1
|
Horvath D, Basler M. PLGA Particles in Immunotherapy. Pharmaceutics 2023; 15:pharmaceutics15020615. [PMID: 36839937 PMCID: PMC9965784 DOI: 10.3390/pharmaceutics15020615] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) particles are a widely used and extensively studied drug delivery system. The favorable properties of PLGA such as good bioavailability, controlled release, and an excellent safety profile due to the biodegradable polymer backbone qualified PLGA particles for approval by the authorities for the application as a drug delivery platform in humas. In recent years, immunotherapy has been established as a potent treatment option for a variety of diseases. However, immunomodulating drugs rely on targeted delivery to specific immune cell subsets and are often rapidly eliminated from the system. Loading of PLGA particles with drugs for immunotherapy can protect the therapeutic compounds from premature degradation, direct the drug delivery to specific tissues or cells, and ensure sustained and controlled drug release. These properties present PLGA particles as an ideal platform for immunotherapy. Here, we review recent advances of particulate PLGA delivery systems in the application for immunotherapy in the fields of allergy, autoimmunity, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
- Correspondence:
| |
Collapse
|
2
|
Li W, Ye L, Huang Y, Zhou F, Wu C, Wu F, He Y, Li X, Wang H, Xiong A, Gao G, Wang L, Su C, Ren S, Chen X, Zhou C. Characteristics of Notch signaling pathway and its correlation with immune microenvironment in SCLC. Lung Cancer 2022; 167:25-33. [DOI: 10.1016/j.lungcan.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/10/2022] [Accepted: 03/27/2022] [Indexed: 12/24/2022]
|
3
|
Sethi V, Vitiello GA, Saxena D, Miller G, Dudeja V. The Role of the Microbiome in Immunologic Development and its Implication For Pancreatic Cancer Immunotherapy. Gastroenterology 2019; 156:2097-2115.e2. [PMID: 30768986 DOI: 10.1053/j.gastro.2018.12.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Our understanding of the microbiome and its role in immunity, cancer initiation, and cancer progression has evolved significantly over the past century. The "germ theory of cancer" was first proposed in the early 20th century, and shortly thereafter the bacterium Helicobacter pylori, and later Fusobacterium nucleatum, were implicated in the development of gastric and colorectal cancers, respectively. However, with the development of reliable mouse models and affordable sequencing technologies, the most fascinating aspect of the microbiome-cancer relationship, where microbes undermine cancer immune surveillance and indirectly promote oncogenesis, has only recently been described. In this review, we highlight the essential role of the microbiome in immune system development and maturation. We review how microbe-induced immune activation promotes oncogenesis, focusing particularly on pancreatic carcinogenesis, and show that modulation of the microbiome augments the anti-cancer immune response and enables successful immunotherapy against pancreatic cancer.
Collapse
Affiliation(s)
- Vrishketan Sethi
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Gerardo A Vitiello
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Deepak Saxena
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York; Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Vikas Dudeja
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida.
| |
Collapse
|
4
|
Garg B, Giri B, Modi S, Sethi V, Castro I, Umland O, Ban Y, Lavania S, Dawra R, Banerjee S, Vickers S, Merchant NB, Chen SX, Gilboa E, Ramakrishnan S, Saluja A, Dudeja V. NFκB in Pancreatic Stellate Cells Reduces Infiltration of Tumors by Cytotoxic T Cells and Killing of Cancer Cells, via Up-regulation of CXCL12. Gastroenterology 2018; 155:880-891.e8. [PMID: 29909021 PMCID: PMC6679683 DOI: 10.1053/j.gastro.2018.05.051] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/02/2018] [Accepted: 05/19/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Immunotherapies are ineffective against pancreatic cancer. We investigated whether the activity of nuclear factor (NF)κB in pancreatic stromal cells contributes to an environment that suppresses antitumor immune response. METHODS Pancreata of C57BL/6 or Rag1-/- mice were given pancreatic injections of a combination of KrasG12D/+; Trp53 R172H/+; Pdx-1cre (KPC) pancreatic cancer cells and pancreatic stellate cells (PSCs) extracted from C57BL/6 (control) or mice with disruption of the gene encoding the NFκB p50 subunit (Nfkb1 or p50-/- mice). Tumor growth was measured as an endpoint. Other mice were given injections of Lewis lung carcinoma (LLC) lung cancer cells or B16-F10 melanoma cells with control or p50-/- fibroblasts. Cytotoxic T cells were depleted from C57BL/6 mice by administration of antibodies against CD8 (anti-CD8), and growth of tumors from KPC cells, with or without control or p50-/- PSCs, was measured. Some mice were given an inhibitor of CXCL12 (AMD3100) and tumor growth was measured. T-cell migration toward cancer cells was measured using the Boyden chamber assay. RESULTS C57BL/6 mice coinjected with KPC cells (or LLC or B16-F10 cells) and p50-/- PSCs developed smaller tumors than mice given injections of the cancer cells along