1
|
Slart RHJA, Bengel FM, Akincioglu C, Bourque JM, Chen W, Dweck MR, Hacker M, Malhotra S, Miller EJ, Pelletier-Galarneau M, Packard RRS, Schindler TH, Weinberg RL, Saraste A, Slomka PJ. Total-Body PET/CT Applications in Cardiovascular Diseases: A Perspective Document of the SNMMI Cardiovascular Council. J Nucl Med 2024:jnumed.123.266858. [PMID: 38388512 DOI: 10.2967/jnumed.123.266858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Digital PET/CT systems with a long axial field of view have become available and are emerging as the current state of the art. These new camera systems provide wider anatomic coverage, leading to major increases in system sensitivity. Preliminary results have demonstrated improvements in image quality and quantification, as well as substantial advantages in tracer kinetic modeling from dynamic imaging. These systems also potentially allow for low-dose examinations and major reductions in acquisition time. Thereby, they hold great promise to improve PET-based interrogation of cardiac physiology and biology. Additionally, the whole-body coverage enables simultaneous assessment of multiple organs and the large vascular structures of the body, opening new opportunities for imaging systemic mechanisms, disorders, or treatments and their interactions with the cardiovascular system as a whole. The aim of this perspective document is to debate the potential applications, challenges, opportunities, and remaining challenges of applying PET/CT with a long axial field of view to the field of cardiovascular disease.
Collapse
Affiliation(s)
- Riemer H J A Slart
- Medical Imaging Centre, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Cigdem Akincioglu
- Division of Nuclear Medicine, Medical Imaging, Western University, London, Ontario, Canada
| | - Jamieson M Bourque
- Departments of Medicine (Cardiology) and Radiology, University of Virginia, Charlottesville, Virginia
| | - Wengen Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Heart Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Edward J Miller
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, and Department of Internal Medicine, Yale University, New Haven, Connecticut
| | | | - René R S Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Thomas H Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Weinberg
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Antti Saraste
- Turku PET Centre and Heart Center, Turku University Hospital and University of Turku, Turku, Finland; and
| | - Piotr J Slomka
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
2
|
Santi ND, Wu KY, Redpath CJ, Nery PB, Huang W, Burwash IG, Bernick J, Wells GA, McArdle B, Chow BWJ, Birnie DH, Garrard L, deKemp RA, Beanlands RSB. Metabolic activity of the left and right atria are differentially altered in patients with atrial fibrillation and LV dysfunction. J Nucl Cardiol 2022; 29:2824-2836. [PMID: 34993894 DOI: 10.1007/s12350-021-02878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/13/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Alterations in atrial metabolism may play a role in the perpetuation of atrial fibrillation (AF). This study sought to compare 18F-fluorodeoxyglucose (FDG) uptake on PET, in patients with LV dysfunction versus those without AF. METHODS Seventy-two patients who underwent myocardial viability assessment were evaluated. AF patients (36) had persistent or permanent AF based on history and ECG. Patients without AF (36) were matched to AF patients based on sex, diabetes, age, and LVEF. Maximum and mean FDG Standard Uptake Values (SUV) in the left atrial (LA) wall and right atrial (RA) wall were measured. Tissue-to-blood ratios (TBR) were calculated as atrial wall to blood-pool activity. Atrial volumes were measured by echocardiography. RESULTS Maximum and mean FDG SUV and TBRs were significantly increased in the RA (but not the LA) of patients with AF compared to those without (P < 0.01). When accounting for changes in atrial volume, the presence of AF remained a significant predictor of higher RAMAX, but not RAMEAN FDG uptake. CONCLUSION In patients with LV dysfunction from ischemic cardiomyopathy, LA and RA glucose metabolism are differentially altered in those with persistent atrial fibrillation. Further investigations should elucidate the temporal relationship between AF and glucose metabolic changes, as a potential target for therapy.
Collapse
Affiliation(s)
- Nicolas D Santi
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada.
