1
|
Gangi A, Li TWH, Lim Y, Chandla S, Floris A, Khangholi A, Tomasi ML, Lu SC. S-Adenosylmethionine Inhibits Plasminogen-Activating Inhibitor-1 and Protects Male Mice from FOLFOX-Induced Liver Injury. Cell Mol Gastroenterol Hepatol 2025:101513. [PMID: 40246076 DOI: 10.1016/j.jcmgh.2025.101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND & AIMS FOLFOX, often used in patients with colorectal liver metastases, can cause sinusoidal obstruction syndrome (SOS) hindering subsequent treatment. S-adenosylmethionine (SAMe) is hepatoprotective and here we investigated whether it protects against FOLFOX-induced hepatotoxicity and defined the underlying mechanisms. METHODS A murine model of FOLFOX-induced SOS examined the effect of SAMe and plasminogen-activating inhibitor-1 (PAI-1). In vitro studies included primary mouse and human hepatocytes, Kupffer cells, hepatic stellate cells, and liver sinusoidal endothelial cells. RESULTS SAMe cotreatment completely blocked the induction of markers increased in FOLFOX-induced SOS and protected against liver injury. The most up-regulated gene was Serpine1, which encodes for PAI-1. SAMe blocked FOLFOX-induced expression and activation of nuclear factor (NF)-κB, which is known to activate SERPINE1/Serpine1 promoters. Interestingly, FOLFOX failed to activate hepatic NF-κB or cause liver injury in Serpine1 knockout male mice. Treatment of mouse hepatocytes with recombinant PAI-1 induced NF-κB activation; conditioned media from recombinant PAI-1 or interleukin-1β-treated hepatocytes, but not exosomes, increased the expression of proinflammatory cytokines and Cd31 in Kupffer cells and liver sinusoidal endothelial cells, respectively, which were blocked by SAMe. FOLFOX and interleukin-1β induced interaction between PAI-1 with urokinase plasminogen activator receptor in mouse liver and hepatocytes, respectively, which was blocked by SAMe. Recombinant PAI-1 requires interaction with uPA for full activation of NF-κB in hepatocytes. Neutralizing antibody against PAI-1 blocked interleukin-1β-mediated p65/PAI-1 activation in hepatocytes. CONCLUSIONS FOLFOX treatment increased hepatocyte PAI-1 expression and liver injury, which were not observed in germline PAI-1 deficiency. Hepatocytes secrete PAI-1 to exert autocrine and paracrine effects to activate Kupffer cells and liver sinusoidal endothelial cells. SAMe protects against FOLFOX-mediated liver injury in part by inhibiting NF-κB activation and PAI-1 induction.
Collapse
Affiliation(s)
- Alexandra Gangi
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tony W H Li
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Youngyi Lim
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Swati Chandla
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andrea Floris
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Arash Khangholi
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Maria Lauda Tomasi
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
2
|
Wang W, Ye L, Li H, Mao W, Xu X. Targeting esophageal carcinoma: molecular mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e782. [PMID: 39415846 PMCID: PMC11480525 DOI: 10.1002/mco2.782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Esophageal cancer (EC) is identified as a predominant health threat worldwide, with its highest incidence and mortality rates reported in China. The complex molecular mechanisms underlying EC, coupled with the differential incidence of esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) across various regions, highlight the necessity for in-depth research targeting molecular pathogenesis and innovative treatment strategies. Despite recent progress in targeted therapy and immunotherapy, challenges such as drug resistance and the lack of effective biomarkers for patient selection persist, impeding the optimization of therapeutic outcomes. Our review delves into the molecular pathology of EC, emphasizing genetic and epigenetic alterations, aberrant signaling pathways, tumor microenvironment factors, and the mechanisms of metastasis and immune evasion. We further scrutinize the current landscape of targeted therapies, including the roles of EGFR, HER2, and VEGFR, alongside the transformative impact of ICIs. The discussion extends to evaluating combination therapies, spotlighting the synergy between targeted and immune-mediated treatments, and introduces the burgeoning domain of antibody-drug conjugates, bispecific antibodies, and multitarget-directed ligands. This review lies in its holistic synthesis of EC's molecular underpinnings and therapeutic interventions, fused with an outlook on future directions including overcoming resistance mechanisms, biomarker discovery, and the potential of novel drug formulations.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Lisha Ye
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Huihui Li
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weimin Mao
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiangChina
| | - Xiaoling Xu
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Radiation OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Genetic Predisposition to Hepatocellular Carcinoma. Metabolites 2022; 13:metabo13010035. [PMID: 36676960 PMCID: PMC9864136 DOI: 10.3390/metabo13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Liver preneoplastic and neoplastic lesions of the genetically susceptible F344 and resistant BN rats cluster, respectively, with human HCC with better (HCCB) and poorer prognosis (HCCP); therefore, they represent a valid model to study the molecular alterations determining the genetic predisposition to HCC and the response to therapy. The ubiquitin-mediated proteolysis of ERK-inhibitor DUSP1, which characterizes HCC progression, favors the unrestrained ERK activity. DUSP1 represents a valuable prognostic marker, and ERK, CKS1, or SKP2 are potential therapeutic targets for human HCC. In DN (dysplastic nodule) and HCC of F344 rats and human HCCP, DUSP1 downregulation and ERK1/2 overexpression sustain SKP2-CKS1 activity through FOXM1, the expression of which is associated with a susceptible phenotype. SAM-methyl-transferase reactions and SAM/SAH ratio are regulated by GNMT. In addition, GNMT binds to CYP1A, PARP1, and NFKB and PREX2 gene promoters. MYBL2 upregulation deregulates cell cycle and induces the progression of premalignant and malignant liver. During HCC progression, the MYBL2 transcription factor positively correlates with cells proliferation and microvessel density, while it is negatively correlated to apoptosis. Hierarchical supervised analysis, regarding 6132 genes common to human and rat liver, showed a gene expression pattern common to normal liver of both strains and BN nodules, and a second pattern is observed in F344 nodules and HCC of both strains. Comparative genetics studies showed that DNs of BN rats cluster with human HCCB, while F344 DNs and HCCs cluster with HCCP.
Collapse
|
4
|
Li S, Wu L, Zhang H, Liu X, Wang Z, Dong B, Cao G. GINS1 Induced Sorafenib Resistance by Promoting Cancer Stem Properties in Human Hepatocellular Cancer Cells. Front Cell Dev Biol 2021; 9:711894. [PMID: 34414190 PMCID: PMC8369484 DOI: 10.3389/fcell.2021.711894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by a high rate of incidence and recurrence, and resistance to chemotherapy may aggravate the poor prognosis of HCC patients. Sorafenib resistance is a conundrum to the treatment of advanced/recurrent HCC. Therefore, studies on the molecular pathogenesis of HCC and the resistance to sorafenib are of great interest. Here, we report that GINS1 was highly expressed in HCC tumors, associated with tumor grades, and predicted poor patient survival using Gene Expression Omnibus (GEO) databases exploration. Cell cycle, cell proliferation assay and in vivo xenograft mouse model indicated that knocking down GINS1 induced in G1/S phase cell cycle arrest and decreased tumor cells proliferation in vitro and in vivo. Spheroid formation assay results showed that GINS1 promoted the stem cell activity of HCC tumor cells. Furthermore, GEO database (GSE17112) analysis showed that HRAS oncogenic gene set was enriched in GINS1 high-expressed cancer cells, and quantitative real-time PCR, and Western blot results proved that GINS1 enhanced HCC progression through regulating HRAS signaling pathway. Moreover, knocking down endogenous GINS1 with shGINS1 increased the sensitivity of HCC cells to sorafenib, and restoring HRAS or stem associated pathway partly recovered the sorafenib resistance. Overall, the collective findings highlight GINS1 functions in hepatocarcinogenesis and sorafenib resistance, and indicate its potential use of GINS1 in drug-resistant HCC.
Collapse
Affiliation(s)
- Sheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department I of Thoracic Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lina Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hong Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xijuan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zilei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Guang Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
5
|
Shamsi-Gamchi N, Razi M, Behfar M. Cross-link between mitochondrial-dependent apoptosis and cell cycle checkpoint proteins after experimental torsion and detorsion in rats. Gene 2021; 795:145793. [PMID: 34175398 DOI: 10.1016/j.gene.2021.145793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 04/15/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022]
Abstract
The current study assessed the cross-link between mitochondria-related apoptosis and cell cycle machinery systems during ischemia and reperfusion in a rat model of testicular torsion and detorsion. The Wistar male rats were divided into control, 1 h, 2 h, 4 h and 8 h testicular torsion-induced, and 1 h, 2 h, 4 h and 8 h testicular detorsion-induced groups. The Johnson's score was analyzed. The mRNA and protein contents of Bcl-2, Bax, Caspase-3, Cyclin D1, Cdk4, P21 and P53 were investigated by sqRT-PCR and immunohistochemical staining, respectively. The apoptosis index was analyzed by TUNEL staining. The mRNA levels of bax, p53, p21 and cyclin D1 were increased, and the mRNA levels of bcl-2 and cdk4 were decreased in torsion and reperfusion-induced groups, time-dependently. The caspase-3 mRNA was increased in torsion-induced and diminished in detorsion-induced groups. A time-dependent reduction in Bcl-2+, Caspase-3+, Cyclin D1+, Cdk4+ and P53+ and increment in P21+ cells distribution per mm2 of tissue were revealed after torsion and detorsion. The apoptosis index was increased after torsion and decreased after detorsion. In conclusion, torsion-induced severe DNA damage stimulates the cyclin D1, p53 and p21 mRNA expression while more than 8 h is needed to reveal them as protein content in testicular tissue. About detorsion, decreased Cyclin D1 and Cdk4 proteins and the P53-induced transcriptional effect on p21 expression, stimulates the p21 bind to cdk4 and consequent failure in Cyclin D1/Cdk4 complex formation. This situation in association with apoptotic genes results in spermatogenesis failure.
Collapse
Affiliation(s)
- Naeimeh Shamsi-Gamchi
- Department of Basic Sciences, Division of Comparative Histology & Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Division of Comparative Histology & Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Mehdi Behfar
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
6
|
Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg Effect 97 Years after Its Discovery. Cancers (Basel) 2020; 12:2819. [PMID: 33008042 PMCID: PMC7599761 DOI: 10.3390/cancers12102819] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.