with control PSCs. Tumors that formed when KPC cells were injected along with p50-/- PSCs had increased infiltration by activated cytotoxic T cells along with decreased levels of CXCL12, compared with tumors grown from KPC cells injected along with control PSCs. KPC cells, when coinjected with control or p50-/- PSCs, developed the same-size tumors when CD8+ T cells were depleted from C57BL/6 mice or in Rag1-/- mice. The CXCL12 inhibitor slowed tumor growth and increased tumor infiltration by cytotoxic T cells. In vitro expression of p50 by PSCs reduced T-cell migration toward and killing of cancer cells. When cultured with cancer cells, control PSCs expressed 10-fold higher levels of CXCL12 than p50-/- PSCs. The CXCL12 inhibitor increased migration of T cells toward KPC cells in culture. CONCLUSIONS In studies of mice and cell lines, we found that NFκB activity in PSCs promotes tumor growth by increasing expression of CXCL12, which prevents cytotoxic T cells from infiltrating the tumor and killing cancer cells. Strategies to block CXCL12 in pancreatic tumor cells might increase antitumor immunity.
Collapse
Affiliation(s)
- Bharti Garg
- Department of Surgery, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida
| | - Bhuwan Giri
- Department of Surgery, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida
| | - Shrey Modi
- Department of Surgery, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida
| | - Vrishketan Sethi
- Department of Surgery, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida
| | - Iris Castro
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida
| | - Oliver Umland
- Diabetes Research Institute, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida
| | - Yuguang Ban
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida
| | - Shweta Lavania
- Department of Surgery, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida
| | - Rajinder Dawra
- Department of Surgery, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida
| | - Sulagna Banerjee
- Department of Surgery, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida
| | - Selwyn Vickers
- Department of Surgery, University of Alabama, Birmingham, Alabama
| | - Nipun B Merchant
- Department of Surgery, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida
| | - Steven Xi Chen
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida
| | - Eli Gilboa
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida
| | - Sundaram Ramakrishnan
- Department of Surgery, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida
| | - Ashok Saluja
- Department of Surgery, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida.
| | - Vikas Dudeja
- Department of Surgery, Sylvester Comprehensive Cancer Center and University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
5
|
Fellermeier-Kopf S, Gieseke F, Sahin U, Müller D, Pfizenmaier K, Kontermann RE. Duokines: a novel class of dual-acting co-stimulatory molecules acting in cis or trans. Oncoimmunology 2018; 7:e1471442. [PMID: 30228940 PMCID: PMC6140609 DOI: 10.1080/2162402x.2018.1471442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 11/23/2022] Open
Abstract
Co-stimulatory signals induced by ligands of the tumor necrosis factor superfamily (TNFSF) play a central role in T cell activation and have emerged as a promising strategy in cancer immunotherapy. Here, we established a novel class of bifunctional co-stimulatory fusion proteins with the aim to boost T cell activation at the level of T cell – antigen-presenting cell (APC) interaction. These novel dual-acting cytokine fusion proteins were created by connecting two different homotrimeric TNFSF ligands to form homotrimeric bifunctional molecules (Duokines) or by connecting single-chain derivatives of two different homotrimeric TNFSF with a single, flexible linker (single-chain Duokines, scDuokines). By linking the TNFSF ligands 4-1BBL, OX40L and CD27L in all possible combinations, cis-acting Duokines were generated that act on the same or adjacent T cells, while combining CD40L with 4-1BBL, OX40L and CD27L resulted in trans-acting Duokines acting simultaneously on APCs and T cells. In vitro, co-stimulation of T cells was seen for cis- and trans-acting Duokines and scDuokines in an antigen-independent as well as antigen-specific setting. Trans-acting molecules furthermore activated B cells, which represent a subclass of APCs. In a pilot experiment using the syngeneic B16-FAP mouse tumor model scDuokines displayed antitumoral activity in vivo in combination with a primary T cell-activating bispecific antibody, evident from reduced number of lung metastasis compared to the antibody-only treated group. Our data show that the bifunctional, co-stimulatory duokines are capable to enhance T cell-mediated anti-tumor immune responses, suggesting that they can serve as a new class of immuno-stimulatory molecules for use in cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Sina Fellermeier-Kopf
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | | | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
6
|
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol 2018; 53:90-109. [PMID: 29966677 DOI: 10.1016/j.semcancer.2018.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSC's aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.
