1
|
Buzzatto-Leite I, Afonso J, Silva-Vignato B, Coutinho L, Alvares L. Differential gene co-expression network analyses reveal novel molecules associated with transcriptional dysregulation of key biological processes in osteoarthritis knee cartilage. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100316. [PMID: 36474801 PMCID: PMC9718204 DOI: 10.1016/j.ocarto.2022.100316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To compare co-expression networks of normal and osteoarthritis knee cartilage to uncover molecules associated with the transcriptional misregulation compromising biological processes (BPs) critical for cartilage homeostasis. DESIGN Normal and osteoarthritis human knee cartilage RNA-seq GSE114007 dataset was obtained from the Gene Expression Omnibus database. Partial Correlation and Information Theory (PCIT) algorithm was used to build co-expression networks containing all nodes connecting to at least one differentially expressed gene (DEG) in normal and osteoarthritis networks. Hub and hub centrality genes were used to perform functional enrichment analysis. Enriched BPs known to be associated with both healthy and diseased cartilage were compared in depth. RESULTS Differential co-expression network analyses allowed the identification of DDX43 and USP42 as exclusively co-expressed with DEGs in normal and osteoarthritis networks, respectively. The top hub and hub centrality genes of these networks were HIST1H3A and SNHG12 (normal) and TAF9B and OTUD1 (osteoarthritis). Enrichment analysis revealed several shared BPs between the contrasting groups, which are well-known in osteoarthritis pathogenesis. Protein-protein interaction network analysis for these BPs showed a global down-regulation of transcription factors in osteoarthritis. Specific transcription factors were identified as pleiotropic mediators in articular cartilage maintenance since they take part in several BPs. In addition, chromatin organisation and modification proteins were found relevant for osteoarthritis development. CONCLUSION Differential gene co-expression analysis allowed the identification of novel and high priority therapeutic candidate genes that may drive modifications in the transcriptional "status" of cartilage in osteoarthritis.
Collapse
Affiliation(s)
- I. Buzzatto-Leite
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - J. Afonso
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - B. Silva-Vignato
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - L.L. Coutinho
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - L.E. Alvares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil,Corresponding author. Department of Biochemistry and Tissue Biology, University of Campinas – UNICAMP, Rua Monteiro Lobato 255, Cx. Postal 6109, CEP 13083-862, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Grandi FC, Bhutani N. Epigenetic Therapies for Osteoarthritis. Trends Pharmacol Sci 2020; 41:557-569. [PMID: 32586653 PMCID: PMC10621997 DOI: 10.1016/j.tips.2020.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is an age-associated disease characterized by chronic joint pain resulting from degradation of articular cartilage, inflammation of the synovial lining, and changes to the subchondral bone. Despite the wide prevalence, no FDA-approved disease-modifying drugs exist. Recent evidence has demonstrated that epigenetic dysregulation of multiple molecular pathways underlies OA pathogenesis, providing a new mechanistic and therapeutic axis with the advantage of targeting multiple deregulated pathways simultaneously. In this review, we focus on the epigenetic regulators that have been implicated in OA, their individual roles, and potential crosstalk. Finally, we discuss the pharmacological molecules that can modulate their activities and discuss the potential advantages and challenges associated with epigenome-based therapeutics for OA.
Collapse
Affiliation(s)
| | - Nidhi Bhutani
- Department of Orthopedic Surgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Zhang HY, Liu Q, Yang HX, Shi LQ, Wang P, Xie MJ, Liu JQ, Xu XJ, Liu XD, Yu SB, Jiao K, Zhang M, Xuan SJ, Xu YF, Zhang X, Liu YF, Zhang J, Wang MQ. Early growth response 1 reduction in peripheral blood involving condylar subchondral bone loss. Oral Dis 2019; 25:1759-1768. [PMID: 31357246 DOI: 10.1111/odi.13168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/29/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To detect whether early growth response 1 (EGR1) in peripheral blood leucocytes (PBLs) indicates temporomandibular joint (TMJ) osteoarthritis (OA) lesions. MATERIALS AND METHODS Egr1 mRNA expression levels in PBLs were detected in eight malocclusion patients without temporomandibular disorder (TMD) signs and 16 malocclusion patients with clinical TMD signs with (eight) or without (eight) imaging signs of TMJ OA. Twelve 6-week-old rats were randomized to a control group and a unilateral anterior crossbite (UAC) group and were sampled at 4 weeks. The Egr1 mRNA expression levels in PBLs and protein expression levels in different orofacial tissues were measured. RESULTS Patients with TMD signs with/without TMJ OA diagnosis showed lower Egr1 mRNA expression levels in PBLs than patients without TMD signs. The lower Egr1 mRNA expression was also found in the PBLs of UAC rats, which were induced to exhibit early histo-morphological signs of TMJ OA lesions. In subchondral bone of UAC rats, EGR1 protein expression was decreased, co-localization of EGR1 with osterix or dentin matrix protein-1 was identified, and the number of EGR1 and osterix double-positive cells was reduced (all p < .05). CONCLUSION Egr1 reduction in PBLs potentially indicates subchondral bone OA lesions at an early stage.