Collapse
Affiliation(s)
- Rosa Maria Pascale
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Diego Francesco Calvisi
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Maria Maddalena Simile
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Claudio Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| |
Collapse
|
7
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020. [PMID: 32824207 DOI: 10.339/cancers12082296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020; 12:cancers12082296. [PMID: 32824207 PMCID: PMC7464564 DOI: 10.3390/cancers12082296] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
9
|
Weinberg BA, Wang H, Witkiewicz AK, Marshall JL, He AR, Vail P, Knudsen ES, Pishvaian MJ. A Phase I Study of Ribociclib Plus Everolimus in Patients with Metastatic Pancreatic Adenocarcinoma Refractory to Chemotherapy. J Pancreat Cancer 2020; 6:45-54. [PMID: 32642630 PMCID: PMC7337242 DOI: 10.1089/pancan.2020.0005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose: Metastatic pancreatic adenocarcinoma (mPC) has a poor prognosis. CDK4/6 is often deregulated in mPC due to CDKN2A loss, resulting in the loss of p16INK4a that inhibits CDK4/6. CDK4/6 inhibitor monotherapy is ineffective due to RAS-mediated activation of alternative pathways, including phosphatidylinositol 3-kinase-mammalian target of rapamycin (PI3K-mTOR). We conducted a phase I study combining CDK4/6 and mTOR inhibition in patients with mPC refractory to standard chemotherapy. Materials and Methods: The combination of ribociclib (a CDK4/6 inhibitor) and everolimus (an mTOR inhibitor) was investigated in a phase I study in patients with mPC and progression on 5-fluorouracil- and gemcitabine-based chemotherapy. A 3 + 3 design was used to find the recommended phase II dose (RP2D) of ribociclib (250 or 300 mg daily for days 1-21) in combination with everolimus (2.5 mg daily for days 1-28) every 28 days. Secondary endpoints were median progression-free survival (mPFS), median overall survival (mOS), response rate, safety, and effect on the retinoblastoma pathway. Results: Twelve patients were enrolled, six at each dose level. Only one patient had a dose-limiting toxicity of a grade 3 rash at the 250 mg dose. The RP2D of ribociclib was 300 mg. mPFS was 1.8 months (95% confidence interval [CI] [0.6-2.1]), and mOS was 3.7 months (95% CI [2.3-5.6]). Two patients (17%) had stable disease at 8 weeks. Pharmacodynamic evaluation demonstrated that CDK4/6-regulated gene expression was significantly decreased on treatment (n = 6, p < 0.001). Conclusion: Ribociclib 300 mg daily for days 1-21 plus everolimus 2.5 mg daily was well tolerated and associated with decreased CDK4/6-regulated gene expression. This combination was not effective as a third-line therapy but does pharmacologically target CDK4/6 in mPC, revealing the potential for benefit in other settings.
Collapse
Affiliation(s)
- Benjamin A. Weinberg
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Hongkun Wang
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | | | - John L. Marshall
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Aiwu R. He
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Paris Vail
- Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | - Michael J. Pishvaian
- Sidney Kimmel Comprehensive Cancer Center at Sibley Memorial Hospital, Johns Hopkins University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
10
|
Hu X, Wang X, Jia F, Tanaka N, Kimura T, Nakajima T, Sato Y, Moriya K, Koike K, Gonzalez FJ, Nakayama J, Aoyama T. A trans-fatty acid-rich diet promotes liver tumorigenesis in HCV core gene transgenic mice. Carcinogenesis 2020; 41:159-170. [PMID: 31300810 PMCID: PMC8456504 DOI: 10.1093/carcin/bgz132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/08/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
Abstract
Excess consumption of trans-fatty acid (TFA), an unsaturated fatty acid containing trans double bonds, is a major risk factor for cardiovascular disease and metabolic syndrome. However, little is known about the link between TFA and hepatocellular carcinoma (HCC) despite it being a frequent form of cancer in humans. In this study, the impact of excessive dietary TFA on hepatic tumorigenesis was assessed using hepatitis C virus (HCV) core gene transgenic mice that spontaneously developed HCC. Male transgenic mice were treated for 5 months with either a control diet or an isocaloric TFA-rich diet that replaced the majority of soybean oil with shortening. The prevalence of liver tumors was significantly higher in TFA-rich diet-fed transgenic mice compared with control diet-fed transgenic mice. The TFA-rich diet significantly increased the expression of pro-inflammatory cytokines, as well as oxidative and endoplasmic reticulum stress, and activated nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (NRF2), leading to high p62/sequestosome 1 (SQSTM1) expression. Furthermore, the TFA diet activated extracellular signal-regulated kinase (ERK) and stimulated the Wnt/β-catenin signaling pathway, synergistically upregulating cyclin D1 and c-Myc, driving cell proliferation. Excess TFA intake also promoted fibrogenesis and ductular reaction, presumably contributing to accelerated liver tumorigenesis. In conclusion, these results demonstrate that a TFA-rich diet promotes hepatic tumorigenesis, mainly due to persistent activation of NF-κB and NRF2-p62/SQSTM1 signaling, ERK and Wnt/β-catenin pathways and fibrogenesis. Therefore, HCV-infected patients should avoid a TFA-rich diet to prevent liver tumor development.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xiaojing Wang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Gastroenterology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, Zhejiang, People’s Republic of China
| | - Fangping Jia
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto, Japan
| | - Takefumi Kimura
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiko Sato
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
11
|
SUMOylation Protects FASN Against Proteasomal Degradation in Breast Cancer Cells Treated with Grape Leaf Extract. Biomolecules 2020; 10:biom10040529. [PMID: 32244364 PMCID: PMC7226518 DOI: 10.3390/biom10040529] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Existing therapeutic strategies for breast cancer are limited by tumor recurrence and drug-resistance. Antioxidant plant-derived compounds such as flavonoids reduce adverse outcomes and have been identified as a potential source of antineoplastic agent with less undesirable side effects. Here, we describe the novel regulation of fatty-acid synthase (FASN), the key enzyme in de novo fatty-acid synthesis, whereby Vitis vinifera L. cv Vermentino leaf hydroalcoholic extract lowers its protein stability that is regulated by small ubiquitin-like modifier (SUMO)ylation. The phenolic compounds characterization was performed by liquid chromatography–mass spectrometry (LC–MS), whereas mass spectrometry (LC–MS/MS), Western blotting/co-immunoprecipitation (Co-IP) and RT-PCR, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clonogenicity assays, and FACS analysis were used to measure the expression of targets and tumorigenicity. Vermentino extract exhibits antitumorigenic effects, and we went on to determine that FASN and ubiquitin-conjugating enzyme 9 (UBC9), the sole E2 enzyme required for SUMOylation, were significantly reduced. Moreover, FASN was found SUMOylated in human breast cancer tissues and cell lines, and lack of SUMOylation caused by SUMO2 silencing reduced FASN protein stability. These results suggest that SUMOylation protects FASN against proteasomal degradation and may exert oncogenic activity through alteration of lipid metabolism, whereas Vermentino extract inhibits these effects which supports the additional validation of the therapeutic value of this compound in breast cancer.
Collapse
|
12
|
Mazzoccoli G, Miele L, Marrone G, Mazza T, Vinciguerra M, Grieco A. A Role for the Biological Clock in Liver Cancer. Cancers (Basel) 2019; 11:1778. [PMID: 31718031 PMCID: PMC6895918 DOI: 10.3390/cancers11111778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
The biological clock controls at the molecular level several aspects of mammalian physiology, by regulating daily oscillations of crucial biological processes such as nutrient metabolism in the liver. Disruption of the circadian clock circuitry has recently been identified as an independent risk factor for cancer and classified as a potential group 2A carcinogen to humans. Hepatocellular carcinoma (HCC) is the prevailing histological type of primary liver cancer, one of the most important causes of cancer-related death worldwide. HCC onset and progression is related to B and C viral hepatitis, alcoholic and especially non-alcoholic fatty liver disease (NAFLD)-related milieu of fibrosis, cirrhosis, and chronic inflammation. In this review, we recapitulate the state-of-the-art knowledge on the interplay between the biological clock and the oncogenic pathways and mechanisms involved in hepatocarcinogenesis. Finally, we propose how a deeper understanding of circadian clock circuitry-cancer pathways' crosstalk is promising for developing new strategies for HCC prevention and management.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | - Luca Miele
- Fondazione Policlinico Universitario A Gemelli–IRCCS– Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Giuseppe Marrone
- Fondazione Policlinico Universitario A Gemelli–IRCCS– Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy;
| | - Manlio Vinciguerra
- International Clinical Research Center (FNUSA-ICRC), St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Antonio Grieco
- Fondazione Policlinico Universitario A Gemelli–IRCCS– Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| |
Collapse
|
13
|
Diethylnitrosamine Increases Proliferation in Early Stages of Hepatic Carcinogenesis in Insulin-Treated Type 1 Diabetic Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9472939. [PMID: 29850590 PMCID: PMC5937583 DOI: 10.1155/2018/9472939] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/01/2018] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Diethylnitrosamine (DEN) induces hepatocarcinogenesis, increasing mitotic hepatocytes and leading to chronic inflammation. In addition, type 1 diabetes mellitus (T1DM) is also characterized by a proinflammatory state and by requiring insulin exogenous treatment. Given the association of diabetes, insulin treatment, and cell proliferation, our specific goal was to determine whether the liver in the diabetic state presents a greater response to DEN-induced cell cycle alteration, which is essential for the malignant transformation. Male C57BL/6 mice (four-week-old) were divided into 4 groups: C, C + DEN, T1DM, and T1DM + DEN. Mice were euthanized ten weeks after DEN injection. DEN per se produced an increase in liver lipid peroxidation levels. Besides, in T1DM + DEN, we found a greater increase in the proliferation index, in comparison with C + DEN. These results are in agreement with the increased expression observed in cell cycle progression markers: cyclin D1 and E1. In addition, a proapoptotic factor, such as activated caspase-3, evidenced a decrease in T1DM + DEN, while the Vascular Endothelial Growth Factor (VEGF) and the protooncogene p53 showed a higher increase with respect to C + DEN. Overall, the results allow us to highlight a major DEN response in T1DM, which may explain in part the greater predisposition to the development of hepatocarcinoma (HCC) during the diabetic state.