Collapse
|
7
|
Contreras-Sandoval AM, Merino M, Vasquez M, Trocóniz IF, Berraondo P, Garrido MJ. Correlation between anti-PD-L1 tumor concentrations and tumor-specific and nonspecific biomarkers in a melanoma mouse model. Oncotarget 2018; 7:76891-76901. [PMID: 27764774 PMCID: PMC5363557 DOI: 10.18632/oncotarget.12727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/11/2016] [Indexed: 01/15/2023] Open
Abstract
Blockade of PD-L1 with specific monoclonal antibodies (anti-PD-L1) represents a therapeutic strategy to increase the capability of the immune system to modulate the tumor immune-resistance. The relationship between anti-PD-L1 tumor exposition and anti-tumor effect represents a challenge that has been addressed in this work through the identification of certain biomarkers implicated in the antibody's mechanism of action, using a syngeneic melanoma mouse model. The development of an in-vitro/in-vivo platform has allowed us to investigate the PD-L1 behavior after its blockage with anti-PD-L1 at cellular level and in animals. In-vitro studies showed that the complex PD-L1/anti-PD-L1 was retained mainly at the cell surface. The antibody concentration and time exposure affected directly the recycling or ligand turnover. In-vivo studies showed that anti-PD-L1 was therapeutically active at all stage of the disease, with a rapid onset, a low but durable efficacy and non-relevant toxic effect. This efficacy measured as tumor shrinkage correlated with tumor-specific infiltrating lymphocytes (TILs), which increased as antibody tumor concentrations increased. Both, TILS and antibody concentrations followed similar kinetic patterns, justifying the observed anti-PD-L1 rapid onset. Interestingly, peripheral lymphocytes (PBLs) behave as infiltrating lymphocytes, suggesting that these PBLs might be considered as a possible biomarker for antibody activity.
Collapse
Affiliation(s)
- Ana M Contreras-Sandoval
- School of Pharmacy, Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
| | - María Merino
- School of Pharmacy, Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - Iñaki F Trocóniz
- School of Pharmacy, Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Navarra Institute for Health Research (IdiSNA), Pamplona, Navarra, 31008, Spain
| | - María J Garrido
- School of Pharmacy, Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
8
|
van Kempen LCL, Redpath M, Elchebly M, Klein KO, Papadakis AI, Wilmott JS, Scolyer RA, Edqvist PH, Pontén F, Schadendorf D, van Rijk AF, Michiels S, Dumay A, Helbling-Leclerc A, Dessen P, Wouters J, Stass M, Greenwood CMT, Ghanem GE, van den Oord J, Feunteun J, Spatz A. The protein phosphatase 2A regulatory subunit PR70 is a gonosomal melanoma tumor suppressor gene. Sci Transl Med 2017; 8:369ra177. [PMID: 27974665 DOI: 10.1126/scitranslmed.aai9188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 08/31/2016] [Accepted: 10/10/2016] [Indexed: 11/02/2022]
Abstract
Male gender is independently and significantly associated with poor prognosis in melanoma of all clinical stages. The biological underpinnings of this sex difference remain largely unknown, but we hypothesized that gene expression from gonosomes (sex chromosomes) might play an important role. We demonstrate that loss of the inactivated X chromosome in melanomas arising in females is strongly associated with poor distant metastasis-free survival, suggesting a dosage benefit from two X chromosomes. The gonosomal protein phosphatase 2 regulatory subunit B, beta (PPP2R3B) gene is located on the pseudoautosomal region (PAR) of the X chromosome in females and the Y chromosome in males. We observed that, despite its location on the PAR that predicts equal dosage across genders, PPP2R3B expression was lower in males than in females and was independently correlated with poor clinical outcome. PPP2R3B codes for the PR70 protein, a regulatory substrate-recognizing subunit of protein phosphatase 2A. PR70 decreased melanoma growth by negatively interfering with DNA replication and cell cycle progression through its role in stabilizing the cell division cycle 6 (CDC6)-chromatin licensing and DNA replication factor 1 (CDT1) interaction, which delays the firing of origins of DNA replication. Hence, PR70 functionally behaves as an X-linked tumor suppressor gene.