Collapse
Affiliation(s)
- Hong-Yun Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qian Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Hong-Xu Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Li-Qiang Shi
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Radiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Pei Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Radiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Mian-Jiao Xie
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jin-Qiang Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Jie Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Dong Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shi-Bin Yu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shi-Jie Xuan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yi-Fei Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yi-Fan Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jing Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Mei-Qing Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Sheng J, Liu D, Kang X, Chen Y, Jiang K, Zheng W. Egr-1 increases angiogenesis in cartilage via binding Netrin-1 receptor DCC promoter. J Orthop Surg Res 2018; 13:125. [PMID: 29843768 PMCID: PMC5975438 DOI: 10.1186/s13018-018-0826-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Background Osteoarthritis (OA) is a joint disease characterized by degradation of cartilage. The etiology of OA is still unclear. Vascular endothelial growth factor (VEGF) plays a key role of angiogenesis in the pathogenesis of OA and contributes to the angiogenesis of NT-1/DCC. Whether or not NT-1/DCC and VEGF interact in regulating angiogenesis of OA cartilage is not known. Methods Histological studies for CD34, VEGF, and safranin-O staining were performed to determine angiogenesis and cartilage tissue injury. ELISA indicated the level of pro-inflammation cytokines. Immunoblotting, immunoprecipitation, and electrophoretic mobility shift assay (EMSA) were performed to assay the expression and function of NT-1/DCC-VEGF signaling pathway. Results Our data indicated that VEGF expression was increased in cartilage tissue from OA rats, while the chondrocytes were disorganized, and cartilage degeneration was increasing in OA rats. The inflammation factors in articular cavity fluid were higher in the OA rats than in the sham. The protein expression of NT-1, DCC, and VEGF were increased in osteoarthritic cartilage. DCC was involved in the positive regulation of osteoarthritic angiogenesis by VEGF. Egr-1 expression was higher in OA rats than in sham rats. Egr-1 is a regulator of DCC promoter activity, and the binding is higher in OA rats than in sham rats. Conclusion Our present study provides a mechanism by which Egr-1 induced angiogenesis via NT-1/DCC-VEGF pathway.
Collapse
Affiliation(s)
- Jun Sheng
- Department of Orthopedics, Chengdu Military General Hospital, 270 Rongdu Avenue, Jinniu District, Chengdu, 610083, Sichuan, China
| | - Da Liu
- Department of Orthopedics, Chengdu Military General Hospital, 270 Rongdu Avenue, Jinniu District, Chengdu, 610083, Sichuan, China
| | - Xia Kang
- Department of Orthopedics, Chengdu Military General Hospital, 270 Rongdu Avenue, Jinniu District, Chengdu, 610083, Sichuan, China
| | - Ying Chen
- Department of Orthopedics, Chengdu Military General Hospital, 270 Rongdu Avenue, Jinniu District, Chengdu, 610083, Sichuan, China
| | - Kai Jiang
- Department of Orthopedics, Chengdu Military General Hospital, 270 Rongdu Avenue, Jinniu District, Chengdu, 610083, Sichuan, China
| | - Wei Zheng
- Department of Orthopedics, Chengdu Military General Hospital, 270 Rongdu Avenue, Jinniu District, Chengdu, 610083, Sichuan, China.
| |
Collapse
|
5
|
Ning Y, Wang X, Wang S, Guo X. Comparative analysis of signaling pathways in peripheral blood from patients with Kashin-Beck disease and osteoarthritis. Exp Ther Med 2016; 12:4077-4084. [PMID: 28101186 DOI: 10.3892/etm.2016.3879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/12/2016] [Indexed: 01/02/2023] Open
Abstract
The aim of the present study was to investigate the early diagnostic biomarkers of Kashin-Beck disease (KBD), and to compare the common signaling pathways of peripheral mononuclear cells between patients with KBD and those with osteoarthritis (OA). A total of 20 and 12 peripheral blood samples were separately collected from KBD patients and normal control subjects, respectively, in an endemic area according to the diagnosis criteria. Total RNAs were extracted and gene expression levels were determined using an Agilent whole genome expression microarrays. The gene expression data of OA were obtained from GEO published database. Significant different pathways between KBD and OA were analyzed using Ingenuity Pathway Analysis software. A total of 82 differentially expressed genes, 51 significant different signaling pathways and five significant biological functions were identified in KBD patient samples, while 89, 50 and five significantly different genes, pathways and functions were identified in OA. Nine common significant pathways and five common differentially expressed genes were identified between the KBD and OA. Nine common significant pathways and five common differentially expressed genes were found between the two diseases. The present results suggest that there are similarities in vascular microcirculation, immunoreactions and cell apoptosis between KBD and OA, which may contribute to the early diagnosis and pathogenetic study of KBD.