Collapse
|
14
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
15
|
Tomasi ML, Ramani K, Ryoo M, Cossu C, Floris A, Murray BJ, Iglesias-Ara A, Spissu Y, Mavila N. SUMOylation regulates cytochrome P450 2E1 expression and activity in alcoholic liver disease. FASEB J 2018; 32:3278-3288. [PMID: 29401608 DOI: 10.1096/fj.201701124r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alcohol acts through numerous pathways leading to alcoholic liver disease (ALD). Cytochrome P450 (CYP2E1), an ethanol-inducible enzyme, metabolizes ethanol-producing toxic reactive oxygen species (ROS) and is regulated at the posttranslational level. Small ubiquitin-like modifier (SUMO)ylation is a posttranslational modification that involves the addition of SUMOs, which modulate protein stability, activity, and localization. We demonstrated that ubiquitin-conjugation enzyme 9, the SUMO-conjugating enzyme, is induced in the livers of an intragastric ethanol mouse model. Our aim is to examine whether SUMOylation could regulate ethanol-induced CYP2E1 expression in ALD and to elucidate the molecular mechanism(s). CYP2E1 and UBC9 expression in vitro and in vivo was detected by real-time PCR and immunoblotting/immunostaining. SUMOylation was assayed by mass spectrometry and coimmunoprecipitation. Ubc9 expression was induced in ethanol-fed mouse livers, and silencing inhibited ethanol-mediated CYP2E1 microsomal retention and enzymatic activity. CYP2E1 SUMOylation was found to be induced by ethanol in vitro and in vivo. Ubc9 silencing prevents ethanol-induced lipid accumulation and ROS production. UBC9 was highly expressed in human ALD livers. Finally, we found that lysine 410 is a key SUMOylated residue contributing to CYP2E1 protein stability and activity preventing CYP2E1 SUMOylation. Ethanol-mediated up-regulation of CYP2E1 via SUMOylation enhancing its protein stability and activity and may have important implications in ALD.-Tomasi, M. L., Ramani, K., Ryoo, M., Cossu, C., Floris, A., Murray, B. J., Iglesias-Ara, A., Spissu, Y., Mavila, N. SUMOylation regulates cytochrome P450 2E1 expression and activity in alcoholic liver disease.
Collapse
Affiliation(s)
- Maria Lauda Tomasi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Komal Ramani
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Minjung Ryoo
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Carla Cossu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Andrea Floris
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - Ben J Murray
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ainhoa Iglesias-Ara
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ylenia Spissu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Nirmala Mavila
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
16
|
Methionine adenosyltransferase α2 sumoylation positively regulate Bcl-2 expression in human colon and liver cancer cells. Oncotarget 2016; 6:37706-23. [PMID: 26416353 PMCID: PMC4741959 DOI: 10.18632/oncotarget.5342] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022] Open
Abstract
Ubiquitin-conjugating enzyme 9 (Ubc9) is required for sumoylation and inhibits apoptosis via Bcl-2 by unknown mechanism. Methionine adenosyltransferase 2A (MAT2A) encodes for MATα2, the catalytic subunit of the MATII isoenzyme that synthesizes S-adenosylmethionine (SAMe). Ubc9, Bcl-2 and MAT2A expression are up-regulated in several malignancies. Exogenous SAMe decreases Ubc9 and MAT2A expression and is pro-apoptotic in liver and colon cancer cells. Here we investigated whether there is interplay between Ubc9, MAT2A and Bcl-2. We used human colon and liver cancer cell lines RKO and HepG2, respectively, and confirmed key finding in colon cancer specimens. We found MATα2 can regulate Bcl-2 expression at multiple levels. MATα2 binds to Bcl-2 promoter to activate its transcription. This effect is independent of SAMe as MATα2 catalytic mutant was also effective. MATα2 also directly interacts with Bcl-2 to enhance its protein stability. MATα2's effect on Bcl-2 requires Ubc9 as MATα2's stability is influenced by sumoylation at K340, K372 and K394. Overexpressing wild type (but not less stable MATα2 sumoylation mutants) protected from 5-fluorouracil-induced apoptosis in both colon and liver cancer cells. Colon cancer have higher levels of sumoylated MATα2, total MATα2, Ubc9 and Bcl-2 and higher MATα2 binding to the Bcl-2 P2 promoter. Taken together, Ubc9's protective effect on apoptosis may be mediated at least in part by sumoylating and stabilizing MATα2 protein, which in turn positively maintains Bcl-2 expression. These interactions feed forward to further enhance growth and survival of the cancer cell.
Collapse
|
17
|
Shen J, Zhang Y, Yu H, Shen B, Liang Y, Jin R, Liu X, Shi L, Cai X. Role of DUSP1/MKP1 in tumorigenesis, tumor progression and therapy. Cancer Med 2016; 5:2061-8. [PMID: 27227569 PMCID: PMC4884638 DOI: 10.1002/cam4.772] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/06/2016] [Accepted: 04/21/2016] [Indexed: 12/15/2022] Open
Abstract
Dual‐specificity phosphatase‐1 (DUSP1/MKP1), as a member of the threonine‐tyrosine dual‐specificity phosphatase family, was first found in cultured murine cells. The molecular mechanisms of DUSP1‐mediated extracellular signal‐regulated protein kinases (ERKs) dephosphorylation have been subsequently identified by studies using gene knockout mice and gene silencing technology. As a protein phosphatase, DUSP1 also downregulates p38 MAPKs and JNKs signaling through directly dephosphorylating threonine and tyrosine. It has been detected that DUSP1 is involved in various functions, including proliferation, differentiation, and apoptosis in normal cells. In various human cancers, abnormal expression of DUSP1 was observed which was associated with prognosis of tumor patients. Further studies have revealed its role in tumorigenesis and tumor progression. Besides, DUSP1 has been found to play a role in tumor chemotherapy, immunotherapy, and biotherapy. In this review, we will focus on the function and mechanism of DUSP1 in tumor cells and tumor treatment.
Collapse
Affiliation(s)
- Jiliang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Yaping Zhang
- Department of Anesthesiology, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Hong Yu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Bo Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Yuelong Liang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Renan Jin
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Liang Shi
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, 310016, China
| |
Collapse
|
18
|
Delogu S, Wang C, Cigliano A, Utpatel K, Sini M, Longerich T, Waldburger N, Breuhahn K, Jiang L, Ribback S, Dombrowski F, Evert M, Chen X, Calvisi DF. SKP2 cooperates with N-Ras or AKT to induce liver tumor development in mice. Oncotarget 2016; 6:2222-34. [PMID: 25537506 PMCID: PMC4385847 DOI: 10.18632/oncotarget.2945] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/09/2015] [Indexed: 12/17/2022] Open
Abstract
Mounting evidence indicates that S-Phase Kinase-Associated Protein 2 (SKP2) is overexpressed in human hepatocellular carcinoma (HCC). However, the role of SKP2 in hepatocarcinogenesis remains poorly delineated. To elucidate the function(s) of SKP2 in HCC, we stably overexpressed the SKP2 gene in the mouse liver, either alone or in combination with activated forms of N-Ras (N-RasV12), AKT1 (myr-AKT1), or β-catenin (ΔN90-β-catenin) protooncogenes, via hydrodynamic gene delivery. We found that forced overexpression of SKP2, N-RasV12 or ΔN90-β-catenin alone as well as co-expression of SKP2 and ΔN90-β-catenin did not induce liver tumor development. Overexpression of myr-AKT1 alone led to liver tumor development after long latency. In contrast, co-expression of SKP2 with N-RasV12 or myr-AKT1 resulted in early development of multiple hepatocellular tumors in all SKP2/N-RasV12 and SKP2/myr-AKT1 mice. At the molecular level, preneoplastic and neoplastic liver lesions from SKP2/N-RasV12 and SKP2/myr-AKT1 mice exhibited a strong induction of AKT/mTOR and Ras/MAPK pathways. Noticeably, the tumor suppressor proteins whose levels have been shown to be downregulated by SKP2-dependent degradation in various tumor types, including p27, p57, Dusp1, and Rassf1A were not decreased in liver lesions from SKP2/N-RasV12 and SKP2/myr-AKT1 mice. In human HCC specimens, nuclear translocation of SKP2 was associated with activation of the AKT/mTOR and Ras/MAPK pathways, but not with β-catenin mutation or activation. Altogether, the present data indicate that SKP2 cooperates with N-Ras and AKT proto-oncogenes to promote hepatocarcinogenesis in vivo.
Collapse
Affiliation(s)
- Salvatore Delogu
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Chunmei Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
| | - Antonio Cigliano
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Kirsten Utpatel
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Marcella Sini
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nina Waldburger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lijie Jiang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
| | - Silvia Ribback
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frank Dombrowski
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Matthias Evert
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
| | - Diego F Calvisi
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
19
|
Pacheco-Rivera R, Fattel-Fazenda S, Arellanes-Robledo J, Silva-Olivares A, Alemán-Lazarini L, Rodríguez-Segura M, Pérez-Carreón J, Villa-Treviño S, Shibayama M, Serrano-Luna J. Double staining of β-galactosidase with fibrosis and cancer markers reveals the chronological appearance of senescence in liver carcinogenesis induced by diethylnitrosamine. Toxicol Lett 2016; 241:19-31. [DOI: 10.1016/j.toxlet.2015.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 01/04/2023]
|
20
|
Valencia Antúnez CA, Taja Chayeb L, Rodríguez-Segura MÁ, López Álvarez GS, García-Cuéllar CM, Villa Treviño S. DNA methyltransferases 3a and 3b are differentially expressed in the early stages of a rat liver carcinogenesis model. Oncol Rep 2014; 32:2093-103. [PMID: 25190601 DOI: 10.3892/or.2014.3462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/23/2014] [Indexed: 11/06/2022] Open
Abstract
Carcinogenesis is driven by the accumulation of mutations and abnormal DNA methylation patterns, particularly the hypermethylation of tumor‑suppressor genes. Changes in genomic DNA methylation patterns are established by the DNA methyltransferases (DNMTs) family: DNMT1, DNMT3a and DNMT3b. The DNMTs are known to be overexpressed in tumors. However, when the DNMTs expression profile is altered in earlier stages of carcinogenesis remains to be elucidated. The resistant hepatocyte model (RHM) allows the analysis of the hepatocellular carcinoma (HCC) from the formation of altered cell foci to the appearance of tumors in rats. To investigate the DNMTs expression in this model, we first observed that timp3, rassf1a and p16 genes became methylated during cancer development by methylation‑specific PCR (MSP) and the bisulphate sequencing PCR (BSP) of timp3. The differential expression at the RNA and protein level of the three DNMTs was also assessed. dnmt1 expression was higher in tumors than in normal and early cancer stages. However, no evident overexpression of the enzyme was identified by immunohistochemistry. By contrast, DNMT3a and DNMT3b were consistently subexpressed in tumors. In the present study, we report a carcinogenesis model that does not feature the overexpression of DNMT1 but exhibits a transient expression of DNMT3a and DNMT3b.
