1
|
Yoshida K. Bioengineering and the cervix: The past, current, and future for addressing preterm birth. Curr Res Physiol 2023; 6:100107. [PMID: 38107784 PMCID: PMC10724223 DOI: 10.1016/j.crphys.2023.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/23/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
The uterine cervix plays two important but opposing roles during pregnancy - as a mechanical barrier that maintains the fetus for nine months and as a compliant structure that dilates to allow for the delivery of a baby. In some pregnancies, however, the cervix softens and dilates prematurely, leading to preterm birth. Bioengineers have addressed and continue to address the lack of reduction in preterm birth rates by developing novel technologies to diagnose, prevent, and understand premature cervical remodeling. This article highlights these existing and emerging technologies and concludes with open areas of research related to the cervix and preterm birth that bioengineers are currently well-positioned to address.
Collapse
Affiliation(s)
- Kyoko Yoshida
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
2
|
Quinney SK, Bies RR, Grannis SJ, Bartlett CW, Mendonca E, Rogerson CM, Backes CH, Shah DK, Tillman EM, Costantine MM, Aruldhas BW, Allam R, Grant A, Abbasi MY, Kandasamy M, Zang Y, Wang L, Shendre A, Li L. The MPRINT Hub Data, Model, Knowledge and Research Coordination Center: Bridging the gap in maternal-pediatric therapeutics research through data integration and pharmacometrics. Pharmacotherapy 2023; 43:391-402. [PMID: 36625779 PMCID: PMC10192201 DOI: 10.1002/phar.2765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/13/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
Maternal and pediatric populations have historically been considered "therapeutic orphans" due to their limited inclusion in clinical trials. Physiologic changes during pregnancy and lactation and growth and maturation of children alter pharmacokinetics (PK) and pharmacodynamics (PD) of drugs. Precision therapy in these populations requires knowledge of these effects. Efforts to enhance maternal and pediatric participation in clinical studies have increased over the past few decades. However, studies supporting precision therapeutics in these populations are often small and, in isolation, may have limited impact. Integration of data from various studies, for example through physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling or bioinformatics approaches, can augment the value of data from these studies, and help identify gaps in understanding. To catalyze research in maternal and pediatric precision therapeutics, the Obstetric and Pediatric Pharmacology and Therapeutics Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) established the Maternal and Pediatric Precision in Therapeutics (MPRINT) Hub. Herein, we provide an overview of the status of maternal-pediatric therapeutics research and introduce the Indiana University-Ohio State University MPRINT Hub Data, Model, Knowledge and Research Coordination Center (DMKRCC), which aims to facilitate research in maternal and pediatric precision therapeutics through the integration and assessment of existing knowledge, supporting pharmacometrics and clinical trials design, development of new real-world evidence resources, educational initiatives, and building collaborations among public and private partners, including other NICHD-funded networks. By fostering use of existing data and resources, the DMKRCC will identify critical gaps in knowledge and support efforts to overcome these gaps to enhance maternal-pediatric precision therapeutics.