Collapse
Affiliation(s)
- Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xi Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sen Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
6
|
Fei Q, Lin J, Meng H, Wang B, Yang Y, Wang Q, Su N, Li J, Li D. Identification of upstream regulators for synovial expression signature genes in osteoarthritis. Joint Bone Spine 2016; 83:545-51. [PMID: 26832188 DOI: 10.1016/j.jbspin.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/14/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The detection of transcription factors (TFs) for OA signature genes provides better clues to the underlying regulatory mechanisms and therapeutic applications. METHODS We searched GEO database for synovial expression profiling from different OA microarray studies to perform a systematic analysis. Functional annotation of DEGs was conducted, including gene ontology (GO) enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Based on motif databases and the results from integrated analysis of current gene expression data, a global transcriptional regulatory network was constructed, and the upstream TFs were identified for OA signature genes. RESULTS Six GEO datasets were obtained. Totally, 805 genes across the studies were consistently differentially expressed in OA (469 up-regulated and 336 down-regulated genes) with FDR≤0.01. Supporting an involvement of ECM in the development of OA, we showed that ECM-receptor interaction was the most significant pathway in our KEGG analysis (P=5.92E-12). Sixty-one differentially expressed TFs were identified with FDR≤0.05. The constructed OA-specific regulatory networks consisted of 648 TF-target interactions between 51 TFs and 429 DEGs in the context of OA. The top 10 TFs covering the most downstream DEGs were identified as crucial TFs involved in the development of OA, including ARID3A, NFIC, ZNF354C, NR4A2, BRCA1, EHF, FOXL1, FOXC1, EGR1, and HOXA5. CONCLUSION This integrated analysis has identified the OA signature, providing clues to pathogenesis of OA at the molecular level, which may be also used as diagnostic markers for OA. Some crucial upstream regulators, such as NR4A2, EHF, and EGR1 may be considered as potential new therapeutic targets for OA.
Collapse
Affiliation(s)
- Qi Fei
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - JiSheng Lin
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - Hai Meng
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - BingQiang Wang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - Yong Yang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - Qi Wang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - Nan Su
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - Jinjun Li
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China
| | - Dong Li
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, 95, Yong'an Road, Beijing 100050, China.
| |
Collapse
|
7
|
Press T, Viale-Bouroncle S, Felthaus O, Gosau M, Morsczeck C. EGR1 supports the osteogenic differentiation of dental stem cells. Int Endod J 2015; 48:185-192. [PMID: 24749562 DOI: 10.1111/iej.12299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/16/2014] [Indexed: 12/17/2022]
Abstract
AIM To evaluate whether and how the transcription factor early growth response gene 1 (EGR1) affects the osteogenic differentiation of dental stem cells. METHODOLOGY Dental stem cells from apical papilla (SCAPs) and from the dental follicle (DFCs) were transfected with EGR1-specific siRNA or EGR-1 expression plasmid. Gene regulation was verified at protein level by Western blotting. The expression of the transcription factors distal-less homeobox 3 (DLX3), alkaline phosphatase (ALP) and bone morphogenetic protein 2 (BMP2), which are all regulators and markers of the osteogenic differentiation in dental stem cells, was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). To investigate mineralization, SCAP long-term cultures were stained with alizarin red after EGR1 over-expression. RESULTS EGR1 was induced in SCAPs during osteogenic differentiation. DLX3 and bone morphogenetic protein 2 (BMP2) were up-regulated after EGR1 over-expression and down-regulated after EGR1 depletion. The expression of ALP was also down-regulated after EGR1 depletion. The over-expression of EGR1 in SCAPs promoted mineralization after osteogenic differentiation. CONCLUSIONS EGR1 supported the osteogenic differentiation of dental stem cells by potentially regulating the expression of DLX3 and BMP2.
Collapse
Affiliation(s)
- T Press
- Department of Cranio- and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
8
|
Spaapen F, van den Akker GGH, Caron MMJ, Prickaerts P, Rofel C, Dahlmans VEH, Surtel DAM, Paulis Y, Schweizer F, Welting TJM, Eijssen LM, Voncken JW. The immediate early gene product EGR1 and polycomb group proteins interact in epigenetic programming during chondrogenesis. PLoS One 2013; 8:e58083. [PMID: 23483971 PMCID: PMC3590300 DOI: 10.1371/journal.pone.0058083] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 01/30/2013] [Indexed: 12/18/2022] Open
Abstract
Initiation of and progression through chondrogenesis is driven by changes in the cellular microenvironment. At the onset of chondrogenesis, resting mesenchymal stem cells are mobilized in vivo and a complex, step-wise chondrogenic differentiation program is initiated. Differentiation requires coordinated transcriptomic reprogramming and increased progenitor proliferation; both processes require chromatin remodeling. The nature of early molecular responses that relay differentiation signals to chromatin is poorly understood. We here show that immediate early genes are rapidly and transiently induced in response to differentiation stimuli in vitro. Functional ablation of the immediate early factor EGR1 severely deregulates expression of key chondrogenic control genes at the onset of differentiation. In addition, differentiating cells accumulate DNA damage, activate a DNA damage response and undergo a cell cycle arrest and prevent differentiation associated hyper-proliferation. Failed differentiation in the absence of EGR1 affects global acetylation and terminates in overall histone hypermethylation. We report novel molecular connections between EGR1 and Polycomb Group function: Polycomb associated histone H3 lysine27 trimethylation (H3K27me3) blocks chromatin access of EGR1. In addition, EGR1 ablation results in abnormal Ezh2 and Bmi1 expression. Consistent with this functional interaction, we identify a number of co-regulated targets genes in a chondrogenic gene network. We here describe an important role for EGR1 in early chondrogenic epigenetic programming to accommodate early gene-environment interactions in chondrogenesis.