- Department of Cardiology, University of Toronto Faculty of Medicine, Toronto, ON, Canada.
| | - Kai Yi Wu
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada
- Department of Medicine, University of Alberta Faculty of Medicine & Dentistry, Edmonton, Alberta, Canada
| | - C J Redpath
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada
| | - Pablo B Nery
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada
| | - Wayne Huang
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada
- Department of Medicine, Queensway Carleton Hospital, Ottawa, ON, Canada
| | - Ian G Burwash
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada
| | - Jordan Bernick
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada
| | - George A Wells
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada
| | - Brian McArdle
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada
- Royal Jubilee Hospital, Victoria, BC, Canada
| | - Benjamin W J Chow
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada
| | - David H Birnie
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada
| | - Linda Garrard
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada
| | - Robert A deKemp
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada
| | - Rob S B Beanlands
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Successful treatment of cancer can be hampered by the attendant risk of cardiotoxicity, manifesting as cardiomyopathy, left ventricle systolic dysfunction and, in some cases, heart failure. This risk can be mitigated if the injury to the heart is detected before the onset to irreversible cardiac impairment. The gold standard for cardiac imaging in cardio-oncology is echocardiography. Despite improvements in the application of this modality, it is not typically sensitive to sub-clinical or early-stage dysfunction. We identify in this review some emerging tracers for detecting incipient cardiotoxicity by positron emission tomography (PET). RECENT FINDINGS Vectors labeled with positron-emitting radionuclides (e.g., carbon-11, fluorine-18, gallium-68) are now available to study cardiac function, metabolism, and tissue repair in preclinical models. Many of these probes are highly sensitive to early damage, thereby potentially addressing the limitations of current imaging approaches, and show promise in preliminary clinical evaluations. The overlapping pathophysiology between cardiotoxicity and heart failure significantly expands the number of imaging tools available to cardio-oncology. This is highlighted by the emergence of radiolabeled probes targeting fibroblast activation protein (FAP) for sensitive detection of dysregulated healing process that underpins adverse cardiac remodeling. The growth of PET scanner technology also creates an opportunity for a renaissance in metabolic imaging in cardio-oncology research.
Collapse
Affiliation(s)
- James M. Kelly
- Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, Belfer Research Building, Room BB-1604, 413 East 69th St, New York, NY 10021 USA
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021 USA
| | - John W. Babich
- Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, Belfer Research Building, Room BB-1604, 413 East 69th St, New York, NY 10021 USA
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021 USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021 USA
| |
Collapse
|
4
|
Balogh V, MacAskill MG, Hadoke PWF, Gray GA, Tavares AAS. Positron Emission Tomography Techniques to Measure Active Inflammation, Fibrosis and Angiogenesis: Potential for Non-invasive Imaging of Hypertensive Heart Failure. Front Cardiovasc Med 2021; 8:719031. [PMID: 34485416 PMCID: PMC8416043 DOI: 10.3389/fcvm.2021.719031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure, which is responsible for a high number of deaths worldwide, can develop due to chronic hypertension. Heart failure can involve and progress through several different pathways, including: fibrosis, inflammation, and angiogenesis. Early and specific detection of changes in the myocardium during the transition to heart failure can be made via the use of molecular imaging techniques, including positron emission tomography (PET). Traditional cardiovascular PET techniques, such as myocardial perfusion imaging and sympathetic innervation imaging, have been established at the clinical level but are often lacking in pathway and target specificity that is important for assessment of heart failure. Therefore, there is a need to identify new PET imaging markers of inflammation, fibrosis and angiogenesis that could aid diagnosis, staging and treatment of hypertensive heart failure. This review will provide an overview of key mechanisms underlying hypertensive heart failure and will present the latest developments in PET probes for detection of cardiovascular inflammation, fibrosis and angiogenesis. Currently, selective PET probes for detection of angiogenesis remain elusive but promising PET probes for specific targeting of inflammation and fibrosis are rapidly progressing into clinical use.