Collapse
Affiliation(s)
- Léon C L van Kempen
- Department of Pathology, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Margaret Redpath
- Department of Pathology, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Mounib Elchebly
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | | | - Andreas I Papadakis
- Department of Pathology, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - James S Wilmott
- Melanoma Institute Australia, Royal Prince Alfred Hospital, and University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, Royal Prince Alfred Hospital, and University of Sydney, Sydney, New South Wales, Australia
| | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anke F van Rijk
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Stefan Michiels
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France.,Centre for Research in Epidemiology and Population Health (CESP), INSERM, UMR 1018, Université Paris-Sud, Kremlin-Bicetre, France
| | - Anne Dumay
- Centre de Recherche sur l'Inflammation, INSERM, UMR S 1149, Labex Inflamex, Université Paris-Diderot Sorbonne Paris-Cité, Paris, France
| | - Anne Helbling-Leclerc
- CNRS, UMR 8200, Université Paris-Sud, Villejuif, France.,CNRS UMR 8200, Universite Paris-Sud, Gustave Roussy, Villejuif, France
| | - Philippe Dessen
- Hématopoïèse normale et pathologique, INSERM UMR 1170, Université Paris-Sud, Gustave Roussy, Villejuif, France
| | - Jasper Wouters
- Laboratory of Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium.,Laboratory of Computational Biology, VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Marguerite Stass
- Department of Surgical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Celia M T Greenwood
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Ghanem E Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Jean Feunteun
- CNRS UMR 8200, Universite Paris-Sud, Gustave Roussy, Villejuif, France
| | - Alan Spatz
- Department of Pathology, McGill University, Montreal, Quebec, Canada. .,Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Borchers S, Maβlo C, Müller CA, Tahedl A, Volkind J, Nowak Y, Umansky V, Esterlechner J, Frank MH, Ganss C, Kluth MA, Utikal J. Detection of ABCB5 tumour antigen-specific CD8 + T cells in melanoma patients and implications for immunotherapy. Clin Exp Immunol 2017; 191:74-83. [PMID: 28940439 DOI: 10.1111/cei.13053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 01/09/2023] Open
Abstract
ATP binding cassette subfamily B member 5 (ABCB5) has been identified as a tumour-initiating cell marker and is expressed in various malignancies, including melanoma. Moreover, treatment with anti-ABCB5 monoclonal antibodies has been shown to inhibit tumour growth in xenotransplantation models. Therefore, ABCB5 represents a potential target for cancer immunotherapy. However, cellular immune responses against ABCB5 in humans have not been described so far. Here, we investigated whether ABCB5-reactive T cells are present in human melanoma patients and tested the applicability of ABCB5-derived peptides for experimental induction of human T cell responses. Peripheral blood mononuclear cells (PBMNC) isolated from blood samples of melanoma patients (n = 40) were stimulated with ABCB5 peptides, followed by intracellular cytokine staining (ICS) for interferon (IFN)-γ and tumour necrosis factor (TNF)-α. To evaluate immunogenicity of ABCB5 peptides in naive healthy donors, CD8 T cells were co-cultured with ABCB5 antigen-loaded autologous dendritic cells (DC). ABCB5 reactivity in expanded T cells was assessed similarly by ICS. ABCB5-reactive CD8+ T cells were detected ex vivo in 19 of 29 patients, melanoma antigen recognised by T cells (MART-1)-reactive CD8+ T cells in six of 21 patients. In this small, heterogeneous cohort, reactivity against ABCB5 was significantly higher than against MART-1. It occurred significantly more often and independently of clinical characteristics. Reactivity against ABCB5 could be induced in 14 of 16 healthy donors in vitro by repeated stimulation with peptide-loaded autologous DC. As ABCB5-reactive CD8 T cells can be found in the peripheral blood of melanoma patients and an ABCB5-specific response can be induced in vitro in naive donors, ABCB5 could be a new target for immunotherapies in melanoma.