Collapse
Affiliation(s)
- Sara K Quinney
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert R Bies
- Department of Pharmaceutical Sciences, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
- Institute for Computational and Data Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, New York, USA
| | - Shaun J Grannis
- Department of Family Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Biomedical Informatics, Regenstrief Institute, Indianapolis, Indiana, USA
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA
| | - Christopher W Bartlett
- The Steve & Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Eneida Mendonca
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Colin M Rogerson
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carl H Backes
- Division of Neonatology, Nationwide Children’s Hospital; Departments of Pediatrics and Obstetrics and Gynecology, The Ohio State University College of Medicine; Center for Perinatal Research and The Ohio Perinatal Research Network, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, USA; The Heart Center at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Emma M Tillman
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Maged M Costantine
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio, USA
| | - Blessed W Aruldhas
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Reva Allam
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Amelia Grant
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Mohammed Yaseen Abbasi
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Murugesh Kandasamy
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Yong Zang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lei Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Aditi Shendre
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Afonso Urich JA, Marko V, Boehm K, Lara García RA, Jeremic D, Paudel A. Development and Validation of a Stability-Indicating UPLC Method for the Determination of Hexoprenaline in Injectable Dosage Form Using AQbD Principles. Molecules 2021; 26:molecules26216597. [PMID: 34771005 PMCID: PMC8587854 DOI: 10.3390/molecules26216597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
A novel and efficient stability-indicating, reverse phase ultra-performance liquid chromatographic (UPLC®) analytical method was developed and validated for the determination of hexoprenaline in an injectable dosage form. The development of the method was performed using analytical quality by design (AQbD) principles, which are aligned with the future requirements from the regulatory agencies using AQbD principles. The method was developed by assessing the impact of ion pairing, the chromatographic column, pH and gradient elution. The development was achieved with a Waters Acquity HSS T3 (50 × 2.1 mm i.d., 1.8 µm) column at ambient temperature, using sodium dihydrogen phosphate 5 mM + octane-1-sulphonic acid sodium salt 10 mM buffer pH 3.0 (Solution A) and acetonitrile (Solution B) as mobile phases in gradient elution (t = 0 min, 5% B; t = 1 min, 5% B; t = 5 min, 50% B; t = 7 min, 5% B; t = 10 min, 5% B) at a flow rate of 0.5 mL/min and UV detection of 280 nm. The linearity was proven for hexoprenaline over a concentration range of 3.50-6.50 µg/mL (R2 = 0.9998). Forced degradation studies were performed by subjecting the samples to hydrolytic (acid and base), oxidative, and thermal stress conditions. Standard solution stability was also performed. The proposed validated method was successfully used for the quantitative analysis of bulk, stability and injectable dosage form samples of the desired drug product. Using the AQbD principles, it is possible to generate methodologies with enhanced knowledge, which can eventually lead to a reduced regulatory risk, high quality data and lower operational costs.
Collapse
Affiliation(s)
- Jesús Alberto Afonso Urich
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria; (J.A.A.U.); (V.M.); (K.B.); (R.A.L.G.)
| | - Viktoria Marko
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria; (J.A.A.U.); (V.M.); (K.B.); (R.A.L.G.)
| | - Katharina Boehm
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria; (J.A.A.U.); (V.M.); (K.B.); (R.A.L.G.)
| | | | - Dalibor Jeremic
- Department of Health Studies-Biomedical Science, FH JOANNEUM, 8020 Graz, Austria;
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria; (J.A.A.U.); (V.M.); (K.B.); (R.A.L.G.)
- Institute of Process and Particle Engineering, Graz University of Technology, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-873-30912
| |
Collapse
|
4
|
Behura SK, Dhakal P, Kelleher AM, Balboula A, Patterson A, Spencer TE. The brain-placental axis: Therapeutic and pharmacological relevancy to pregnancy. Pharmacol Res 2019; 149:104468. [PMID: 31600597 PMCID: PMC6944055 DOI: 10.1016/j.phrs.2019.104468] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/23/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022]
Abstract
The placenta plays a critical role in mammalian reproduction. Although it is a transient organ, its function is indispensable to communication between the mother and fetus, and supply of nutrients and oxygen to the growing fetus. During pregnancy, the placenta is vulnerable to various intrinsic and extrinsic conditions which can result in increased risk of fetal neurodevelopmental disorders as well as fetal death. The placenta controls the neuroendocrine secretion in the brain as a means of adaptive processes to safeguard the fetus from adverse programs, to optimize fetal development and other physiological changes necessary for reproductive success. Although a wealth of information is available on neuroendocrine functions in pregnancy, they are largely limited to the regulation of hypothalamus-pituitary-adrenal/gonad (HPA/ HPG) axis, particularly the oxytocin and prolactin system. There is a major gap in knowledge on systems-level functional interaction between the brain and placenta. In this review, we aim to outline the current state of knowledge about the brain-placental axis with description of the functional interactions between the placenta and the maternal and fetal brain. While describing the brain-placental interactions, a special emphasis has been given on the therapeutics and pharmacology of the placental receptors to neuroligands expressed in the brain during gestation. As a key feature of this review, we outline the prospects of integrated pharmacogenomics, single-cell sequencing and organ-on-chip systems to foster priority areas in this field of research. Finally, we remark on the application of precision genomics approaches to study the brain-placental axis in order to accelerate personalized medicine and therapeutics to treat placental and fetal brain disorders.