Collapse
Affiliation(s)
- Viktoria Balogh
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mark G. MacAskill
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick W. F. Hadoke
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian A. Gray
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana A. S. Tavares
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Mastrocola LE, Amorim BJ, Vitola JV, Brandão SCS, Grossman GB, Lima RDSL, Lopes RW, Chalela WA, Carreira LCTF, Araújo JRND, Mesquita CT, Meneghetti JC. Update of the Brazilian Guideline on Nuclear Cardiology - 2020. Arq Bras Cardiol 2020; 114:325-429. [PMID: 32215507 PMCID: PMC7077582 DOI: 10.36660/abc.20200087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Barbara Juarez Amorim
- Universidade Estadual de Campinas (Unicamp), Campinas, SP - Brazil
- Sociedade Brasileira de Medicina Nuclear (SBMN), São Paulo, SP - Brazil
| | | | | | - Gabriel Blacher Grossman
- Hospital Moinhos de Vento, Porto Alegre, RS - Brazil
- Clínica Cardionuclear, Porto Alegre, RS - Brazil
| | - Ronaldo de Souza Leão Lima
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brazil
- Fonte Imagem Medicina Diagnóstica, Rio de Janeiro, RJ - Brazil
- Clínica de Diagnóstico por Imagem (CDPI), Grupo DASA, Rio de Janeiro, RJ - Brazil
| | | | - William Azem Chalela
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brazil
| | | | | | | | - José Claudio Meneghetti
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brazil
| |
Collapse
|
6
|
Santos BS, Ferreira MJ. Positron emission tomography in ischemic heart disease. Rev Port Cardiol 2019; 38:599-608. [DOI: 10.1016/j.repc.2019.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 02/03/2019] [Indexed: 01/30/2023] Open
|
7
|
Santos BS, Ferreira MJ. Positron emission tomography in ischemic heart disease. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.repce.2019.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Aguadé Bruix S, Roque Pérez A, Cuéllar Calabria H, Pizzi M. Cardiac 18 F-FDG PET/CT procedure for the diagnosis of prosthetic endocarditis and intracardiac devices. Rev Esp Med Nucl Imagen Mol 2018. [DOI: 10.1016/j.remnie.2018.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Aguadé Bruix S, Roque Pérez A, Cuéllar Calabria H, Pizzi MN. Cardiac 18F-FDG PET/CT procedure for the diagnosis of prosthetic endocarditis and intracardiac devices. Rev Esp Med Nucl Imagen Mol 2018; 37:163-171. [PMID: 29496402 DOI: 10.1016/j.remn.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 11/17/2022]
Abstract
Infective endocarditis (IE) is a serious condition with a poor prognosis, its mortality unchanged significantly despite diagnostic and therapeutic advances in the last 30years. The diagnostic ability of the modified Duke criteria in prosthetic endocarditis and/or devices does not exceed 50%, so new tools are necessary for the diagnosis of this entity in this context. The 18F-FDG PET/CTA combines a highly sensitive technique to detect inflammatory-infectious activity with a technique with high anatomical resolution to assess the structural lesions associated with endocarditis. With a diagnostic sensitivity between 91-97%, this hybrid technique has become a useful diagnostic tool for patients with prosthetic valves or devices and suspicion of IE, becoming a major criterion in the diagnostic algorithm of current guidelines. This excellent diagnostic ability depends directly on the quality of the obtained exploration and the knowledge at the time of interpreting the images. The aim of this review is to describe and standardize the methodology of cardiac 18F-FDG PET/CTA in the diagnosis of endocarditis in prosthetic valves and intracardiac devices, with special emphasis on the particularities of the patient's preparation, the PET and CT acquisition procedures, and the subsequent imaging postprocessing and interpretation.