Collapse
Affiliation(s)
- Carlos Alberto Valencia Antúnez
- Department of Cell Biology Center for Research and Advanced Studies (CINVESTAV) IPN, Basic Research Branch, Mexico, D.F., Mexico
| | - Lucía Taja Chayeb
- National Cancer Institute, Basic Research Branch, Mexico, D.F., Mexico
| | - Miguel Ángel Rodríguez-Segura
- Department of Physics, Center for Research and Advanced Studies (CINVESTAV) IPN, Basic Research Branch, Mexico, D.F., Mexico
| | - Guadalupe Soledad López Álvarez
- Department of Cell Biology Center for Research and Advanced Studies (CINVESTAV) IPN, Basic Research Branch, Mexico, D.F., Mexico
| | | | - Saúl Villa Treviño
- Department of Cell Biology Center for Research and Advanced Studies (CINVESTAV) IPN, Basic Research Branch, Mexico, D.F., Mexico
| |
Collapse
|
21
|
Evangelou K, Havaki S, Kotsinas A. E2F transcription factors and digestive system malignancies: How much do we know? World J Gastroenterol 2014; 20:10212-10216. [PMID: 25110451 PMCID: PMC4123353 DOI: 10.3748/wjg.v20.i29.10212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 02/22/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
The E2F proteins comprise a family of 8 members that function as transcription factors. They are key targets of the retinoblastoma protein (RB) and were initially divided into groups of activators and repressors. Accumulating data suggest that there is no specific role for each individual E2F member. Instead, each E2F can exert a variety of cellular effects, some of which represent opposing ones. For instance, specific E2Fs can activate transcription and repression, promote or hamper cell proliferation, augment or inhibit apoptosis, all being dependent on the cellular context. This complexity reflects the importance that these transcription factors have on a cell’s fate. Thus, delineating the specific role for each E2F member in specific malignancies, although not easy, is a challenging and continuously pursued task, especially in view of potential E2F targeted therapies. Therefore, several reviews are continuously trying to evaluate available data on E2F status in various malignancies. Such reviews have attempted to reach a consensus, often in the simplistic form of oncogenes or tumor suppressor genes for the E2Fs. However they frequently miss spatial and temporal alterations of these factors during tumor development, which should also be considered in conjunction with the status of the regulatory networks that these factors participate in. In the current ‘‘Letter to the Editor’’, we comment on the flaws, misinterpretations and omissions in one such review article published recently in the World Journal of Gastroenterology regarding the role of E2Fs in digestive system malignancies.
Collapse
|
22
|
Meng P, Ghosh R. Transcription addiction: can we garner the Yin and Yang functions of E2F1 for cancer therapy? Cell Death Dis 2014; 5:e1360. [PMID: 25101673 PMCID: PMC4454301 DOI: 10.1038/cddis.2014.326] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 12/29/2022]
Abstract
Classically, as a transcription factor family, the E2Fs are known to regulate the expression of various genes whose products are involved in a multitude of biological functions, many of which are deregulated in diseases including cancers. E2F is deregulated and hyperactive in most human cancers with context dependent, dichotomous and contradictory roles in almost all cancers. Cancer cells have an insatiable demand for transcription to ensure that gene products are available to sustain various biological processes that support their rapid growth and survival. In this context, cutting-off hyperactivity of transcription factors that support transcription dependence could be a valuable therapeutic strategy. However, one of the greatest challenges of targeting a transcription factor is the global effects on non-cancerous cells given that they control cellular functions in general. Recently, there is growing realization regarding the possibility to target the oncogenic activation of transcription factors to modulate transcription addiction without affecting the normal activity required for cell functions. In this review, we used E2F1 as a prototype transcription factor to address transcription factor activity in cancer cell functions. We focused on melanoma considering that E2F1 executes critical functions in response to UV, an etiological factor of cutaneous melanoma and lies immediately downstream of the CDKN2A/pRb axis, which is frequently deregulated in melanoma. Further, activation of E2F1 in melanomas can also occur independent of loss of CDKN2A. Given its activated status and the ability to transcriptionally control a plethora of genes involved in regulating melanoma development and progression, we review the current literature on its differential role in controlling signaling pathways involved in melanoma as well as therapeutic resistance, and discuss the practical value of weaning melanoma cells from E2F1-mediated transcription dependence for melanoma management.
Collapse
Affiliation(s)
- P Meng
- Department of Urology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - R Ghosh
- 1] Department of Urology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [2] Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [3] Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [4] Cancer Therapy and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
23
|
Evert M, Frau M, Tomasi ML, Latte G, Simile MM, Seddaiu MA, Zimmermann A, Ladu S, Staniscia T, Brozzetti S, Solinas G, Dombrowski F, Feo F, Pascale RM, Calvisi DF. Deregulation of DNA-dependent protein kinase catalytic subunit contributes to human hepatocarcinogenesis development and has a putative prognostic value. Br J Cancer 2013; 109:2654-64. [PMID: 24136149 PMCID: PMC3833205 DOI: 10.1038/bjc.2013.606] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/24/2013] [Accepted: 09/12/2013] [Indexed: 02/07/2023] Open
Abstract
Background: The DNA-repair gene DNA-dependent kinase catalytic subunit (DNA-PKcs) favours or inhibits carcinogenesis, depending on the cancer type. Its role in human hepatocellular carcinoma (HCC) is unknown. Methods: DNA-dependent protein kinase catalytic subuni, H2A histone family member X (H2AFX) and heat shock transcription factor-1 (HSF1) levels were assessed by immunohistochemistry and/or immunoblotting and qRT–PCR in a collection of human HCC. Rates of proliferation, apoptosis, microvessel density and genomic instability were also determined. Heat shock factor-1 cDNA or DNA-PKcs-specific siRNA were used to explore the role of both genes in HCC. Activator protein 1 (AP-1) binding to DNA-PKcs promoter was evaluated by chromatin immunoprecipitation. Kaplan–Meier curves and multivariate Cox model were used to study the impact on clinical outcome. Results: Total and phosphorylated DNA-PKcs and H2AFX were upregulated in HCC. Activated DNA-PKcs positively correlated with HCC proliferation, genomic instability and microvessel density, and negatively with apoptosis and patient's survival. Proliferation decline and massive apoptosis followed DNA-PKcs silencing in HCC cell lines. Total and phosphorylated HSF1 protein, mRNA and activity were upregulated in HCC. Mechanistically, we demonstrated that HSF1 induces DNA-PKcs upregulation through the activation of the MAPK/JNK/AP-1 axis. Conclusion: DNA-dependent protein kinase catalytic subunit transduces HSF1 effects in HCC cells, and might represent a novel target and prognostic factor in human HCC.
Collapse
Affiliation(s)
- M Evert
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Xanthoulis A, Tiniakos DG. E2F transcription factors and digestive system malignancies: How much do we know? World J Gastroenterol 2013; 19:3189-3198. [PMID: 23745020 PMCID: PMC3671070 DOI: 10.3748/wjg.v19.i21.3189] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/08/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023] Open
Abstract
E2F family of transcription factors regulates various cellular functions related to cell cycle and apoptosis. Its individual members have traditionally been classified into activators and repressors, based on in vitro studies. However their contribution in human cancer is more complicated and difficult to predict. We review current knowledge on the expression of E2Fs in digestive system malignancies and its clinical implications for patient prognosis and treatment. E2F1, the most extensively studied member and the only one with prognostic value, exhibits a tumor-suppressing activity in esophageal, gastric and colorectal adenocarcinoma, and in hepatocellular carcinoma (HCC), whereas in pancreatic ductal adenocarcinoma and esophageal squamous cell carcinoma may function as a tumor-promoter. In the latter malignancies, E2F1 immunohistochemical expression has been correlated with higher tumor grade and worse patient survival, whereas in esophageal, gastric and colorectal adenocarcinomas is a marker of increased patient survival. E2F2 has only been studied in colorectal cancer, where its role is not considered significant. E2F4’s role in colorectal, gastric and hepatic carcinogenesis is tumor-promoting. E2F8 is strongly upregulated in human HCC, thus possibly contributing to hepatocarcinogenesis. Adenoviral transfer of E2F as gene therapy to sensitize pancreatic cancer cells for chemotherapeutic agents has been used in experimental studies. Other therapeutic strategies are yet to be developed, but it appears that targeted approaches using E2F-agonists or antagonists should take into account the tissue-dependent function of each E2F member. Further understanding of E2Fs’ contribution in cellular functions in vivo would help clarify their role in carcinogenesis.
Collapse
|
25
|
Calvisi DF, Frau M, Tomasi ML, Feo F, Pascale RM. Deregulation of signalling pathways in prognostic subtypes of hepatocellular carcinoma: novel insights from interspecies comparison. Biochim Biophys Acta Rev Cancer 2013; 1826:215-37. [PMID: 23393659 DOI: 10.1016/j.bbcan.2012.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is a frequent and fatal disease. Recent researches on rodent models and human hepatocarcinogenesis contributed to unravel the molecular mechanisms of hepatocellular carcinoma dedifferentiation and progression, and allowed the discovery of several alterations underlying the deregulation of cell cycle and signalling pathways. This review provides an interpretive analysis of the results of these studies. Mounting evidence emphasises the role of up-regulation of RAS/ERK, P13K/AKT, IKK/NF-kB, WNT, TGF-ß, NOTCH, Hedgehog, and Hippo signalling pathways as well as of aberrant proteasomal activity in hepatocarcinogenesis. Signalling deregulation often occurs in preneoplastic stages of rodent and human hepatocarcinogenesis and progressively increases in carcinomas, being most pronounced in more aggressive tumours. Numerous changes in signalling cascades are involved in the deregulation of carbohydrate, lipid, and methionine metabolism, which play a role in the maintenance of the transformed phenotype. Recent studies on the role of microRNAs in signalling deregulation, and on the interplay between signalling pathways led to crucial achievements in the knowledge of the network of signalling cascades, essential for the development of adjuvant therapies of liver cancer. Furthermore, the analysis of the mechanisms involved in signalling deregulation allowed the identification of numerous putative prognostic markers and novel therapeutic targets of specific hepatocellular carcinoma subtypes associated with different biologic and clinical features. This is of prime importance for the selection of patient subgroups that are most likely to obtain clinical benefit and, hence, for successful development of targeted therapies for liver cancer.