Collapse
Affiliation(s)
- Frank Spaapen
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Guus G. H. van den Akker
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marjolein M. J. Caron
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Peggy Prickaerts
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Celine Rofel
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Vivian E. H. Dahlmans
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Don A. M. Surtel
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Yvette Paulis
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Finja Schweizer
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lars M. Eijssen
- Department of Bioinformatics – BiGCaT, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Dalcq J, Pasque V, Ghaye A, Larbuisson A, Motte P, Martial JA, Muller M. RUNX3, EGR1 and SOX9B form a regulatory cascade required to modulate BMP-signaling during cranial cartilage development in zebrafish. PLoS One 2012; 7:e50140. [PMID: 23209659 PMCID: PMC3507947 DOI: 10.1371/journal.pone.0050140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 10/17/2012] [Indexed: 12/14/2022] Open
Abstract
The cartilaginous elements forming the pharyngeal arches of the zebrafish derive from cranial neural crest cells. Their proper differentiation and patterning are regulated by reciprocal interactions between neural crest cells and surrounding endodermal, ectodermal and mesodermal tissues. In this study, we show that the endodermal factors Runx3 and Sox9b form a regulatory cascade with Egr1 resulting in transcriptional repression of the fsta gene, encoding a BMP antagonist, in pharyngeal endoderm. Using a transgenic line expressing a dominant negative BMP receptor or a specific BMP inhibitor (dorsomorphin), we show that BMP signaling is indeed required around 30 hpf in the neural crest cells to allow cell differentiation and proper pharyngeal cartilage formation. Runx3, Egr1, Sox9b and BMP signaling are required for expression of runx2b, one of the key regulator of cranial cartilage maturation and bone formation. Finally, we show that egr1 depletion leads to increased expression of fsta and inhibition of BMP signaling in the pharyngeal region. In conclusion, we show that the successive induction of the transcription factors Runx3, Egr1 and Sox9b constitutes a regulatory cascade that controls expression of Follistatin A in pharyngeal endoderm, the latter modulating BMP signaling in developing cranial cartilage in zebrafish.
Collapse
Affiliation(s)
- Julia Dalcq
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Vincent Pasque
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Aurélie Ghaye
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Arnaud Larbuisson
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Patrick Motte
- Plant Functional Genomics and Molecular Imaging and Center for Assistance in Technology of Microscopy, University of Liège, Liège, Belgium
| | - Joseph A. Martial
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
| | - Marc Muller
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, Université de Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
10
|
Nebbaki SS, El Mansouri FE, Afif H, Kapoor M, Benderdour M, Duval N, Pelletier JP, Martel-Pelletier J, Fahmi H. Egr-1 contributes to IL-1-mediated down-regulation of peroxisome proliferator-activated receptor γ expression in human osteoarthritic chondrocytes. Arthritis Res Ther 2012; 14:R69. [PMID: 22455954 PMCID: PMC3446440 DOI: 10.1186/ar3788] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/17/2012] [Accepted: 03/28/2012] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Peroxisome proliferator-activated receptor (PPAR)γ has been shown to exhibit anti-inflammatory and anti-catabolic properties and to be protective in animal models of osteoarthritis (OA). We have previously shown that interleukin-1β (IL-1) down-regulates PPARγ expression in human OA chondrocytes. However, the mechanisms underlying this effect have not been well characterized. The PPARγ promoter harbors an overlapping Egr-1/specificity protein 1 (Sp1) binding site. In this study, our objective was to define the roles of Egr-1 and Sp1 in IL-1-mediated down-regulation of PPARγ expression. METHODS Chondrocytes were stimulated with IL-1 and the expression levels of Egr-1 and Sp1 mRNAs and proteins were evaluated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting, respectively. The role of de novo protein synthesis was evaluated using the protein synthesis inhibitor cycloheximide (CHX). The recruitment of Sp1 and Egr-1 to the PPARγ promoter was evaluated using chromatin immunoprecipitation (ChIP) assays. The PPARγ promoter activity was analyzed in transient transfection experiments. The roles of Egr-1 and Sp1 were further evaluated using small interfering RNA (siRNA) approaches. The level of Egr-1 in cartilage was determined using immunohistochemistry. RESULTS Down-regulation of PPARγ expression by IL-1 requires de novo protein synthesis and was concomitant with the induction of the transcription factor Egr-1. Treatment with IL-1 induced Egr-1 recruitment and reduced Sp1 occupancy at the PPARγ promoter. Overexpression of Egr-1 potentiated, whereas overexpression of Sp1 alleviated, the suppressive effect of IL-1 on the PPARγ promoter, suggesting that Egr-1 may mediate the suppressive effect of IL-1. Consistently, Egr-1 silencing prevented IL-1-mediated down-regulation of PPARγ expression. We also showed that the level of Egr-1 expression was elevated in OA cartilage compared to normal cartilage. CONCLUSIONS Our results indicate that induction and recruitment of Egr-1 contributed to the suppressive effect of IL-1 on PPARγ expression. They also suggest that modulation of Egr-1 levels in the joint may have therapeutic potential in OA.