Collapse
Affiliation(s)
- S Aguadé Bruix
- Servicio de Medicina Nuclear, Hospital Universitari Vall d'Hebron, Barcelona, España; VHIR: Vall d'Hebron Institut de Recerca, Barcelona, España; Universitat Autònoma de Barcelona, Barcelona, España.
| | - A Roque Pérez
- Servicio de Radiología, Hospital Universitari Vall d'Hebron, Barcelona, España; IDI: Institut de Diagnòstic per la Imatge, Barcelona, España; Universitat Autònoma de Barcelona, Barcelona, España
| | - H Cuéllar Calabria
- Servicio de Radiología, Hospital Universitari Vall d'Hebron, Barcelona, España; IDI: Institut de Diagnòstic per la Imatge, Barcelona, España; Universitat Autònoma de Barcelona, Barcelona, España
| | - M N Pizzi
- Servicio de Cardiología, Hospital Universitari Vall d'Hebron, Barcelona, España; VHIR: Vall d'Hebron Institut de Recerca, Barcelona, España; Universitat Autònoma de Barcelona, Barcelona, España
| |
Collapse
|
10
|
Kniess T, Laube M, Steinbach J. “Hydrous 18 F-fluoroethylation” – Leaving off the azeotropic drying. Appl Radiat Isot 2017; 127:260-268. [DOI: 10.1016/j.apradiso.2017.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
|
11
|
Schindler TH. Cardiovascular PET/MR imaging: Quo Vadis? J Nucl Cardiol 2017; 24:1007-1018. [PMID: 27659454 DOI: 10.1007/s12350-016-0451-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 12/30/2022]
Abstract
With the recent advent of PET/MRI scanners, the combination of molecular imaging with a variety of known and novel PET radiotracers, the high spatial resolution of MRI, and its potential for multi-parametric imaging are anticipated to increase the diagnostic accuracy in cardiovascular disease detection, while providing novel mechanistic insights into the initiation and progression of the disease state. For the time being, cardiac PET/MRI emerges as potential clinical tool in the identification and characterization of infiltrative cardiac diseases, such as sarcoidosis, acute or chronic myocarditis, and cardiac tumors, respectively. The application of PET/MRI in conjunction with various radiotracer probes in the identification of the vulnerable atherosclerotic plaque also holds much promise but needs further translation and validation in clinical investigations. The combination of molecular imaging and creation of multi-parametric imaging maps with PET/MRI, however, are likely to set new horizons to develop predictive parameters for myocardial recovery and treatment response in ischemic and non-ischemic cardiomyopathy patients. Molecular imaging and multi-parametric imaging in cardiovascular disease with PET/MRI at current stage are at its infancy but bear a bright future.
Collapse
Affiliation(s)
- Thomas Hellmut Schindler
- Department of Radiology and Radiological Science, Division of Nuclear Medicine, Nuclear Cardiovascular Medicine, Johns Hopkins University School of Medicine, 3225, 601 N. Caroline Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
12
|
Kircher M, Lapa C. Novel Noninvasive Nuclear Medicine Imaging Techniques for Cardiac Inflammation. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017; 10:6. [PMID: 28357026 PMCID: PMC5352761 DOI: 10.1007/s12410-017-9400-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Inflammation is a key player in a wide range of cardiovascular and myocardial diseases. Given the numerous implications of inflammatory processes in disease initiation and progression, functional imaging modalities including positron emission tomography (PET) represent valuable diagnostic, prognostic, and monitoring tools in patient management. Since increased glucose metabolism is a hallmark of inflammation, PET using the radiolabeled glucose analog [18F]-2-deoxy-2-fluoro-d-glucose (FDG) is the mainstay diagnostic test for nuclear imaging of (cardiac) inflammation. Recently, new approaches using more specific tracers to overcome the limited specificity of FDG have emerged. RECENT FINDINGS PET imaging has proven its value in a number of inflammatory conditions of the heart including myocarditis, endocarditis, sarcoidosis, or reactive changes after myocardial infarction. In infection-related endocarditis, FDG-PET and white blood cell scintigraphy have been implemented in current guidelines. FDG-PET is considered as nuclear medical gold standard in myocarditis, pericarditis, or sarcoidosis. Novel strategies, including targeting of somatostatin receptors or C-X-C motif chemokine receptor CXCR4, have shown promising results in first studies. SUMMARY Nuclear medicine techniques offer valuable information in the assessment of myocardial inflammation. Given the possibility to directly visualize inflammatory activity, they represent useful tools for diagnosis, risk stratification, and therapy monitoring.