Collapse
Affiliation(s)
- Diego F Calvisi
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | | | | | |
Collapse
|
26
|
HARASHIMA M, SEKI T, ARIGA T, NIIMI S. Role of p16INK4a in the inhibition of DNA synthesis stimulated by HGF or EGF in primary cultured rat hepatocytes. Biomed Res 2013; 34:269-73. [DOI: 10.2220/biomedres.34.269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Vásquez-Garzón VR, Macias-Pérez JR, Jiménez-García MN, Villegas V, Fattel-Fazenta S, Villa-Treviño S. The chemopreventive capacity of quercetin to induce programmed cell death in hepatocarcinogenesis. Toxicol Pathol 2012. [PMID: 23197198 DOI: 10.1177/0192623312467522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study of chemoprevention in the rat modified resistant hepatocyte model, preneoplastic cells were diminished by >60% with quercetin pretreatment compared with those rats treated with N-Diethylnitrosamine (DEN) to induce liver cancer. This decrease occurred associated with an abolished DEN-induced lipid peroxidation as well as activation of caspase 9 and increased caspase 3, as determined by increased expression of cleaved caspase 3 and 9, but not cleaved caspase 8 and increased fragmentation of Poly (ADP-ribose) polymerase (PARP) inducing apoptosis of presumed genetically injured cells, when quercetin was administered before the initiation agent.
Collapse
|
28
|
Tomasi ML, Tomasi I, Ramani K, Pascale RM, Xu J, Giordano P, Mato JM, Lu SC. S-adenosyl methionine regulates ubiquitin-conjugating enzyme 9 protein expression and sumoylation in murine liver and human cancers. Hepatology 2012; 56:982-93. [PMID: 22407595 PMCID: PMC3378793 DOI: 10.1002/hep.25701] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/28/2012] [Indexed: 12/15/2022]
Abstract
UNLABELLED Ubiquitin-conjugating enzyme 9 (Ubc9) is required for sumoylation and is overexpressed in several malignancies, but its expression in hepatocellular carcinoma (HCC) is unknown. Hepatic S-adenosyl methionine (SAMe) levels decrease in methionine adenosyltransferase 1A (Mat1a) knockout (KO) mice, which develop HCC, and in ethanol-fed mice. We examined the regulation of Ubc9 by SAMe in murine liver and human HCC, breast, and colon carcinoma cell lines and specimens. Real-time polymerase chain reaction and western blotting measured gene and protein expression, respectively. Immunoprecipitation followed by western blotting examined protein-protein interactions. Ubc9 expression increased in HCC and when hepatic SAMe levels decreased. SAMe treatment in Mat1a KO mice reduced Ubc9 protein, but not messenger RNA (mRNA) levels, and lowered sumoylation. Similarly, treatment of liver cancer cell lines HepG2 and Huh7, colon cancer cell line RKO, and breast cancer cell line MCF-7 with SAMe or its metabolite 5'-methylthioadenosine (MTA) reduced only Ubc9 protein level. Ubc9 posttranslational regulation is unknown. Ubc9 sequence predicted a possible phosphorylation site by cell division cycle 2 (Cdc2), which directly phosphorylated recombinant Ubc9. Mat1a KO mice had higher phosphorylated (phospho)-Ubc9 levels, which normalized after SAMe treatment. SAMe and MTA treatment lowered Cdc2 mRNA and protein levels, as well as phospho-Ubc9 and protein sumoylation in liver, colon, and breast cancer cells. Serine 71 of Ubc9 was required for phosphorylation, interaction with Cdc2, and protein stability. Cdc2, Ubc9, and phospho-Ubc9 levels increased in human liver, breast, and colon cancers. CONCLUSION Cdc2 expression is increased and Ubc9 is hyperphosphorylated in several cancers, and this represents a novel mechanism to maintain high Ubc9 protein expression that can be inhibited by SAMe and MTA.
Collapse
Affiliation(s)
- Maria Lauda Tomasi
- Division of Gastroenterology and Liver Diseases, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA,USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA,The Southern California Research Center for Alcoholic and Pancreatic Diseases & Cirrhosis, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA
| | - Ivan Tomasi
- Department of Colorectal Surgery, Whipps Cross University Hospital, London E11 1NR, UK
| | - Komal Ramani
- Division of Gastroenterology and Liver Diseases, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA,USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA,The Southern California Research Center for Alcoholic and Pancreatic Diseases & Cirrhosis, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA
| | - Rosa Maria Pascale
- Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy
| | - Jun Xu
- The Southern California Research Center for Alcoholic and Pancreatic Diseases & Cirrhosis, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA
| | - Pasquale Giordano
- Department of Colorectal Surgery, Whipps Cross University Hospital, London E11 1NR, UK
| | - José M. Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C. Lu
- Division of Gastroenterology and Liver Diseases, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA,USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA,The Southern California Research Center for Alcoholic and Pancreatic Diseases & Cirrhosis, Keck School of Medicine of University of Southern California, 90033 Los Angeles, California, USA
| |
Collapse
|
29
|
Frau M, Tomasi ML, Simile MM, Demartis MI, Salis F, Latte G, Calvisi DF, Seddaiu MA, Daino L, Feo CF, Brozzetti S, Solinas G, Yamashita S, Ushijima T, Feo F, Pascale RM. Role of transcriptional and posttranscriptional regulation of methionine adenosyltransferases in liver cancer progression. Hepatology 2012; 56:165-175. [PMID: 22318685 DOI: 10.1002/hep.25643] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/24/2011] [Indexed: 12/15/2022]
Abstract
UNLABELLED Down-regulation of the liver-specific MAT1A gene, encoding S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and up-regulation of widely expressed MAT2A, encoding MATII isozyme, known as MAT1A:MAT2A switch, occurs in hepatocellular carcinoma (HCC). Here we found Mat1A:Mat2A switch and low SAM levels, associated with CpG hypermethylation and histone H4 deacetylation of Mat1A promoter, and prevalent CpG hypomethylation and histone H4 acetylation in Mat2A promoter of fast-growing HCC of F344 rats, genetically susceptible to hepatocarcinogenesis. In HCC of genetically resistant BN rats, very low changes in the Mat1A:Mat2A ratio, CpG methylation, and histone H4 acetylation occurred. The highest MAT1A promoter hypermethylation and MAT2A promoter hypomethylation occurred in human HCC with poorer prognosis. Furthermore, levels of AUF1 protein, which destabilizes MAT1A messenger RNA (mRNA), Mat1A-AUF1 ribonucleoprotein, HuR protein, which stabilizes MAT2A mRNA, and Mat2A-HuR ribonucleoprotein sharply increased in F344 and human HCC, and underwent low/no increase in BN HCC. In human HCC, Mat1A:MAT2A expression and MATI/III:MATII activity ratios correlated negatively with cell proliferation and genomic instability, and positively with apoptosis and DNA methylation. Noticeably, the MATI/III:MATII ratio strongly predicted patient survival length. Forced MAT1A overexpression in HepG2 and HuH7 cells led to a rise in the SAM level, decreased cell proliferation, increased apoptosis, down-regulation of Cyclin D1, E2F1, IKK, NF-κB, and antiapoptotic BCL2 and XIAP genes, and up-regulation of BAX and BAK proapoptotic genes. In conclusion, we found for the first time a post-transcriptional regulation of MAT1A and MAT2A by AUF1 and HuR in HCC. Low MATI/III:MATII ratio is a prognostic marker that contributes to determine a phenotype susceptible to HCC and patients' survival. CONCLUSION Interference with cell cycle progression and I-kappa B kinase (IKK)/nuclear factor kappa B (NF-κB) signaling contributes to the antiproliferative and proapoptotic effect of high SAM levels in HCC.
Collapse
MESH Headings
- Animals
- Binding Sites
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/pathology
- DNA Methylation
- Disease Models, Animal
- Disease Progression
- Down-Regulation
- Gene Expression Regulation, Enzymologic
- Humans
- Liver/metabolism
- Liver Neoplasms/enzymology
- Liver Neoplasms/pathology
- Methionine Adenosyltransferase/genetics
- Methionine Adenosyltransferase/metabolism
- Multivariate Analysis
- Prognosis
- Promoter Regions, Genetic
- Proportional Hazards Models
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred BN
- Rats, Inbred F344
- S-Adenosylmethionine/metabolism
- Statistics, Nonparametric
- Transcriptional Activation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
SHIN EUN, KIM SOOHEE, JEONG HAEYEON, JANG JAJUNE, LEE KYUNGBUN. Nuclear expression of S-phase kinase-associated protein 2 predicts poor prognosis of hepatocellular carcinoma. APMIS 2011; 120:349-57. [DOI: 10.1111/j.1600-0463.2011.02838.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Frau M, Ladu S, Calvisi DF, Simile MM, Bonelli P, Daino L, Tomasi ML, Seddaiu MA, Feo F, Pascale RM. Mybl2 expression is under genetic control and contributes to determine a hepatocellular carcinoma susceptible phenotype. J Hepatol 2011; 55:111-9. [PMID: 21419759 DOI: 10.1016/j.jhep.2010.10.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/02/2010] [Accepted: 10/07/2010] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS MYBL2 is implicated in human malignancies and over expressed in hepatocellular carcinoma (HCC). We investigated Mybl2 role in the acquisition of susceptibility to HCC and tumor progression. METHODS MYBL2 mRNA and protein levels were evaluated by quantitative RT-PCR and immunoblotting, respectively. MYBL2 expression in HCC cell lines was controlled through MYBL2 cDNA or anti-MYBL2 siRNA transfection. Gene expression profile of cells transfected with MYBL2 was analyzed by microarray. RESULTS Low induction of Mybl2 and its target Clusterin mRNAs, in low-grade dysplastic nodules (DN), progressively increased in fast growing high-grade DN and HCC of F344 rats, susceptible to hepatocarcinogenesis, whereas no/lower increases occurred in slow growing lesions of resistant BN rats. Highest Mybl2 protein activation, prevalently nuclear, occurred in F344 than BN lesions. Highest Mybl2, Clusterin, Cdc2, and Cyclin B1 expression occurred in fast progressing DN and HCC of E2f1 transgenics, compared to c-Myc transgenics, and anti-Mybl2 siRNA had highest anti-proliferative and apoptogenic effects in cell lines from HCC of E2f1 transgenics. MYBL2 transfected HepG2 and Huh7 cells exhibited increased cell proliferation and G1-S and G2-M cell cycle phases. The opposite occurred when MYBL2 was silenced by specific siRNA. MYBL2 transfection in Huh7 cells led to upregulation of genes involved in signal transduction, cell proliferation, cell motility, and downregulation of oncosuppressor and apoptogenic genes. CONCLUSIONS mybl2 expression and activation are under genetic control. Mybl2 upregulation induces fast growth and progression of premalignant and malignant liver, through cell cycle deregulation and activation of genes and pathways related to tumor progression.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chagas CEA, Bassoli BK, de Souza CAS, Deminice R, Jordão Júnior AA, Paiva SAR, Dagli MLZ, Ong TP, Moreno FS. Folic acid supplementation during early hepatocarcinogenesis: cellular and molecular effects. Int J Cancer 2011; 129:2073-82. [PMID: 21480218 DOI: 10.1002/ijc.25886] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/30/2010] [Indexed: 01/27/2023]
Abstract
Folic acid (FA) supplementation during carcinogenesis is controversial. Considering the impact of liver cancer as a public health problem and mandatory FA fortification in several countries, the role of FA supplementation in hepatocarcinogenesis should be elucidated. We evaluated FA supplementation during early hepatocarcinogenesis. Rats received daily 0.08 mg (FA8 group) or 0.16 mg (FA16 group) of FA/100 g body weight or water (CO group, controls). After a 2-week treatment, animals were subjected to the "resistant hepatocyte" model of hepatocarcinogenesis (initiation with diethylnitrosamine, selection/promotion with 2-acetylaminofluorene and partial hepatectomy) and euthanized after 8 weeks of treatment. Compared to the CO group, the FA16 group presented: reduced (p < 0.05) number of persistent and increased (p < 0.05) number of remodeling glutathione S-transferase (GST-P) positive preneoplastic lesions (PNL); reduced (p < 0.05) cell proliferation in persistent GST-P positive PNL; decreased (p < 0.05) hepatic DNA damage; and a tendency (p < 0.10) for decreased c-myc expression in microdissected PNL. Regarding all these parameters, no differences (p > 0.05) were observed between CO and FA8 groups. FA-treated groups presented increased hepatic levels of S-adenosylmethionine but only FA16 group presented increased S-adenosylmethionine/S-adenosylhomocysteine ratio. No differences (p > 0.05) were observed between experimental groups regarding apoptosis in persistent and remodeling GST-P positive PNL, and global DNA methylation pattern in microdissected PNL. Altogether, the FA16 group, but not the FA8 group, presented chemopreventive activity. Reversion of PNL phenotype and inhibition of DNA damage and of c-myc expression represent relevant FA cellular and molecular effects.