Collapse
Affiliation(s)
- Susanta K Behura
- Division of Animal Sciences, University of Missouri, United States; Informatics Institute, University of Missouri, United States.
| | - Pramod Dhakal
- Division of Animal Sciences, University of Missouri, United States
| | | | - Ahmed Balboula
- Division of Animal Sciences, University of Missouri, United States
| | - Amanda Patterson
- Division of Animal Sciences, University of Missouri, United States; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, United States
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, United States; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, United States
| |
Collapse
|
5
|
Shah M, Xu M, Shah P, Wang X, Clark SM, Costantine M, West HA, Nanovskaya TN, Ahmed MS, Abdel-Rahman SZ, Venkataramanan R, Caritis SN, Hankins GDV, Rytting E. Effect of CYP2C9 Polymorphisms on the Pharmacokinetics of Indomethacin During Pregnancy. Eur J Drug Metab Pharmacokinet 2019; 44:83-89. [PMID: 30159654 DOI: 10.1007/s13318-018-0505-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Cytochrome P450 (CYP) 2C9 catalyzes the biotransformation of indomethacin to its inactive metabolite O-desmethylindomethacin (DMI). The aim of this work was to determine the effect of CYP2C9 polymorphisms on indomethacin metabolism in pregnant women. METHODS Plasma concentrations of indomethacin and DMI at steady state were analyzed with a validated LC-MS/MS method. DNA was isolated from subject blood and buccal smear samples. Subjects were grouped by genotype for comparisons of pharmacokinetic parameters. RESULTS For subjects with the *1/*2 genotype, the mean steady-state apparent oral clearance (CL/Fss) of indomethacin was 13.5 ± 7.7 L/h (n = 4) and the mean metabolic ratio (AUCDMI/AUCindomethacin) was 0.291 ± 0.133. For subjects with the *1/*1 genotype, these values were 12.4 ± 2.7 L/h and 0.221 ± 0.078, respectively (n = 14). Of note, we identified one subject who was a carrier of both the *3 and *4 alleles, resulting in an amino acid change (I359P) which has not been reported previously. This subject had a metabolic ratio of 0.390 and a CL/Fss of indomethacin (24.3 L/h) that was nearly double the wild-type clearance. CONCLUSION Although our results are limited by sample size and are not statistically significant, these data suggest that certain genetic polymorphisms of CYP2C9 may lead to an increased metabolic ratio and an increase in the clearance of indomethacin. More data are needed to assess the impact of CYP2C9 genotype on the effectiveness of indomethacin as a tocolytic agent.
Collapse
Affiliation(s)
- Mansi Shah
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Meixiang Xu
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Poonam Shah
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Xiaoming Wang
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shannon M Clark
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Maged Costantine
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Holly A West
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Tatiana N Nanovskaya
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mahmoud S Ahmed
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sherif Z Abdel-Rahman
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Raman Venkataramanan
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Steve N Caritis
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Gary D V Hankins
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
6
|
Overby CL, Thompkins P, Lehmann H, Chute CG, Sheffield JS. Value of Genetics-informed Drug Dosing Guidance in Pregnant Women: A Needs Assessment with Obstetric Healthcare Providers at Johns Hopkins. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2018; 2017:1342-1351. [PMID: 29854203 PMCID: PMC5977707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In order to better understand the potential value of genetics-informed drug dose guidance to obstetric healthcare providers at Johns Hopkins we administered a web-based needs assessment survey. The survey included questions about: 1) experience with adjusting drug doses during pregnancy; 2) comfort prescribing medications to pregnant women with chronic conditions; 3) awareness and use of genetics-informed dosing guidance; and 4) perceived value of access to services to provide genetics-informed dosing guidance. Among thirty-one respondents, 81% indicated an interest in access to genetics-informed drug dose guidance, particularly a mobile or electronic health record (EHR) application. It was indicated, however, that genetics is one of many characteristics that influence dose adjustments during pregnancy. This study motivates future research to help obstetric healthcare providers tailor drug dose to individual patients based upon models integrating multiple patient characteristics, including genetics.