Collapse
Affiliation(s)
- Malte Kircher
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| |
Collapse
|
13
|
Myocardial Blood Flow and Inflammatory Cardiac Sarcoidosis. JACC Cardiovasc Imaging 2017; 10:157-167. [DOI: 10.1016/j.jcmg.2016.09.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022]
|
14
|
Clements IP, Garcia EV, Chen J, Folks RD, Butler J, Jacobson AF. Quantitative iodine-123-metaiodobenzylguanidine (MIBG) SPECT imaging in heart failure with left ventricular systolic dysfunction: Development and validation of automated procedures in conjunction with technetium-99m tetrofosmin myocardial perfusion SPECT. J Nucl Cardiol 2016; 23:425-35. [PMID: 25788403 DOI: 10.1007/s12350-015-0097-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND The purpose of this study was to develop and validate new approaches to quantitative MIBG myocardial SPECT imaging in heart failure (HF) subjects. METHODS AND RESULTS Quantitative MIBG myocardial SPECT analysis methods, alone and in conjunction with 99mTc-tetrofosmin perfusion SPECT, were adapted from previously validated techniques for the analysis of SPECT and PET perfusion imaging. To account for underestimation of MIBG defect severity in subjects with global reduction in uptake, a mixed reference database based on planar heart/mediastinum (H/M) ratio categories was used. Extent and severity of voxel-based defects and number of myocardial segments with significant dysinnervation (derived score ≥2) were determined. MIBG/99mTc-tetrofosmin mismatch was quantified using regions with preserved innervation as the reference for scaling 99mTc-tetrofosmin voxel maps. Quantification techniques were tested on studies of 619 ischemic (I) and 319 non-ischemic (NI) HF subjects. Using all analytical techniques, IHF subjects had significantly greater and more severe MIBG SPECT abnormalities compared with NIHF subjects. Innervation/perfusion mismatches were also larger in IHF subjects. Findings were consistent between voxel- and myocardial-segment-based quantitation methods. CONCLUSIONS Multiple objective methods for quantitation of MIBG SPECT imaging studies provided internally consistent results for distinguishing the different patterns of uptake between IHF and NIHF subjects.
Collapse
Affiliation(s)
- Ian P Clements
- Cardiovascular Diseases, Mayo Clinic, 200 First St SW, Rochester, MA, USA.
| | - Ernest V Garcia
- Department of Radiology, School of Medicine, Emory University, 1364 Clifton Road, NE, Room E163, Atlanta, USA
| | - Ji Chen
- Department of Radiology, School of Medicine, Emory University, 1364 Clifton Road, NE, Room E163, Atlanta, USA
| | - Russell D Folks
- Division of Nuclear Medicine, Emory University, Atlanta, USA
| | - Javed Butler
- Department of Radiology, School of Medicine, Emory University, 1364 Clifton Road, NE, Room E163, Atlanta, USA
| | | |
Collapse
|
15
|
Di Marco L, Rosset M, Zhang-Yin J, Ohana M. [Multimodal imaging of ischemic heart diseases: A 2015 update]. Rev Med Interne 2016; 37:350-62. [PMID: 26775644 DOI: 10.1016/j.revmed.2015.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/08/2015] [Accepted: 12/08/2015] [Indexed: 11/26/2022]
Abstract
Current realities and future possibilities of imaging in the ischemic heart diseases are very broad and constantly evolving, with the improvement of existing technologies and the introduction of new features such as dual-energy CT, strain ultrasound, multimodality fusion or perfusion MRI. Regular collaboration between prescribing clinicians, cardiologists, radiologists and nuclear radiologists is therefore essential to tailor the examination to the specific clinical question. The indications for each modality will therefore depend on its diagnostic performance, cost, acquisition and post-processing times and eventual radiation exposure. This review will detail principles and applications of current cardiac imaging examinations: echocardiography, nuclear medicine, MRI, CT and coronary angiography, emphasizing their current strengths and weaknesses in the ischemic heart diseases management.