Collapse
Affiliation(s)
- Sarah-Salwa Nebbaki
- Osteoarthritis Research Unit, Research Centre of the University of Montreal Hospital Center (CR-CHUM), Notre-Dame Hospital, 1560 Sherbrooke Street East, J,A, DeSève Pavillion, Y-2628, and Department of Medicine, University of Montreal, Montreal, QC H2L 4M1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
TNF-alpha induces MMP2 gelatinase activity and MT1-MMP expression in an in vitro model of nucleus pulposus tissue degeneration. Spine (Phila Pa 1976) 2008; 33:356-65. [PMID: 18277865 DOI: 10.1097/brs.0b013e3181642a5e] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN In vitro-formed bovine nucleus pulposus (NP) tissues were used as a model for tumor necrosis factor-alpha (TNF-alpha) induced NP degeneration. OBJECTIVE To elucidate the signal transduction mechanisms regulating TNF-alpha induced matrix metalloproteinase (MMP) activity. SUMMARY OF BACKGROUND DATA TNF-alpha is thought to contribute to the pathophysiology of intervertebral disc (IVD) degeneration by up-regulating MMPs, such as MMP-2. MMP-2 has been implicated in influencing disease progression and in the induction of neovascularization. METHODS In vitro-formed bovine NP tissues were treated with TNF-alpha to examine its effect on MMP-2 gene and protein levels and activity. The effect of TNF-alpha on membrane type (MT)1-MMP, an activator of MMP-2, was also assessed. MT1-MMP functional activation by TNF-alpha was confirmed using promoter-reporter luciferase constructs. Immunoblots and electrophoretic mobility shift assays were used to examine the expression and DNA binding activity of transcription factors known to regulate transcriptional activation of MT1-MMP. RESULTS TNF-alpha treatment induced MMP-2 gelatinase activity, which occurred in the absence of any change in MMP-2 gene or protein expression, but did correlate with increased MT1-MMP mRNA and protein levels. Up-regulation of MMP-2 activity was dependent on the ERK-MAPK pathway. ERK-1/2 activation up-regulated early growth factor (Egr-1) expression and its DNA binding activity to the MT1-MMP promoter. There was no effect on Sp-1 binding activity. Reporter constructs demonstrated that TNF-alpha induced MT1-MMP transcriptional activation and that this response was dependant on ERK MAPK and Egr-1. CONCLUSION TNF-alpha induced MMP-2 gelatinase activity correlated with induction of MT1-MMP and not MMP-2 expression. MMP-2 activation was dependent on the ERK-MAPK pathway. As ERK also appeared to regulate MT1-MMP production, this suggests that TNF-alpha induction of MMP-2 gelatinase activity may be regulated by MT1-MMP. These findings elucidate the regulation of gelatinase activity and identify a mechanism whereby TNF-alpha may contribute to matrix degradation in NP tissue.
Collapse
|
12
|
Picard C, Azeddine B, Moldovan F, Martel-Pelletier J, Moreau A. New emerging role of pitx1 transcription factor in osteoarthritis pathogenesis. Clin Orthop Relat Res 2007; 462:59-66. [PMID: 17549029 DOI: 10.1097/blo.0b013e3180d09d9c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Osteoarthritis is the most common form of arthritis and the precise etiology of this disease remains unclear. We took a candidate gene-driven strategy approach based on the observation that Pitx1 transcription factor was found during hind limb development in regions giving rise to cartilage joints, long bones and skeletal muscles, while its partial in activation led to a progressive formation of osteoarthritis-like phenotype in aging Pitx1 +/- mice. To determine whether Pitx1 plays a role in osteoarthritis pathogenesis in humans, we performed an expression analysis of the pitx1 gene using RNA prepared from articular chondrocyte cultures derived from knee cartilage of patients with osteoarthritis and age- and gender-matched control subjects. Pitx1 expression was detected in articular chondrocytes derived from matched control subjects, whereas in osteoarthritic articular chondrocytes, Pitx1 expression was barely detectable by reverse transcription-polymerase chain reaction. Immunostaining with anti-Pitx1 antibodies of histologic sections of human osteoarthritic and control cartilage showed Pitx1 proteins only in the cartilage of control subjects, whereas Pitx1 proteins were hardly detected in human osteoarthritic sections. Collectively, our results uncovered an unrecognized role for Pitx1 in osteoarthritis and elucidation of the mechanism turning off its expression will clarify its pathophysiological relevance.
Collapse
Affiliation(s)
- Cynthia Picard
- Research Centre, Sainte-Justine University Hospital, Montreal, Canada
| | | | | | | | | |
Collapse
|
13
|
Marshall KW, Zhang H, Nossova N. Chondrocyte genomics: implications for disease modification in osteoarthritis. Drug Discov Today 2006; 11:825-32. [PMID: 16935751 DOI: 10.1016/j.drudis.2006.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/31/2006] [Accepted: 07/10/2006] [Indexed: 11/18/2022]
Abstract
Advances in genomic technologies have made genome-wide-association and gene-expression studies a reality. Despite technical and analytical challenges, the application of genomic technologies to osteoarthritis research will lead to a better understanding of the disease at the molecular level. Functional genomics will identify genes involved in the chondrocyte response to cartilage injury and cartilage repair, and will help clarify the role of chondrocytes in arthritis onset, progression and outcome. Systems biology will enable researchers to develop a full portrait of osteoarthritis, a complex and multifactorial disease that involves not only articular cartilage but also synovium, synovial fluid, subchondral bone and peripheral blood. Ultimately such an approach will result in novel diagnostic and therapeutic targets and better disease management.