Collapse
Affiliation(s)
- Casey L Overby
- Division of General Internal Medicine
- Institute for Clinical & Translational Research
- Division of Health Sciences Informatics
| | | | | | - Christopher G Chute
- Division of General Internal Medicine
- Institute for Clinical & Translational Research
- Division of Health Sciences Informatics
| | - Jeanne S Sheffield
- Division of Maternal & Fetal Medicine; Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Quinney SK, Gullapelli R, Haas DM. Translational Systems Pharmacology Studies in Pregnant Women. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 7:69-81. [PMID: 29239132 PMCID: PMC5824114 DOI: 10.1002/psp4.12269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/26/2022]
Abstract
Pregnancy involves rapid physiological adaptation and complex interplay between mother and fetus. New analytic technologies provide large amounts of genomic, proteomic, and metabolomics data. The integration of these data through bioinformatics, statistical, and systems pharmacology techniques can improve our understanding of the mechanisms of normal maternal physiologic changes and fetal development. New insights into the mechanisms of pregnancy‐related disorders, such as preterm birth (PTB), may lead to the development of new therapeutic interventions and novel biomarkers.
Collapse
Affiliation(s)
- Sara K Quinney
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rakesh Gullapelli
- School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - David M Haas
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Daud ANA, Bergman JEH, Kerstjens-Frederikse WS, van der Vlies P, Hak E, Berger RMF, Groen H, Wilffert B. Prenatal exposure to serotonin reuptake inhibitors and congenital heart anomalies: an exploratory pharmacogenetics study. Pharmacogenomics 2017. [PMID: 28639488 DOI: 10.2217/pgs-2017-0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To explore the role of pharmacogenetics in determining the risk of congenital heart anomalies (CHA) with prenatal use of serotonin reuptake inhibitors. METHODS We included 33 case-mother dyads and 2 mother-only (child deceased) cases of CHA in a case-only study. Ten genes important in determining fetal exposure to serotonin reuptake inhibitors were examined: CYP1A2, CYP2C9, CYP2C19, CYP2D6, ABCB1, SLC6A4, HTR1A, HTR1B, HTR2A and HTR3B. RESULTS Among the exposed cases, polymorphisms that tended to be associated with an increased risk of CHA were SLC6A4 5-HTTLPR and 5-HTTVNTR, HTR1A rs1364043, HTR1B rs6296 and rs6298 and HTR3B rs1176744, but none reached statistical significance due to our limited sample sizes. CONCLUSION We identified several polymorphisms that might potentially affect the risk of CHA among exposed fetuses, which warrants further investigation.
Collapse
Affiliation(s)
- Aizati N A Daud
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Department of Pharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Groningen, The Netherlands.,School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Jorieke E H Bergman
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Pieter van der Vlies
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eelko Hak
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Department of Pharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - Rolf M F Berger
- Department of Pediatric Cardiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Henk Groen
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bob Wilffert
- Unit of PharmacoTherapy, -Epidemiology & -Economics, Department of Pharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Groningen, The Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Patil AS, Sheng JS, Dotters-Katz SK, Schmoll MS, Onslow ML. Principles of Anti-infective Dosing in Pregnancy. Clin Ther 2016; 38:2006-15. [DOI: 10.1016/j.clinthera.2016.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 01/25/2023]
|