Collapse
Affiliation(s)
- Carlos Eduardo Andrade Chagas
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Frau M, Biasi F, Feo F, Pascale RM. Prognostic markers and putative therapeutic targets for hepatocellular carcinoma. Mol Aspects Med 2010; 31:179-93. [PMID: 20176048 DOI: 10.1016/j.mam.2010.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 02/16/2010] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most frequent human cancer and a fatal disease. Therapies with pharmacological agents do not improve the prognosis of patients with unresectable HCC. This emphasizes the need to identify new targets for early diagnosis, chemoprevention, and treatment of the disease. Available evidence indicates that clinical outcome of HCC could reflect the genetic predisposition to cancer development and progression. Numerous loci controlling HCC progression have been identified in rodents. In this review, we describe results of recent studies on effector mechanisms of susceptibility/resistance genes, responsible for HCC progression, aimed at identifying new putative prognostic markers and therapeutic targets of this tumor. Highest c-myc amplification and overexpression, alterations of iNOS crosstalk with IKK/NF-kB and RAS/ERK signaling, ubiquitination of ERK and cell cycle inhibitors, and deregulation of FOXM1 and cell cycle key genes occur in rapidly progressing dysplastic nodules and HCC, induced in genetic susceptible rat strains, compared to the lesions of resistant rats. Notably, alterations of these mechanisms in human HCC subtypes with poorer or better prognosis, are similar to those present in genetically susceptible and resistant rats, respectively, and function as prognostic markers and therapeutic targets. Attempts to cure advanced HCC by molecular therapy directed against specific targets led to modest survival benefit. Thus, efforts are necessary to identify and test, in pre-clinical and clinical studies, new therapeutic targets for combined molecular treatments of HCC. They may take advantage from the comparative analysis of signal transduction in HCCs differently prone to progress, in rats and humans.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy
| | | | | | | |
Collapse
|
34
|
Calvisi DF, Pinna F, Ladu S, Muroni MR, Frau M, Demartis I, Tomasi ML, Sini M, Simile MM, Seddaiu MA, Feo F, Pascale RM. The degradation of cell cycle regulators by SKP2/CKS1 ubiquitin ligase is genetically controlled in rodent liver cancer and contributes to determine the susceptibility to the disease. Int J Cancer 2010; 126:1275-81. [PMID: 19533683 DOI: 10.1002/ijc.24650] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous work showed a genetic control of cell cycle deregulation during hepatocarcinogenesis. We now evaluated in preneoplastic lesions, dysplastic nodules and hepatocellular carcinoma (HCC), chemically induced in genetically susceptible F344 and resistant Brown Norway (BN) rats, the role of cell cycle regulating proteins in the determination of a phenotype susceptible to HCC development. p21(WAF1), p27(KIP1), p57(KIP2) and p130 mRNA levels increased in fast growing lesions of F344 rats. Lower/no increases occurred in slowly growing lesions of BN rats. A similar behavior of RassF1A mRNA was previously found in the 2 rat strains. However, p21(WAF1), p27(KIP1), p57(KIP), p130 and RassF1A proteins exhibited no change/low increase in the lesions of F344 rats and consistent rise in dysplastic nodules and HCC of BN rats. Increase in Cks1-Skp2 ligase and ubiquitination of cell cycle regulators occurred in F344 but not in BN rat lesions, indicating that posttranslational modifications of cell cycle regulators are under genetic control and contribute to determine a phenotype susceptible to HCC. Moreover, proliferation index of 60 human HCCs was inversely correlated with protein levels but not with mRNA levels of P21(WAF1), P27(KIP1), P57(KIP2) and P130, indicating a control of human HCC proliferation by posttranslational modifications of cell cycle regulators.
Collapse
Affiliation(s)
- Diego F Calvisi
- Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Deng Q, Wang Q, Zong WY, Zheng DL, Wen YX, Wang KS, Teng XM, Zhang X, Huang J, Han ZG. E2F8 Contributes to Human Hepatocellular Carcinoma via Regulating Cell Proliferation. Cancer Res 2010; 70:782-91. [DOI: 10.1158/0008-5472.can-09-3082] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Calvisi DF, Ladu S, Pinna F, Frau M, Tomasi ML, Sini M, Simile MM, Bonelli P, Muroni MR, Seddaiu MA, Lim DS, Feo F, Pascale RM. SKP2 and CKS1 promote degradation of cell cycle regulators and are associated with hepatocellular carcinoma prognosis. Gastroenterology 2009; 137:1816-26.e1-10. [PMID: 19686743 DOI: 10.1053/j.gastro.2009.08.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 07/08/2009] [Accepted: 08/06/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The cell cycle regulators P21(WAF1), P27(KIP1), P57(KIP2), P130, RASSF1A, and FOXO1 are down-regulated during hepatocellular carcinoma (HCC) pathogenesis. We investigated the role of the ubiquitin ligase subunits CKS1 and SKP2, which regulate proteasome degradation of cell cycle regulators, in HCC progression. METHODS Human HCC tissues from patients with better (HCCB, >3 years survival) and poorer prognosis (HCCP, <3 years survival) and HCC cell lines were analyzed. RESULTS The promoters of P21(WAF1), P27(KIP1), and P57(KIP2) were more frequently hypermethylated in HCCP than HCCB. Messenger RNA levels of these genes were up-regulated in samples in which these genes were not methylated; protein levels increased only in HCCB because of CKS1- and SKP2-dependent ubiquitination of these proteins in HCCP. The level of SKP2 expression correlated with rate of HCC cell proliferation and level of microvascularization of samples and was inversely correlated with apoptosis and survival. In HCCB, SKP2 activity was balanced by degradation by the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C)-CDH1 and up-regulation of SKP2 suppressor histidine triad nucleotide binding protein 1 (HINT1). In HCCP, however, SKP2 was not degraded because of down-regulation of the phosphatase CDC14B, CDK2-dependent serine phosphorylation (which inhibits interaction between CDH1 and SKP2), and HINT1 inactivation. In HCC cells, small interfering RNA knockdown of SKP2 reduced proliferation and ubiquitination of the cell cycle regulators, whereas SKP2 increased proliferation and reduced expression of cell cycle regulators. CONCLUSIONS Ubiquitination and proteasome degradation of P21WAF1, P27KIP1, P57KIP2, P130, RASSF1A, and FOXO1 and mechanisms that prevent degradation of SKP2 by APC/C-CDH1 contribute to HCC progression. CKS1-SKP2 ligase might be developed as a therapeutic target or diagnostic marker.
Collapse
Affiliation(s)
- Diego F Calvisi
- Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Park DH, Shin JW, Park SK, Seo JN, Li L, Jang JJ, Lee MJ. Diethylnitrosamine (DEN) induces irreversible hepatocellular carcinogenesis through overexpression of G1/S-phase regulatory proteins in rat. Toxicol Lett 2009; 191:321-6. [PMID: 19822196 DOI: 10.1016/j.toxlet.2009.09.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 09/26/2009] [Accepted: 09/29/2009] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most frequent cause of cancer deaths in males and was the third most frequent cause of cancer deaths in 2007 throughout the world. The incidence rate is 2-3 times higher in developing countries than in developed countries. Animal models have enabled study of the mechanism of HCC and the development of possible strategies for treatment. Diethylnitrosamine (DEN) is a representative chemical carcinogen with the potential to cause tumors in various organs, including the liver, skin, gastrointestinal tract, and respiratory system. Specifically in HCC, DEN is a complete carcinogen. Many lines of evidence have demonstrated a relationship between carcinogenesis and cell cycle regulation. In this study we found that cell cycle regulatory proteins were critically involved in cancer initiation and promotion by DEN. Cyclin D1, cyclin E, cdk4, and p21(CIP1/WAF1) are factors whose expression levels may be useful as criteria for the classification of hepatic disease. In particular, cdk4 had a pivotal role in the transition to the neoplastic stage. In conclusion, we suggest that changes in the level of cdk4 may be useful as a biomarker for detection of HCC.