Collapse
Affiliation(s)
- S Borchers
- RHEACELL GmbH & Co. KG, Heidelberg, Germany
| | - C Maβlo
- RHEACELL GmbH & Co. KG, Heidelberg, Germany
| | | | - A Tahedl
- TICEBA GmbH, Heidelberg, Germany
| | | | - Y Nowak
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - V Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | | | - M H Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - C Ganss
- RHEACELL GmbH & Co. KG, Heidelberg, Germany.,TICEBA GmbH, Heidelberg, Germany
| | - M A Kluth
- RHEACELL GmbH & Co. KG, Heidelberg, Germany.,TICEBA GmbH, Heidelberg, Germany
| | - J Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ) and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
10
|
Panosyan EH, Lin HJ, Koster J, Lasky JL. In search of druggable targets for GBM amino acid metabolism. BMC Cancer 2017; 17:162. [PMID: 28245795 PMCID: PMC5331648 DOI: 10.1186/s12885-017-3148-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/16/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Amino acid (AA) pathways may contain druggable targets for glioblastoma (GBM). Literature reviews and GBM database ( http://r2.amc.nl ) analyses were carried out to screen for such targets among 95 AA related enzymes. METHODS First, we identified the genes that were differentially expressed in GBMs (3 datasets) compared to non-GBM brain tissues (5 datasets), or were associated with survival differences. Further, protein expression for these enzymes was also analyzed in high grade gliomas (HGGs) (proteinatlas.org). Finally, AA enzyme and gene expression were compared among the 4 TCGA (The Cancer Genome Atlas) subtypes of GBMs. RESULTS We detected differences in enzymes involved in glutamate and urea cycle metabolism in GBM. For example, expression levels of BCAT1 (branched chain amino acid transferase 1) and ASL (argininosuccinate lyase) were high, but ASS1 (argininosuccinate synthase 1) was low in GBM. Proneural and neural TCGA subtypes had low expression of all three. High expression of all three correlated with worse outcome. ASL and ASS1 protein levels were mostly undetected in high grade gliomas, whereas BCAT1 was high. GSS (glutathione synthetase) was not differentially expressed, but higher levels were linked to poor progression free survival. ASPA (aspartoacylase) and GOT1 (glutamic-oxaloacetic transaminase 1) had lower expression in GBM (associated with poor outcomes). All three GABA related genes -- glutamate decarboxylase 1 (GAD1) and 2 (GAD2) and 4-aminobutyrate aminotransferase (ABAT) -- were lower in mesenchymal tumors, which in contrast showed higher IDO1 (indoleamine 2, 3-dioxygenase 1) and TDO2 (tryptophan 2, 3-diaxygenase). Expression of PRODH (proline dehydrogenase), a putative tumor suppressor, was lower in GBM. Higher levels predicted poor survival. CONCLUSIONS Several AA-metabolizing enzymes that are higher in GBM, are also linked to poor outcome (such as BCAT1), which makes them potential targets for therapeutic inhibition. Moreover, existing drugs that deplete asparagine and arginine may be effective against brain tumors, and should be studied in conjunction with chemotherapy. Last, AA metabolism is heterogeneous in TCGA subtypes of GBM (as well as medulloblastomas and other pediatric tumors), which may translate to variable responses to AA targeted therapies.