Collapse
Affiliation(s)
- K Wayne Marshall
- ChondroGene, 800 Petrolia Road, Unit 15, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
14
|
Hannenhalli SS, Middleton RP, Levy S, Perroud B, Holzwarth JA, McDonald K, Hannah SS. Identification and cross-species comparison of canine osteoarthritic gene regulatory cis-elements. Osteoarthritis Cartilage 2006; 14:830-8. [PMID: 16580849 DOI: 10.1016/j.joca.2006.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 02/09/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To better understand transcription regulation of osteoarthritis (OA) by examining common promoter motifs in canine osteoarthritic genes, to identify other genes containing these motifs and to assess the conservation of these motifs between canine, human, mouse and rat. DESIGN Differentially expressed transcripts in canine OA were mapped to the human genome. We thus identified 20 orthologous human transcripts representing 19 up-regulated genes and 62 orthologous transcripts representing 60 down-regulated genes. The 5 kbp upstream regions of these transcripts were used to identify binding sites and build promoter models based on those sites. The human genome was subsequently searched for other transcripts likely to be regulated by the same promoter models. Orthologous transcripts were then identified in canine, rat and mouse for determination of potential cross-species conservation of binding sites comprising the promoter model. RESULTS Four promoter models containing 5-6 transcripts and 5-8 common transcription factor binding sites were developed. They include binding sites for AP-4, AP-2alpha and gamma, and E2F. Several hundred other human genes were found to contain these promoter motifs. Furthermore these motifs were significantly over represented in the orthologous genes in canine, rat and mouse genomes. CONCLUSIONS We have developed and applied a computational methodology to identify common promoter elements implicated in OA and shared amongst four higher vertebrates. The transcription factors associated with these binding sites and other genes driven by these promoter motifs have been implicated in OA, chondrocyte development and with other biological factors involved in the disease.
Collapse
Affiliation(s)
- S S Hannenhalli
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Aigner T, Gebhard PM, Kueffner R, Zhang H, Marshall KW. cDNA arrays in degenerative arthritis research. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460816.1.1.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Marshall KW, Zhang H, Yager TD, Nossova N, Dempsey A, Zheng R, Han M, Tang H, Chao S, Liew CC. Blood-based biomarkers for detecting mild osteoarthritis in the human knee. Osteoarthritis Cartilage 2005; 13:861-71. [PMID: 16139532 DOI: 10.1016/j.joca.2005.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 06/05/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study was designed to test the utility of a blood-based approach to identify mild osteoarthritis (OA) of the knee. METHODS Blood samples were drawn from 161 subjects, including 85 subjects with arthroscopically diagnosed mild OA of the knee and 76 controls. Following RNA isolation, an in-house custom cDNA microarray was used to screen for differentially expressed genes. A subset of selected genes was then tested using real-time RT-PCR. Logistic regression analysis was used to evaluate linear combinations of the biomarkers and receiver operating characteristic curve analysis was used to assess the discriminatory power of the combinations. RESULTS Genes differentially expressed (3543 genes) between mild knee OA and control samples were identified through microarray analysis. Subsequent real-time RT-PCR verification identified six genes significantly down-regulated in mild OA: heat shock 90kDa protein 1, alpha; inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex-associated protein; interleukin 13 receptor, alpha 1; laminin, gamma 1; platelet factor 4 (also known as chemokine (C-X-C motif) ligand 4) and tumor necrosis factor, alpha-induced protein 6. Logistic regression analysis identified linear combinations of nine genes--the above six genes, early growth response 1; alpha glucosidase II alpha subunit; and v-maf musculoaponeurotic fibrosarcoma oncogene homolog B (avian)--as discriminatory between subjects with mild OA and controls, with a sensitivity of 86% and specificity of 83% in a training set of 78 samples. The optimal biomarker combinations were then evaluated using a blind test set (67 subjects) which showed 72% sensitivity and 66% specificity. CONCLUSIONS Linear combinations of blood RNA biomarkers offer a substantial improvement over currently available diagnostic tools for mild OA. Blood-derived RNA biomarkers may be of significant clinical value for the diagnosis of early, asymptomatic OA of the knee.
Collapse
Affiliation(s)
- K W Marshall
- Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The post-genomic era of functional genomics and target validation will allow us to narrow the bridge between clinically correlative data and causative data for complex diseases, such as arthritis, for which the etiological agent remains elusive. The availability of human and other annotated genome sequences, and parallel developments of new technologies that allow analysis of minute amounts of human and animal cells (peripheral blood cells and infiltrating cells) and tissues (synovium and cartilage) under different pathophysiological conditions, has facilitated high-throughput gene mining approaches that can generate vast amounts of clinically correlative data. Characterizing some of the correlative/causative genes will require reverting to the hypothesis-driven, low throughput method of complementary experimental biology using genomic approaches as a tool. This will include in silico gene expression arrays, genome-wide scans, comparative genomics using various animal models (such as rodents and zebrafish), bioinformatics and a team of well trained translational scientists and physicians. For the first time, the "genomic tools" will allow us to analyze small amounts of surgical samples (such as needle biopsies) and clinical samples in the context of the whole genome. Preliminary genomic analysis in osteoarthritis has already resurrected the debate on the semantic issues in the definition of inflammation. Further analyses will not only facilitate the development of unbiased hypotheses at the molecular level, but also assist us in the identification and characterization of novel targets and disease markers for pharmacological intervention, gene therapy, and diagnosis.