Collapse
Affiliation(s)
- L Di Marco
- Imagerie, Bocage Central, 14, rue Paul-Gaffarel, 21000 Dijon, France.
| | - M Rosset
- Cardiologie, hôpital Louis-Pradel, 28, avenue du Doyen-Jean-Lépine, 69500 Bron, France
| | - J Zhang-Yin
- Médecine nucléaire, hôpital d'instruction des armées du Val-de-Grâce, 74, boulevard de Port-Royal, 75005 Paris, France
| | - M Ohana
- Imagerie, Nouvel Hôpital Civil, 1, place de l'Hôpital, 67000 Strasbourg, France
| |
Collapse
|
16
|
Novel plasma and imaging biomarkers in heart failure with preserved ejection fraction. IJC HEART & VASCULATURE 2015; 9:55-62. [PMID: 28785707 PMCID: PMC5497340 DOI: 10.1016/j.ijcha.2015.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/25/2015] [Indexed: 12/17/2022]
Abstract
Existing diagnostic guidelines for heart failure with preserved ejection fraction (HFPEF) primarily comprise natriuretic peptides and echocardiographic assessment, highlighting the role of diastolic dysfunction. However, recent discoveries of novel plasma markers implicated in pathophysiology of heart failure and technological advances in imaging provide additional biomarkers which are potentially applicable to HFPEF. The evidence base for plasma extra-cellular matrix (ECM) peptides, galectin-3, ST2, GDF-15 and pentraxin-3 is reviewed. Furthermore, the capabilities of novel imaging techniques to assess existing parameters (e.g. left ventricular ejection fraction, systolic & diastolic function, chamber size) and additional derangements of the ECM, myocardial mechanics and ischaemia evaluation are addressed.
Collapse
|
17
|
Dean J, Cruz SD, Mehta PK, Merz CNB. Coronary microvascular dysfunction: sex-specific risk, diagnosis, and therapy. Nat Rev Cardiol 2015; 12:406-14. [PMID: 26011377 DOI: 10.1038/nrcardio.2015.72] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide. In the presence of signs and symptoms of myocardial ischaemia, women are more likely than men to have no obstructive coronary artery disease (CAD). Women have a greater burden of symptoms than men, and are often falsely reassured despite the presence of ischaemic heart disease because of a lack of obstructive CAD. Coronary microvascular dysfunction should be considered as an aetiology for ischaemic heart disease with signs and symptoms of myocardial ischaemia, but no obstructive CAD. Coronary microvascular dysfunction is defined as impaired coronary flow reserve owing to functional and/or structural abnormalities of the microcirculation, and is associated with an adverse cardiovascular prognosis. Therapeutic lifestyle changes as well as antiatherosclerotic and antianginal medications might be beneficial, but clinical outcome trials are needed to guide treatment. In this Review, we discuss the prevalence, presentation, diagnosis, and treatment of coronary microvascular dysfunction, with a particular emphasis on ischaemic heart disease in women.