Collapse
Affiliation(s)
- Eduard H. Panosyan
- Los Angeles Biomedical Research Institute and Department of Pediatrics at Harbor-UCLA Medical Center, Box 468, 1000 W. Carson Street, N25, Torrance, CA 90509 USA
| | - Henry J. Lin
- Los Angeles Biomedical Research Institute and Department of Pediatrics at Harbor-UCLA Medical Center, Box 468, 1000 W. Carson Street, N25, Torrance, CA 90509 USA
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Joseph L. Lasky
- Los Angeles Biomedical Research Institute and Department of Pediatrics at Harbor-UCLA Medical Center, Box 468, 1000 W. Carson Street, N25, Torrance, CA 90509 USA
| |
Collapse
|
11
|
Weichselbaum RR, Liang H, Deng L, Fu YX. Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol 2017; 14:365-379. [DOI: 10.1038/nrclinonc.2016.211] [Citation(s) in RCA: 751] [Impact Index Per Article: 93.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Kalinski P, Talmadge JE. Tumor Immuno-Environment in Cancer Progression and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:1-18. [PMID: 29275461 DOI: 10.1007/978-3-319-67577-0_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The approvals of Provenge (Sipuleucel-T), Ipilimumab (Yervoy/anti-CTLA-4) and blockers of the PD-1 - PD-L1/PD-L2 pathway, such as nivolumab (Opdivo), pembrolizumab (Keytruda), or atezolizumab (Tecentriq), have established immunotherapy as a key component of comprehensive cancer care. Further, murine mechanistic studies and studies in immunocompromised patients have documented the critical role of immunity in effectiveness of radio- and chemotherapy. However, in addition to the ability of the immune system to control cancer progression, it can also promote tumor growth, via regulatory T cells (Tregs), myeloid-derived dendritic cells (MDSCs) and tumor associated macrophages (TAM), which can enhance survival of cancer cells directly or via the regulation of the tumor stroma.An increasing body of evidence supports a central role for the tumor microenvironment (TME) and the interactions between tumor stroma, infiltrating immune cells and cancer cells during the induction and effector phase of anti-cancer immunity, and the overall effectiveness of immunotherapy and other forms of cancer treatment. In this chapter, we discuss the roles of key TME components during tumor progression, metastatic process and cancer therapy-induced tumor regression, as well as opportunities for their modulation to enhance the overall therapeutic benefit.
Collapse
Affiliation(s)
- Pawel Kalinski
- Department of Medicine and Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - James E Talmadge
- University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
13
|
Diesendruck Y, Benhar I. Novel immune check point inhibiting antibodies in cancer therapy—Opportunities and challenges. Drug Resist Updat 2017; 30:39-47. [DOI: 10.1016/j.drup.2017.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 02/06/2023]
|
14
|
Silvestri I, Cattarino S, Giantulli S, Nazzari C, Collalti G, Sciarra A. A Perspective of Immunotherapy for Prostate Cancer. Cancers (Basel) 2016; 8:cancers8070064. [PMID: 27399780 PMCID: PMC4963806 DOI: 10.3390/cancers8070064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 12/24/2022] Open
Abstract
In cancer patients, the immune system is often altered with an excess of inhibitory factors, such as immunosuppressive cytokines, produced by regulatory T cells (Treg) or myeloid-derived suppressor cells (MDSC). The manipulation of the immune system has emerged as one of new promising therapies for cancer treatment, and also represents an attractive strategy to control prostate cancer (PCa). Therapeutic cancer vaccines and immune checkpoint inhibitors have been the most investigated in clinical trials. Many trials are ongoing to define the effects of immune therapy with established treatments: androgen deprivation therapy (ADT) and chemotherapy (CT) or radiotherapy (RT). This article discusses some of these approaches in the context of future treatments for PCa.
Collapse
Affiliation(s)
- Ida Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy.
| | - Susanna Cattarino
- Department of Urology, Sapienza University of Rome, Rome 00161, Italy.
| | - Sabrina Giantulli
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy.
| | - Cristina Nazzari
- Department of Public Health hand Infectious Diseases, "Sapienza" University of Rome, Rome 00185, Italy.
| | - Giulia Collalti
- Medicine of Systems, Rheumatology, Allergology and Clinical Immunology, Translational Medicine of the University Tor Vergata, Rome 00133, Italy.