Collapse
Affiliation(s)
- Mukundan G Attur
- Departments of Rheumatology and Medicine, Hospital for Joint Diseases/NYU School of Medicine, 301 East 17th Street, New York, NY 10003, USA
| | | | | |
Collapse
|
18
|
Tan L, Peng H, Osaki M, Choy BK, Auron PE, Sandell LJ, Goldring MB. Egr-1 mediates transcriptional repression of COL2A1 promoter activity by interleukin-1beta. J Biol Chem 2003; 278:17688-700. [PMID: 12637574 DOI: 10.1074/jbc.m301676200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Following induction and activation of the early growth response (Egr)-1 transcription factor in human chondrocytes, interleukin-1beta (IL-1beta) suppresses the expression of the type II collagen gene (COL2A1), associated with induction of Egr-1 binding activity in nuclear extracts. The COL2A1 proximal promoter contains overlapping binding sites for Egr-1 and Sp1 family members at -119/-112 bp and -81/-74 bp. Mutations that block binding of Sp1 and Sp3 to either site markedly reduce constitutive expression of the core promoter. IL-1beta-induced Egr-1 binds strongly to the -119/-112 bp site, and mutations that block Egr-1 binding prevent inhibition by IL-1beta. Cotransfection with pCMV-Egr1 potentiates the inhibition of COL2A1 promoter activity by IL-1beta, whereas overexpression of dominant-negative Egr-1 mutant, Wilm's tumor-1 (WT1)/Egr1, Sp1, or Sp3 reverses the inhibition by IL-1beta. Cotransfection of pGL2-COL2/Gal4, in which we substituted the critical residue for Egr-1 binding with a Gal4 binding domain and a pCMV-Gal4-Egr1 chimera permits an inhibitory response to IL-1beta that is reversed by overexpression of Gal4-CBP. Our results indicate that IL-1beta-induced activation of Egr-1 binding is required for inhibition of COL2A1 proximal promoter activity and suggest that Egr-1 acts as a repressor of a constitutively expressed collagen gene by preventing interactions between Sp1 and the general transcriptional machinery.
Collapse
Affiliation(s)
- Lujian Tan
- Rheumatology Division, Beth Israel Deaconess Medical Center and New England Baptist Bone & Joint Institute, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Cho CH, Nuttall ME. Emerging techniques for the discovery and validation of therapeutic targets for skeletal diseases. Expert Opin Ther Targets 2002; 6:679-89. [PMID: 12472380 DOI: 10.1517/14728222.6.6.679] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Advances in genomics and proteomics have revolutionised the drug discovery process and target validation. Identification of novel therapeutic targets for chronic skeletal diseases is an extremely challenging process based on the difficulty of obtaining high-quality human diseased versus normal tissue samples. The quality of tissue and genomic information obtained from the sample is critical to identifying disease-related genes. Using a genomics-based approach, novel genes or genes with similar homology to existing genes can be identified from cDNA libraries generated from normal versus diseased tissue. High-quality cDNA libraries are prepared from uncontaminated homogeneous cell populations harvested from tissue sections of interest. Localised gene expression analysis and confirmation are obtained through in situ hybridisation or immunohistochemical studies. Cells overexpressing the recombinant protein are subsequently designed for primary cell-based high-throughput assays that are capable of screening large compound banks for potential hits. Afterwards, secondary functional assays are used to test promising compounds. The same overexpressing cells are used in the secondary assay to test protein activity and functionality as well as screen for small-molecule agonists or antagonists. Once a hit is generated, a structure-activity relationship of the compound is optimised for better oral bioavailability and pharmacokinetics allowing the compound to progress into development. Parallel efforts from proteomics, as well as genetics/transgenics, bioinformatics and combinatorial chemistry, and improvements in high-throughput automation technologies, allow the drug discovery process to meet the demands of the medicinal market. This review discusses and illustrates how different approaches are incorporated into the discovery and validation of novel targets and, consequently, the development of potentially therapeutic agents in the areas of osteoporosis and osteoarthritis. While current treatments exist in the form of hormone replacement therapy, antiresorptive and anabolic agents for osteoporosis, there are no disease-modifying therapies for the treatment of the most common human joint disease, osteoarthritis. A massive market potential for improved options with better safety and efficacy still remains. Therefore, the application of genomics and proteomics for both diseases should provide much needed novel therapeutic approaches to treating these major world health problems.