Collapse
Affiliation(s)
- Dae-Hun Park
- College of Pharmacy, Kangwon National University, 192-1 Hyoja-dong, Chuncheon-si, Gangwon-do 200-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Feo F, Frau M, Tomasi ML, Brozzetti S, Pascale RM. Genetic and epigenetic control of molecular alterations in hepatocellular carcinoma. Exp Biol Med (Maywood) 2009; 234:726-36. [PMID: 19429855 DOI: 10.3181/0901-mr-40] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Comparative analysis of hepatocellular carcinoma (HCC) in rat strains that are either susceptible or resistant to the induction of HCC has allowed the mapping of genes responsible for inherited predisposition to HCC. These studies show that the activity of several low penetrance genes and a predominant susceptibility gene regulate the development of hepatocarcinogenesis in rodents. These studies shed light on the epidemiology of human HCC. The identified genes regulate resistance to hepatocarcinogenesis by affecting the capacity of the initiated cells to grow autonomously and to progress to HCC. Analysis of the molecular alterations showed highest iNos cross-talk with IKK/NF-kB and RAS/ERK pathways in most aggressive liver lesions represented by HCC in the susceptible F344 rats. Unrestrained extracellular signal-regulated kinase (Erk) activity linked to proteasomal degradation of dual-specificity phosphatase 1 (Dusp1), a specific ERK inhibitor, by the CKS1-SKP2 ubiquitin ligase complex was highest in more aggressive HCC of genetically susceptible rats. Furthermore, deregulation of G1 and S phases of the cell cycle occurs in HCC of susceptible F344 rats, leading to pRb hyperphosphorylation and elevated DNA synthesis, whereas a block to G1-S transition is present in the HCC of resistant BN rats. Importantly, similar alterations in the signaling pathways that regulate cell cycle progression were found in human HCC with poorer prognosis (as defend by patients' survival length), whereas human HCC with better prognosis had molecular characteristics similar to the lesions in the HCC of resistant rat strains. This review discusses the role of molecular alterations involved in the acquisition of resistance or susceptibility to HCC and the importance of genetically susceptible and resistant rat models for the identification of prognostic markers, and chemopreventive or therapeutic targets for the biological network therapy of human disease.
Collapse
Affiliation(s)
- Francesco Feo
- Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | | | | | | | | |
Collapse
|
39
|
Metalloproteinases 2 and -9 activity during promotion and progression stages of rat liver carcinogenesis. J Mol Histol 2008; 40:1-11. [DOI: 10.1007/s10735-008-9206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 11/17/2008] [Indexed: 12/27/2022]
|
40
|
Feo F, Frau M, Pascale RM. Interaction of major genes predisposing to hepatocellular carcinoma with genes encoding signal transduction pathways influences tumor phenotype and prognosis. World J Gastroenterol 2008; 14:6601-15. [PMID: 19034960 PMCID: PMC2773299 DOI: 10.3748/wjg.14.6601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies on rodents and humans demonstrate an inherited predisposition to hepatocellular carcinoma (HCC). Analysis of the molecular alterations involved in the acquisition of a phenotype resistant or susceptible to hepatocarcinogenesis showed a deregulation of G1 and S phases in HCC of genetically susceptible F344 rats and a G1-S block in lesions of resistant Brown norway (BN) rats. Unrestrained extracellular signal-regulated kinase (ERK) activity linked to proteasomal degradation of dual-specificity phosphatase 1 (DUSP1), a specific ERK inhibitor, by the CKS1-SKP2 ubiquitin ligase complex occurs in more aggressive HCC of F344 rats and humans. This mechanism is less active in HCC of BN rats and human HCC with better prognosis. Upregulation of iNos cross-talk with IKK/NF-κB and RAS/ERK pathways occurs in rodent liver lesions at higher levels in the most aggressive models represented by HCC of F344 rats and c-Myc-TGF-α transgenic mice. iNOS, IKK/NF-κB, and RAS/ERK upregulation is highest in human HCC with a poorer prognosis and positively correlates with tumor proliferation, genomic instability and microvascularization, and negatively with apoptosis. Thus, cell cycle regulation and the activity of signal transduction pathways seem to be modulated by HCC modifier genes, and differences in their efficiency influence the susceptibility to hepatocarcinogenesis and probably the prognosis of human HCC.
Collapse
|
41
|
Calvisi DF, Pinna F, Pellegrino R, Sanna V, Sini M, Daino L, Simile MM, De Miglio MR, Frau M, Tomasi ML, Seddaiu MA, Muroni MR, Feo F, Pascale RM. Ras-driven proliferation and apoptosis signaling during rat liver carcinogenesis is under genetic control. Int J Cancer 2008; 123:2057-64. [DOI: 10.1002/ijc.23720] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Calvisi DF, Pinna F, Meloni F, Ladu S, Pellegrino R, Sini M, Daino L, Simile MM, De Miglio MR, Virdis P, Frau M, Tomasi ML, Seddaiu MA, Muroni MR, Feo F, Pascale RM. Dual-specificity phosphatase 1 ubiquitination in extracellular signal-regulated kinase-mediated control of growth in human hepatocellular carcinoma. Cancer Res 2008; 68:4192-200. [PMID: 18519678 DOI: 10.1158/0008-5472.can-07-6157] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sustained activation of extracellular signal-regulated kinase (ERK) has been detected previously in numerous tumors in the absence of RAS-activating mutations. However, the molecular mechanisms responsible for ERK-unrestrained activity independent of RAS mutations remain unknown. Here, we evaluated the effects of the functional interactions of ERK proteins with dual-specificity phosphatase 1 (DUSP1), a specific inhibitor of ERK, and S-phase kinase-associated protein 2 (SKP2)/CDC28 protein kinase 1b (CKS1) ubiquitin ligase complex in human hepatocellular carcinoma (HCC). Levels of DUSP1, as assessed by real-time reverse transcription-PCR and Western blot analysis, were significantly higher in tumors with better prognosis (as defined by the length of patients' survival) when compared with both normal and nontumorous surrounding livers, whereas DUSP1 protein expression sharply declined in all HCC with poorer prognosis. In the latter HCC subtype, DUSP1 inactivation was due to either ERK/SKP2/CKS1-dependent ubiquitination or promoter hypermethylation associated with loss of heterozygosity at the DUSP1 locus. Noticeably, expression levels of DUSP1 inversely correlated with those of activated ERK, as well as with proliferation index and microvessel density, and directly with apoptosis and survival rate. Subsequent functional studies revealed that DUSP1 reactivation led to suppression of ERK, CKS1, and SKP2 activity, inhibition of proliferation and induction of apoptosis in human hepatoma cell lines. Taken together, the present data indicate that ERK achieves unrestrained activity during HCC progression by triggering ubiquitin-mediated proteolysis of its specific inhibitor DUSP1. Thus, DUSP1 may represent a valuable prognostic marker and ERK, CKS1, or SKP2 potential therapeutic targets for human HCC.
Collapse
Affiliation(s)
- Diego F Calvisi
- Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Calvisi DF, Pinna F, Ladu S, Pellegrino R, Muroni MR, Simile MM, Frau M, Tomasi ML, De Miglio MR, Seddaiu MA, Daino L, Sanna V, Feo F, Pascale RM. Aberrant iNOS signaling is under genetic control in rodent liver cancer and potentially prognostic for the human disease. Carcinogenesis 2008; 29:1639-47. [DOI: 10.1093/carcin/bgn155] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
44
|
Lanza A, Cirillo N, Rossiello R, Rienzo M, Cutillo L, Casamassimi A, de Nigris F, Schiano C, Rossiello L, Femiano F, Gombos F, Napoli C. Evidence of key role of Cdk2 overexpression in pemphigus vulgaris. J Biol Chem 2008; 283:8736-45. [PMID: 18199752 DOI: 10.1074/jbc.m702186200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of pemphigus vulgaris (PV) is still poorly understood. Autoantibodies present in PV patients can promote detrimental effects by triggering altered transduction of signals, which results in a final acantholysis. To investigate mechanisms involved in PV, cultured keratinocytes were treated with PV serum. PV sera were able to promote the cell cycle progression, inducing the accumulation of cyclin-dependent kinase 2 (Cdk2). Microarray analysis on keratinocytes detected that PV serum induced important changes in genes coding for one and the same proteins with known biological functions involved in PV disease (560 differentially expressed genes were identified). Then, we used two different approaches to investigate the role of Cdk2. First, small interfering RNA depletion of Cdk2 prevented cell-cell detachment induced by PV sera. Second, pharmacological inhibition of Cdk2 activity through roscovitine prevented blister formation and acantholysis in the mouse model of the disease. In vivo PV serum was found to alter multiple different pathways by microarray analysis (1463 differentially expressed genes were identified). Major changes in gene expression induced by roscovitine were studied through comparison of effects of PV serum alone and in association with roscovitine. The most significantly enriched pathways were cell communication, gap junction, focal adhesion, adherens junction, and tight junction. Our data indicate that major Cdk2-dependent multiple gene regulatory events are present in PV. This alteration may influence the evolution of PV and its therapy.
Collapse
Affiliation(s)
- Alessandro Lanza
- Regional Center on Craniofacial Malformations, Clinical Odontostomatology, and Human Pathology, 1st School of Medicine and Surgery, II University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ueberham E, Lindner R, Kamprad M, Hiemann R, Hilger N, Woithe B, Mahn D, Cross M, Sack U, Gebhardt R, Arendt T, Ueberham U. Oval cell proliferation in p16INK4a expressing mouse liver is triggered by chronic growth stimuli. J Cell Mol Med 2007; 12:622-38. [PMID: 18053084 PMCID: PMC3822548 DOI: 10.1111/j.1582-4934.2007.00178.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Terminal differentiation requires molecules also involved in aging such as the cell cycle inhibitor p16INK4a.Like other organs, the adult liver represents a quiescent organ with terminal differentiated cells, hepatocytes and cholangiocytes. These cells retain the ability to proliferate in response to liver injury or reduction of liver mass. However, under conditions which prevent mitotic activation of hepatocytes, regeneration can occur instead from facultative hepatic stem cells.For therapeutic application a non-toxic activation of this stem cell compartment is required. We have established transgenic mice with conditional overexpression of the cell cycle inhibitor p16INK4a in hepatocytes and have provoked and examined oval cell activation in adult liver in response to a range of proliferative stimuli.We could show that the liver specific expression of p16INK4a leads to a faster differentiation of hepatocytes and an activation of oval cells already in postnatal mice without negative consequences on liver function.