| | | |
Collapse
|
15
|
Schummer V, Flindt S, Hinz T. [Tumor vaccines and peptide-loaded dendritic cells (DCs)]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2016; 58:1254-8. [PMID: 26349562 DOI: 10.1007/s00103-015-2242-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vaccines are usually intended to prevent the spread of infectious diseases. Due to increasing knowledge about the immune system and its role in malignant disease, the development of therapeutic vaccines, which are intended to treat established tumors, has begun. For the induction of therapeutic immunity towards tumors, either tumor-specific or overexpressed antigens can be used. Tumor-specific antigens are mainly or exclusively expressed in tumors. It is assumed that they can thus be more easily recognized by the immune system than overexpressed antigens. Overexpressed antigens are expressed in both tumors and healthy tissues and therefore bear the risk of autoimmunity. In this review article, we discuss different approaches of therapeutic cancer vaccinations based on cells and on other drug substances. Moreover, we address the possibilities of authorizing cancer vaccines in the EU and in Germany.
Collapse
Affiliation(s)
- Verena Schummer
- Paul-Ehrlich-Institut, Fachgebiet Therapeutische Impfstoffe, Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Sven Flindt
- Paul-Ehrlich-Institut, Fachgebiet Therapeutische Impfstoffe, Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | - Thomas Hinz
- Paul-Ehrlich-Institut, Fachgebiet Therapeutische Impfstoffe, Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland.
| |
Collapse
|
16
|
Abstract
Tumor cells could fundamentally be recognized and eliminated by the immune system but malignant cells are able to escape the immune surveillance system. The idea of immunotherapy of cancer is to activate, modulate and amplify the host immune response or to genetically equip the immune repertoire of patients with anti-tumor specificities and effectors. In recent years, a variety of promising immunotherapy strategies have been developed, such as bispecific, multispecific and immunoregulatory antibodies, gene-modified T lymphocytes and tumor vaccines. Some drugs have already been approved and others are available for patients in clinical trials. This article presents the current anti-tumor immune strategies and their molecular basis. Even though further research is needed in some areas, such as the establishment of biomarkers for targeted therapy, duration of therapeutic activity and compatibility of combined strategies, cancer immunotherapy is likely to be a key component in oncological treatment concepts in the very near future.
Collapse
Affiliation(s)
- K Dietrich
- III. Medizinische Klinik und Poliklinik, Universitätsmedizin Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland,
| | | |
Collapse
|
17
|
Xue M, Sun H, Cao Y, Wang G, Meng Y, Wang D, Hong Y. Mulberry leaf polysaccharides modulate murine bone-marrow-derived dendritic cell maturation. Hum Vaccin Immunother 2016; 11:946-50. [PMID: 25830302 DOI: 10.1080/21645515.2015.1011977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Various components of mulberry leaves, such as iminosugars, flavonoids and polysaccharides, have been reported to exert anti-diabetic activity. The purpose of our present study was to examine the modulating effect of mulberry leaf polysaccharides (MLPs) on murine bone-marrow-derived dendritic cells (BMDCs). The ultrastructure, phenotype and functional maturation of BMDCs were studied using transmission electron microscopy (TEM), flow cytometry (FCM), and tested for phagocytosis, acid phosphatase (ACP) activity using an enzyme linked immunosorbent assay (ELISA). Our results demonstrated that MLPs could markedly induce BMDC maturation by up-regulating the expression of membrane phenotypic markers, such as CD80, CD86, CD83,CD40, and MHC II, down-regulating phagocytosis and ACP activity, and by enhancing the production of interleukin 12 (IL-12) and tumor necrosis factor α (TNF-α) secreted by BMDCs. We therefore concluded that MLPs can positively modulate BMDCs.
