ElAttrache N, Dines JS. Platelet-rich plasma and other cellular strategies in orthopedic surgery. Curr Rev Musculoskelet Med 2015; 8:32-39. [PMID: 25576070 DOI: 10.1007/s12178-014-9246-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The use of biologics in the treatment of musculoskeletal disease has become increasingly more common as research studies continue to provide further elucidation of their mechanisms in healing. Platelet-rich plasma, patches, growth factors, and stem cells are among the many biologics under active investigation and have varying levels of success in augmenting surgical or nonoperative interventions. However, the limitations of these treatments exist, and clear guidelines for their indications and application have yet to be established. Well-designed clinical trials will help determine the appropriate future use of biologics to ensure consistent outcomes.
Collapse
Affiliation(s)
- Phillip N Williams
- Division of Sports Medicine and Shoulder Surgery, Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA.
| | - George Moran
- Division of Sports Medicine and Shoulder Surgery, Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA
| | - James P Bradley
- Center for Sports Medicine, University of Pittsburgh Medical Center, 3200 Water Street, South Side, Pittsburgh, PA, 15203, USA
| | - Neal S ElAttrache
- Kerlan Jobe Orthopaedic Clinic, 6801 Park Terrace, Suite 1400, Los Angeles, CA, 90045, USA
| | - Joshua S Dines
- Division of Sports Medicine and Shoulder Surgery, Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10021, USA
| |
Collapse
|
20
|
Abstract
Injuries of the Achilles tendon are relatively common with potentially devastating outcomes. Healing Achilles tendons form a fibrovascular scar resulting in a tendon which may be mechanically weaker than the native tendon. The resulting strength deficit causes a high risk for reinjury and other complications. Treatments using biologics aim to restore the normal properties of the native tendon and reduce the risk of rerupture and maximize tendon function. The purpose of this review was to summarize the current findings of various therapies using biologics in an attempt to improve the prognosis of Achilles tendon ruptures and tendinopathies. A PubMed search was performed using specific search terms. The search was open for original manuscripts and review papers limited to publication within the last 10 years. From these searches, papers were included in the review if they investigated the effects of biological augmentation on Achilles tendon repair or healing. Platelet-rich plasma may assist in the healing process of Achilles tendon ruptures, while the evidence to support its use in the treatment of chronic Achilles tendinopathies remains insufficient. The use of growth factors such as hepatocyte growth factor, recombinant human platelet-derived growth factor-BB, interleukin-6, and transforming growth factor beta as well as several bone morphogenetic proteins have shown promising results for Achilles tendon repair. In vitro and preclinical studies have indicated the potential effectiveness of bone marrow aspirate as well. Stem cells also have positive effects on Achilles tendon healing, particularly during the early phases. Polyhydroxyalkanoates (PHA), decellularized tendon tissue, and porcine small intestinal submucosa (SIS) are biomaterials which have shown promising results as scaffolds used in Achilles tendon repair. The application of biological augmentation techniques in Achilles tendon repair appears promising; however, several techniques require further investigation to evaluate their clinical application.
Collapse
Affiliation(s)
- Evan Shapiro
- Orthopedics Department, Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Daniel Grande
- Orthopedics Department, Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
| | - Mark Drakos
- Orthopedics Department, Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| |
Collapse
|
21
|
Abstract
Wound healing is a staged process which involves the activity of leukocytes and platelets. For this process to work efficiently, the platelets play a vital role. The growth factors present in platelets are important to guide the regenerating cells to the area of healing. Platelet-rich-fibrin (PRF) is one such material that holds on to these growth factors enmeshed in the fibrin network resulting in their sustained release over a period of time that can accelerate the wound healing process. With this knowledge, research has been carried out for a past few years for the clinical application of PRF. Various platelet concentrates have been studied including the platelet-rich-plasma (PRP). However, the short duration of cytokine release and its poor mechanical properties have resulted in the search of a new material with adequate properties for clinical application and ease of preparation. PRF has found a place in the regenerative field owing to its advantages over PRP. This review focuses on the properties and various applications of PRF in the clinical practice.