Collapse
Affiliation(s)
- Jenna Dean
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, A3600, Los Angeles, CA 90048, USA
| | - Sherwin Dela Cruz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, A3600, Los Angeles, CA 90048, USA
| | - Puja K Mehta
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, A3600, Los Angeles, CA 90048, USA
| | - C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, A3600, Los Angeles, CA 90048, USA
| |
Collapse
|
18
|
Alexanderson-Rosas E, Guinto-Nishimura GY, Cruz-Mendoza JR, Oropeza-Aguilar M, De La Fuente-Mancera JC, Barrero-Mier AF, Monroy-Gonzalez A, Juarez-Orozco LE, Cano-Zarate R, Meave-Gonzalez A. Current and future trends in multimodality imaging of coronary artery disease. Expert Rev Cardiovasc Ther 2015; 13:715-31. [PMID: 25912725 DOI: 10.1586/14779072.2015.1039991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nowadays, there is a wide array of imaging studies available for the evaluation of coronary artery disease, each with its particular indications and strengths. Cardiac single photon emission tomography is mostly used to evaluate myocardial perfusion, having experienced recent marked improvements in image acquisition. Cardiac PET has its main utility in perfusion imaging, atherosclerosis and endothelial function evaluation, and viability assessment. Cardiovascular computed tomography has long been used as a reference test for non-invasive evaluation of coronary lesions and anatomic characterization. Cardiovascular magnetic resonance is currently the reference standard for non-invasive ventricular function evaluation and myocardial scarring delineation. These specific strengths have been enhanced with the advent of hybrid equipment, offering a true integration of different imaging modalities into a single, simultaneous and comprehensive study.
Collapse
Affiliation(s)
- Erick Alexanderson-Rosas
- Department of Nuclear Cardiology, Instituto Nacional de Cardiología 'Ignacio Chávez', Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schindler TH, Solnes L. Role of PET/CT for the Identification of Cardiac Sarcoid Disease. ACTA ACUST UNITED AC 2015. [DOI: 10.17996/anc.01.01.79] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Thomas H. Schindler
- Johns Hopkins University, School of Medicine, Division of Nuclear Medicine, Cardiovascular Nuclear Medicine Department of Radiology and Radiological Science SOM
| | - Lilja Solnes
- Johns Hopkins University, School of Medicine, Division of Nuclear Medicine, Cardiovascular Nuclear Medicine Department of Radiology and Radiological Science SOM
| |
Collapse
|
20
|
Iqbal B, Currie G, Greene L, Kiat H. Novel Radiopharmaceuticals in Cardiovascular Medicine: Present and Future. J Med Imaging Radiat Sci 2014; 45:423-434. [DOI: 10.1016/j.jmir.2014.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 01/25/2023]
|
21
|
Esteves FP, Travin MI. The Role of Nuclear Cardiology in the Diagnosis and Risk Stratification of Women With Ischemic Heart Disease. Semin Nucl Med 2014; 44:423-38. [DOI: 10.1053/j.semnuclmed.2014.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Abstract
Cardiac multimodality (hybrid) imaging can be obtained from a variety of techniques, such as nuclear medicine with single photon emission computed tomography (SPECT) and positron emission tomography (PET), or radiology with multislice computed tomography (CT), magnetic resonance (MR) and echography. They are typically combined in a side-by-side or fusion mode in order to provide functional and morphological data to better characterise coronary artery disease, with more proven efficacy than when used separately. The gained information is then used to guide revascularisation procedures. We present an up-to-date comprehensive overview of multimodality imaging already in clinical use, as well as a combination of techniques with promising or developing applications.
Collapse
|
23
|
Schindler TH, Quercioli A, Valenta I, Ambrosio G, Wahl RL, Dilsizian V. Quantitative Assessment of Myocardial Blood Flow—Clinical and Research Applications. Semin Nucl Med 2014; 44:274-93. [DOI: 10.1053/j.semnuclmed.2014.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Freeman LM, Blaufox MD. Letter from the editors: nononcologic PET imaging. Semin Nucl Med 2013; 43:403. [PMID: 24094706 DOI: 10.1053/j.semnuclmed.2013.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|