Collapse
Key Words
- ACP, acidic phosphatase
- BMDCs, bone-marrow-derived dendritic cells
- DAB, 3, 3′-diaminobenzidine
- FCM, flow cytometry
- LPS, lipopolysaccharide
- MACS, magnetic activated cell sorting
- MLP, mulberry leaf polysaccharides
- MTS, methyl tolyl sulfide
- TEM, transmission electron microscopy
- bone-marrow-derived dendritic cells
- immunoregulation
- maturation
- mulberry leaf polysaccharides
Collapse
Affiliation(s)
- Ming Xue
- a Department of Endodontics ; School of Stomatology; China Medical University ; Shenyang , China
| | | | | | | | | | | | | |
Collapse
|
18
|
Prell RA, Halpern WG, Rao GK. Perspective on a Modified Developmental and Reproductive Toxicity Testing Strategy for Cancer Immunotherapy. Int J Toxicol 2016; 35:263-73. [DOI: 10.1177/1091581815625596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intent of cancer immunotherapy (CIT) is to generate and enhance T-cell responses against tumors. The tumor microenvironment establishes several inhibitory pathways that lead to suppression of the local immune response, which is permissive for tumor growth. The efficacy of different CITs, alone and in combination, stems from reinvigorating the tumor immune response via several mechanisms, including costimulatory agonists, checkpoint inhibitors, and vaccines. However, immune responses to other antigens (self and foreign) may also be enhanced, resulting in potentially undesired effects. In outbred mammalian pregnancies, the fetus expresses paternally derived alloantigens that are recognized as foreign by the maternal immune system. If unchecked or enhanced, maternal immunity to these alloantigens represents a developmental and reproductive risk and thus is a general liability for cancer immunotherapeutic molecules. We propose a tiered approach to confirm this mechanistic reproductive liability for CIT molecules. A rodent allopregnancy model is based on breeding 2 different strains of mice so that paternally derived alloantigens are expressed by the fetus. When tested with a cross-reactive biotherapeutic, small molecule drug, or surrogate molecule, this model should reveal on-target reproductive liabilities if the pathway is involved in maintaining pregnancy. Alternatively, allopregnancy models with genetically modified mice can be interrogated for exquisitely specific biotherapeutics with restricted species reactivity. The allopregnancy model represents a relatively straightforward approach to confirm an expected on-target reproductive risk for CIT molecules. For biotherapeutics, it could potentially replace more complex developmental and reproductive toxicity testing in nonhuman primates when a pregnancy hazard is confirmed or expected.
Collapse
Affiliation(s)
- Rodney A. Prell
- Department of Safety Assessment, Genentech Inc, South San Francisco, CA, USA
| | - Wendy G. Halpern
- Department of Safety Assessment, Genentech Inc, South San Francisco, CA, USA
| | - Gautham K. Rao
- Department of Safety Assessment, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
19
|
Westhoff MA, Marschall N, Debatin KM. Novel Approaches to Apoptosis-Inducing Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:173-204. [PMID: 27558822 DOI: 10.1007/978-3-319-39406-0_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Induction of apoptotic programmed cell death is one of the underlying principles of most current cancer therapies. In this review, we discuss the limitations and drawbacks of this approach and identify three distinct, but overlapping strategies to avoid these difficulties and further enhance the efficacy of apoptosis-inducing therapies. We postulate that the application of multi-targeted small molecule inhibitor cocktails will reduce the risk of the cancer cell populations developing resistance towards therapy. Following from these considerations regarding population genetics and ecology, we advocate the reconsideration of therapeutic end points to maximise the benefits, in terms of quantity and quality of life, for the patients. Finally, combining both previous points, we also suggest an altered focus on the cellular and molecular targets of therapy, i.e. targeting the (cancer cells') interaction with the tumour microenvironment.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | - Nicolas Marschall
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany.
| |
Collapse
|
20
|
Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 2015; 27:450-61. [PMID: 25858804 PMCID: PMC4400238 DOI: 10.1016/j.ccell.2015.03.001] [Citation(s) in RCA: 3169] [Impact Index Per Article: 316.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/17/2015] [Accepted: 03/03/2015] [Indexed: 02/08/2023]
Abstract
The immune system recognizes and is poised to eliminate cancer but is held in check by inhibitory receptors and ligands. These immune checkpoint pathways, which normally maintain self-tolerance and limit collateral tissue damage during anti-microbial immune responses, can be co-opted by cancer to evade immune destruction. Drugs interrupting immune checkpoints, such as anti-CTLA-4, anti-PD-1, anti-PD-L1, and others in early development, can unleash anti-tumor immunity and mediate durable cancer regressions. The complex biology of immune checkpoint pathways still contains many mysteries, and the full activity spectrum of checkpoint-blocking drugs, used alone or in combination, is currently the subject of intense study.
Collapse
Affiliation(s)
- Suzanne L Topalian
- Department of Surgery, Sidney Kimmel Comprehensive Cancer Center and Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Charles G Drake
- The Brady Urological Institute, Sidney Kimmel Comprehensive Cancer Center and Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|