Collapse
Affiliation(s)
- Sujeet Vinayak Khiste
- Department of Periodontology, Tatyasaheb Kore Dental College and Research Centre, New Pargaon, Kolhapur, Maharashtra 416137, India
| | - Ritam Naik Tari
- Department of Periodontology, Tatyasaheb Kore Dental College and Research Centre, New Pargaon, Kolhapur, Maharashtra 416137, India
| |
Collapse
|
22
|
Fernández-Sarmiento JA, Domínguez JM, Granados MM, Morgaz J, Navarrete R, Carrillo JM, Gómez-Villamandos RJ, Muñoz-Rascón P, Martín de Las Mulas J, Millán Y, García-Balletbó M, Cugat R. Histological study of the influence of plasma rich in growth factors (PRGF) on the healing of divided Achilles tendons in sheep. J Bone Joint Surg Am 2013; 95:246-55. [PMID: 23389788 DOI: 10.2106/jbjs.k.01659] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The use of plasma rich in growth factors (PRGF) has been proposed to improve the healing of Achilles tendon injuries, but there is debate about the effectiveness of this therapy. The objective of the present study was to evaluate the histological effects of PRGF, which is a type of leukocyte-poor platelet-rich plasma, on tendon healing. METHODS The Achilles tendons of twenty-eight sheep were divided surgically. The animals were randomly divided into four groups of seven animals each. The repaired tendons in two groups received an infiltration of PRGF intraoperatively and every week for the following three weeks under ultrasound guidance. The tendons in the other two groups received injections with saline solution. The animals in one PRGF group and one saline solution group were killed at four weeks, and the animals in the remaining two groups were killed at eight weeks. The Achilles tendons were examined histologically, and the morphometry of fibroblast nuclei was calculated. RESULTS The fibroblast nuclei of the PRGF-treated tendons were more elongated and more parallel to the tendon axis than the fibroblast nuclei of the tendons in the saline solution group at eight weeks. PRGF-treated tendons showed more packed and better oriented collagen bundles at both four and eight weeks. In addition to increased maturation of the collagen structure, fibroblast density was significantly lower in PRGF-infiltrated tendons. PRGF-treated tendons exhibited faster vascular regression than tendons in the control groups, as demonstrated by a lower vascular density at eight weeks. CONCLUSIONS PRGF was associated with histological changes consistent with an accelerated early healing process in repaired Achilles tendons in sheep after experimental surgical disruption. PRGF-treated tendons showed improvements in the morphometric features of fibroblast nuclei, suggesting a more advanced stage of healing. At eight weeks, histological examination revealed more mature organization of collagen bundles, lower vascular densities, and decreased fibroblast densities in PRGF-treated tendons than in tendons infiltrated with saline solution. These findings were consistent with a more advanced stage of the healing process. CLINICAL IMPLICATIONS Based on the findings in this animal model, PRGF infiltration may improve the early healing process of surgically repaired Achilles tendons.
Collapse
Affiliation(s)
- J Andrés Fernández-Sarmiento
- Department of Animal Medicine and Surgery, University of Córdoba, Campus de Rabanales, Ctra. Madrid - Km 396, 14014, Córdoba, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sadoghi P, Rosso C, Valderrabano V, Leithner A, Vavken P. The role of platelets in the treatment of Achilles tendon injuries. J Orthop Res 2013; 31:111-8. [PMID: 22886696 DOI: 10.1002/jor.22199] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/09/2012] [Indexed: 02/04/2023]
Abstract
To systematically review the current in-vivo evidence for the use of platelet-concentrates (PRP) in the treatment of Achilles tendinopathy and Achilles tendon ruptures in animal models and human applications. A systematic search of PubMed, CINAHL, EMBASE, CCTR, and CDSR was performed for animal and human studies on the effect of platelet-concentrates in the treatment of Achilles tendinopathy and ruptures using the terms "Achilles tendon and platelet." The systematic search revealed a total of 149 papers. After excluding duplicates and cases of overlapping data, studies not focusing on in vivo evidence in terms of treatment or outcome, studies without any intervention, studies with unacceptable high attrition, one Chinese and one Swedish study, the remaining 14 manuscripts were included. The key finding of our study is evidence in support of a statistically significant effect of platelet concentrates in the treatment of Achilles tendon ruptures in vivo in animal models and human application, consistent with a medium to large sized effect. This effect is most likely attributable to fastened and enhanced scar tissue maturation. There was no evidence for a beneficial effect of platelets in Achilles tendinopathy.