Collapse
Affiliation(s)
- Elke Ueberham
- Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
De Miglio MR, Virdis P, Calvisi DF, Frau M, Muroni MR, Simile MM, Daino L, Careddu GM, Sanna-Passino E, Pascale RM, Feo F. Mapping a Sex Hormone–Sensitive Gene Determining Female Resistance to Liver Carcinogenesis in a Congenic F344.BN-Hcs4Rat. Cancer Res 2006; 66:10384-90. [PMID: 17079458 DOI: 10.1158/0008-5472.can-06-2881] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is prevalent in human and rodent males. Hepatocarcinogenesis is controlled by various genes in susceptible F344 and resistant Brown Norway (BN) rats. B alleles at Hcs4 locus, on RNO16, control neoplastic nodule volume. We constructed the F344.BN-Hcs4 recombinant congenic strain (RCS) by introgressing a 4.41-cM portion of Hcs4 from BN strain in an isogenic F344 background. Preneoplastic and neoplastic lesions were induced by the "resistant hepatocyte" protocol. Eight weeks after initiation, lesion volume and positivity for proliferating cell nuclear antigen (PCNA) were much higher in lesions of F344 than BN rats of both sexes. These variables were lower in females than in males. Lesion volume and PCNA values of male RCS were similar to those of F344 rats, but in females corresponded to those of BN females. Carcinomatous nodules and HCC developed at 32 and 60 weeks, respectively, in male F344 and congenics and, rarely, in F344 females. BN and congenic females developed only eosinophilic/clear cells nodules. Gonadectomy of congenic males, followed by beta-estradiol administration, caused a decrease in Ar expression, an increase in Er-alpha expression, and development of preneoplastic lesions comparable to those from BN females. Administration of testosterone to gonadectomized females led to Ar increase and development of preneoplastic lesions as in F344 males. This indicates a role of homozygous B alleles at Hcs4 in the determination of phenotypic patterns of female RCS and presence at Hcs4 locus of a high penetrance gene(s), activated by estrogens and inhibited/unaffected by testosterone, conferring resistance to females in which the B alleles provide higher resistance.
Collapse
Affiliation(s)
- Maria R De Miglio
- Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rodríguez J, Sandoval J, Serviddio G, Sastre J, Morante M, Perrelli MG, Martínez-Chantar M, Viña J, Viña J, Mato J, Ávila M, Franco L, López-Rodas G, Torres L. Id2 leaves the chromatin of the E2F4-p130-controlled c-myc promoter during hepatocyte priming for liver regeneration. Biochem J 2006; 398:431-7. [PMID: 16776654 PMCID: PMC1559451 DOI: 10.1042/bj20060380] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Id (inhibitor of DNA binding or inhibitor of differentiation) helix-loop-helix proteins are involved in the regulation of cell growth, differentiation and cancer. The fact that the molecular mechanisms of liver regeneration are not completely understood prompted us to study the fate of Id2 in proliferating liver. Id2 increases in liver regeneration after partial hepatectomy, following the early induction of its gene. Co-immunoprecipitation shows that Id2 forms a complex with E2F4, p130 and mSin3A in quiescent liver and all these components are present at the c-myc promoter as shown using ChIP (chromatin immunoprecipitation). Activation of c-myc during hepatocyte priming (G0-G1 transition) correlates with the dissociation of Id2 and HDAC (histone deacetylase), albeit p130 remains bound at least until 6 h. Moreover, as the G0-G1 transition progresses, Id2 and HDAC again bind the c-myc promoter concomitantly with the repression of this gene. The time course of c-myc binding to the Id2 promoter, as determined by ChIP assays is compatible with a role of the oncoprotein as a transcriptional inducer of Id2 in liver regeneration. Immunohistochemical analysis shows that Id2 also increases in proliferating hepatocytes after bile duct ligation. In this case, the pattern of Id2 presence in the c-myc promoter parallels that found in regenerating liver. Our results may suggest a control role for Id2 in hepatocyte priming, through a p130 dissociation-independent regulation of c-myc.
Collapse
Affiliation(s)
- José L. Rodríguez
- *Departamento de Bioquímica y Biología Molecular, Universidad de València, València, Spain
| | - Juan Sandoval
- *Departamento de Bioquímica y Biología Molecular, Universidad de València, València, Spain
| | - Gaetano Serviddio
- †Departamento de Fisiología Universidad de València, València, Spain
| | - Juan Sastre
- †Departamento de Fisiología Universidad de València, València, Spain
| | - María Morante
- *Departamento de Bioquímica y Biología Molecular, Universidad de València, València, Spain
| | - Maria-Giulia Perrelli
- ‡Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Torino, Italy
| | | | - José Viña
- †Departamento de Fisiología Universidad de València, València, Spain
| | - Juan R. Viña
- *Departamento de Bioquímica y Biología Molecular, Universidad de València, València, Spain
| | | | - Matías A. Ávila
- ∥División de Hepatología y Terapia Génica, CIMA, Departamento de Medicina Interna, Universidad de Navarra, Navarra, Spain
| | - Luis Franco
- *Departamento de Bioquímica y Biología Molecular, Universidad de València, València, Spain
| | - Gerardo López-Rodas
- *Departamento de Bioquímica y Biología Molecular, Universidad de València, València, Spain
| | - Luis Torres
- *Departamento de Bioquímica y Biología Molecular, Universidad de València, València, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
48
|
Pérez-Carreón JI, López-García C, Fattel-Fazenda S, Arce-Popoca E, Alemán-Lazarini L, Hernández-García S, Le Berre V, Sokol S, Francois JM, Villa-Treviño S. Gene expression profile related to the progression of preneoplastic nodules toward hepatocellular carcinoma in rats. Neoplasia 2006; 8:373-83. [PMID: 16790086 PMCID: PMC1592455 DOI: 10.1593/neo.05841] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this study, we investigated the time course gene expression profile of preneoplastic nodules and hepatocellular carcinomas (HCC) to define the genes implicated in cancer progression in a resistant hepatocyte model. Tissues that included early nodules (1 month, ENT-1), persistent nodules (5 months, ENT-5), dissected HCC (12 months), and normal livers (NL) from adult rats were analyzed by cDNA arrays including 1185 rat genes. Differential genes were derived in each type of sample (n = 3) by statistical analysis. The relationship between samples was described in a Venn diagram for 290 genes. From these, 72 genes were shared between tissues with nodules and HCC. In addition, 35 genes with statistical significance only in HCC and with extreme ratios were identified. Differential expression of 11 genes was confirmed by comparative reverse transcription-polymerase chain reaction, whereas that of 2 genes was confirmed by immunohistochemistry. Members involved in cytochrome P450 and second-phase metabolism were downregulated, whereas genes involved in glutathione metabolism were upregulated, implicating a possible role of glutathione and oxidative regulation. We provide a gene expression profile related to the progression of nodules into HCC, which contributes to the understanding of liver cancer development and offers the prospect for chemoprevention strategies or early treatment of HCC.
Collapse
Affiliation(s)
- Julio Isael Pérez-Carreón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, DF, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pascale RM, Simile MM, Calvisi DF, Frau M, Muroni MR, Seddaiu MA, Daino L, Muntoni MD, De Miglio MR, Thorgeirsson SS, Feo F. Role of HSP90, CDC37, and CRM1 as modulators of P16(INK4A) activity in rat liver carcinogenesis and human liver cancer. Hepatology 2005; 42:1310-9. [PMID: 16317707 DOI: 10.1002/hep.20962] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Current evidence indicates that neoplastic nodules induced in liver of Brown Norway (BN) rats genetically resistant to hepatocarcinogenesis are not prone to evolve into hepatocellular carcinoma. We show that BN rats subjected to diethylnitrosamine/2-acetylaminofluorene/partial hepatectomy treatment with a "resistant hepatocyte" protocol displayed higher number of glutathione-S-transferase 7-7(+) hepatocytes when compared with susceptible Fisher 344 (F344) rats, both during and at the end of 2-acetylaminofluorene treatment. However, DNA synthesis declined in BN but not F344 rats after completion of reparative growth. Upregulation of p16(INK4A), Hsp90, and Cdc37 genes; an increase in Cdc37-Cdk4 complexes; and a decrease in p16(INK4A)-Cdk4 complexes occurred in preneoplastic liver, nodules, and hepatocellular carcinoma of F344 rats. These parameters did not change significantly in BN rats. E2f4 was equally expressed in the lesions of both strains, but Crm1 expression and levels of E2f4-Crm1 complex were higher in F344 rats. Marked upregulation of P16(INK4A) was associated with moderate overexpression of HSP90, CDC37, E2F4, and CRM1 in human hepatocellular carcinomas with a better prognosis. In contrast, strong induction of HSP90, CDC37, and E2F4 was paralleled by P16(INK4A) downregulation and high levels of HSP90-CDK4 and CDC37-CDK4 complexes in hepatocellular carcinomas with poorer prognosis. CDC37 downregulation by small interfering RNA inhibited in vitro growth of HepG2 cells. In conclusion, our findings underline the role of Hsp90/Cdc37 and E2f4/Crm1 systems in the acquisition of a susceptible or resistant carcinogenic phenotype. The results also suggest that protection by CDC37 and CRM1 against growth restraint by P16(INK4A) influences the prognosis of human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Feo F, De Miglio MR, Simile MM, Muroni MR, Calvisi DF, Frau M, Pascale RM. Hepatocellular carcinoma as a complex polygenic disease. Interpretive analysis of recent developments on genetic predisposition. Biochim Biophys Acta Rev Cancer 2005; 1765:126-47. [PMID: 16216419 DOI: 10.1016/j.bbcan.2005.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/25/2005] [Accepted: 08/26/2005] [Indexed: 01/11/2023]
Abstract
The different frequency of hepatocellular carcinoma (HCC) in humans at risk suggests a polygenic predisposition. However, detection of genetic variants is difficult in genetically heterogeneous human population. Studies on mouse and rat models identified 7 hepatocarcinogenesis susceptibility (Hcs) and 2 resistance (Hcr) loci in mice, and 7 Hcs and 9 Hcr loci in rats, controlling multiplicity and size of neoplastic liver lesions. Six liver neoplastic nodule remodeling (Lnnr) loci control number and volume of re-differentiating lesions in rat. A Hcs locus, with high phenotypic effects, and various epistatic gene-gene interactions were identified in rats, suggesting a genetic model of predisposition to hepatocarcinogenesis with different subset of low-penetrance genes, at play in different subsets of population, and a major locus. This model is in keeping with human HCC epidemiology. Several putative modifier genes in rodents, deregulated in HCC, are located in chromosomal segments syntenic to sites of chromosomal aberrations in humans, suggesting possible location of predisposing loci. Resistance to HCC is associated with lower genomic instability and downregulation of cell cycle key genes in preneoplastic and neoplastic lesions. p16(INK4A) upregulation occurs in susceptible and resistant rat lesions. p16(INK4A)-induced growth restraint was circumvented by Hsp90/Cdc37 chaperons and E2f4 nuclear export by Crm1 in susceptible, but not in resistant rats and human HCCs with better prognosis. Thus, protective mechanisms seem to be modulated by HCC modifiers, and differences in their efficiency influence the susceptibility to hepatocarcinogenesis and probably the prognosis of human HCC.
Collapse
Affiliation(s)
- F Feo
- Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Via P. Manzella 4, 07100 Sasssari, Italy.
| | | | | | | | | | | | | |
Collapse
|