Collapse
Affiliation(s)
- Patrick Sadoghi
- Department of Orthopaedic Surgery, Medical University Graz, Graz, Austria
| | | | | | | | | |
Collapse
|
24
|
Soomekh DJ. Current concepts for the use of platelet-rich plasma in the foot and ankle. Clin Podiatr Med Surg 2011; 28:155-70. [PMID: 21276524 DOI: 10.1016/j.cpm.2010.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Platelet-rich plasma (PRP) injections have been used and studied since the 1970s. Its use has become more popularized over the last several years in the treatment of foot and ankle injuries. Platelets are a normal product found in the clotting cascade and inflammatory process of healing. They produce granules that release growth factors that promote healing. PRP works by increasing the concentration of platelets, thereby increasing the concentration of growth factors and increasing healing potential. PRP has an advantage over many tissue engineering products in that it is autologous. It has been studied and used for the treatment of tendon injuries, chronic wounds, ligamentous injuries, cartilage injuries, muscle injuries, and bone augmentation. The results from in vitro and in vivo studies in foot and ankle injuries are promising. The applications for treatment in the foot and ankle may be broader than once thought.
Collapse
Affiliation(s)
- David J Soomekh
- University Foot and Ankle Institute, 2121 Wilshire Boulevard, #101 Santa Monica, CA 90403, USA.
| |
Collapse
|
25
|
Abstract
Platelet-rich plasma (PRP) is derived from centrifuging whole blood, has a platelet concentration higher than that of the whole blood, is the cellular component of plasma that settles after centrifugation, and contains numerous growth factors. There is increasing interest in the sports medicine and athletic community about providing endogenous growth factors directly to the injury site, using autologous blood products such as PRP, to potentially facilitate healing and earlier return to sport after musculoskeletal injury. Despite this interest, and apparent widespread use, there is a lack of high-level evidence regarding randomized clinical trials assessing the efficacy of PRP in treating ligament and tendon injuries. Basic science and animal studies and small case series reports on PRP injections for ligament or tendon injuries, but few randomized controlled clinical trials have assessed the efficacy of PRP injections and none have demonstrated scientific evidence of efficacy. Scientific studies should be performed to assess clinical indications, efficacy, and safety of PRP, and this will require appropriately powered randomized controlled trials with adequate and validated clinical and functional outcome measures and sound statistical analysis. Other aspects of PRP use that need to be determined are (1) volume of injection/application, (2) most effective preparation, (3) buffering/activation, (4) injection technique (1 depot vs multiple depots), (5) timing of injection to injury, (6) single application versus series of injections, and (7) the most effective rehabilitation protocol to use after PRP injection. With all proposed treatments, the doctor and the patient should weigh up potential benefits of treatment, potential risks, and costs. Based on the limited publications to date and theoretical considerations, the potential risks involved with PRP are fortunately very low. However, benefits remain unproven to date, particularly when comparing PRP with other injections for ligament and tendon injuries.
Collapse
|
26
|
Soomekh DJ. New technology and techniques in the treatment of foot and ankle injuries. Clin Podiatr Med Surg 2011; 28:19-41. [PMID: 21276516 DOI: 10.1016/j.cpm.2010.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The advancement of new technologies in the treatment of foot and ankle injuries seems exponential over the last several years. As surgeons expand their knowledge of the pathology and improve their treatment techniques, they come upon new and different ways to treat the same pathologic conditions. Foot and ankle injuries are commonplace in competitive sports. This article provides an overview of the diagnosis and treatment, including surgical techniques, of common foot and ankle injuries.
Collapse
Affiliation(s)
- David J Soomekh
- University Foot and Ankle Institute, 2121 Wilshire Boulevard, Santa Monica, CA 90403, USA.
| |
Collapse
|