Collapse
Affiliation(s)
- Christine H Cho
- GlaxoSmithKline Pharmaceuticals, Department of Musculoskeletal Diseases, UW2109, 709 Swedeland Rd, King of Prussia, PA 19406, USA
| | | |
Collapse
|
20
|
Stokes DG, Liu G, Coimbra IB, Piera-Velazquez S, Crowl RM, Jiménez SA. Assessment of the gene expression profile of differentiated and dedifferentiated human fetal chondrocytes by microarray analysis. ARTHRITIS AND RHEUMATISM 2002; 46:404-19. [PMID: 11840443 DOI: 10.1002/art.10106] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To study the changes in patterns of gene expression exhibited by human chondrocytes as they dedifferentiate into fibroblastic cells in culture in order to better understand the mechanisms that control this process and its relationship to the phenotypic changes that occur in chondrocytes during the development of osteoarthritis (OA). METHODS Human fetal epiphyseal chondrocytes (HFCs) were cultured either on poly-(2-hydroxyethyl methacrylate)-coated plates (differentiated HFC cultures) or in plastic tissue culture flasks as monolayers (dedifferentiated HFC cultures). Following 11 days of culture under either condition, poly(A+) RNA was isolated from the two cell populations and subjected to a gene expression analysis using a microarray containing approximately 5,000 known human genes and approximately 3,000 expressed sequence tags (ESTs). RESULTS A > or =2-fold difference in the expression of 62 known genes and 6 ESTs was observed between the two cell types. The differences in expression of several of the genes detected by the microarray hybridization were confirmed by Northern analyses. Two transcription factor genes, TWIST and HIF-1alpha, and a cellular adhesion protein gene, cadherin 11, were markedly regulated in response to differentiation and dedifferentiation. Expression of these genes was also detected in adult normal and OA cartilage and chondrocytes. Analysis of the gene expression profile of HFCs revealed a complex pattern of gene expression, including many genes not yet reported to be expressed by chondrocytes. CONCLUSION Chondrocytes in monolayer become dedifferentiated, acquiring a fibroblast-like appearance and changing their pattern of gene expression from one of expression of chondrocyte-specific genes to one that resembles a fibroblastic or chondroprogenitor-like pattern. Changes in gene expression associated with the process of dedifferentiation of HFCs in vitro were observed in a wide variety of genes, including genes encoding extracellular matrix proteins, transcription factors, and growth factors. At least 3 of the genes that were regulated in response to dedifferentiation were also found to be expressed in adult normal and OA articular cartilage and chondrocytes.
Collapse
Affiliation(s)
- David G Stokes
- Department of Medicine, Division of Rheumatology, Jefferson Medical College, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
21
|
Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vécsei V, Schlegel J. Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage 2002; 10:62-70. [PMID: 11795984 DOI: 10.1053/joca.2001.0482] [Citation(s) in RCA: 404] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of the present study was the investigation of differential gene expression in primary human articular chondrocytes (HACs) and in cultivated cells derived from HACs. DESIGN Primary human articular chondrocytes (HACs) isolated from non-arthritic human articular cartilage and monolayer cultures of HACs were investigated by immunohistochemistry, Northern analysis, RT-PCR and cDNA arrays. RESULTS By immunohistochemistry we detected expression of collagen II, protein S-100, chondroitin-4-sulphate and vimentin in freshly isolated HACs. Cultivated HACs, however, showed only collagen I and vimentin expression. These data were corroborated by the results of Northern analysis using specifc cDNA probes for collagens I, II and III and chondromodulin, respectively, demonstrating collagen II and chondromodulin expression in primary HACs but not in cultivated cells. Hybridization of mRNA from primary HACs and cultivated cells to cDNA arrays revealed additional transcriptional changes associated with dedifferentiation during propagation of chondrocytes in vitro. We found a more complex hybridization pattern for primary HACs than for cultivated cells. Of the genes expressed in primary HACs the early growth response (EGR1) transcription factor showed the strongest expression whereas D-type cyclin was expressed in proliferating cells. Other factors associated with differentiated HACs were the adhesion molecules ICAM-1 and VCAM-1, VEGF, TGFbeta2, and the monocyte chemotactic protein receptor. CONCLUSIONS Our data support the hypothesis that HACs dedifferentiate when grown in monolayer cultures. Moreover, the expression patterns also show that proliferation and differentiation are exclusive features of human chondrocytes.
Collapse
Affiliation(s)
- M Schnabel
- Department of Traumatology, Philipps-University of Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Recent drug discovery has been driven largely by a genomics-based approach. This revolution in pharmaceutics is based on localized expression of either a novel gene or homologue of a known gene found in cDNA libraries made from normal versus diseased tissue. The choice and quality of cDNA library is critical for the success of this approach. Expression is normally verified at the cellular level by either immunocytochemistry or in situ hybridization. Activity of the recombinant protein in secondary cell-based assays allows highthroughput screens to be formulated to identify small-molecule effectors of this protein. More recently, a proteomics approach has also been incorporated into this process. This technology directly measures proteins whose expression is localized in disease tissue as the basis for cell-based screens to look for either activators or inhibitors, of this activity. The majority of screens are designed to look for inhibitors. Activity of small-molecules found by screening gives rise to pharmacokinetic studies and verification of activity in animal models of the disease. Structure-activity relationship (SAR) optimization of these small-molecules allows for suitable oral bioavailability and pharmacokinetics, resulting in compounds progressing from discovery to development. Based on these strategies, we have developed inhibitors of osteoclast-mediated bone resorption and are currently screening for bone anabolic agents. In addition, we have also developed small-molecule caspase inhibitors which prevent chondrocyte apoptosis and retain cell function in an attempt to find therapeutic agents to either prevent or treat osteoarthritis. These agents may well have utility in the treatment of temporomandibular joint diseases.
Collapse
Affiliation(s)
- M E Nuttall
- Department of Bone and Cartilage Biology, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pa. 19406, USA.
| |
Collapse
|
23
|
Abstract
In the United States, between 40 and 90 million hospital days are lost per year as a result of trauma and surgical procedures which result in the loss of functional tissue. This is estimated to cost the economy and healthcare providers in excess of US$ 500 billion, a figure that is increasing because of extending population lifespan. Tissue engineering and gene therapies are radical new treatments that are aimed at tissue regeneration ranging from dermal, osteal and occular repair to the replacement of failing tissue with entire biosynthetic organs. Over the last decade, numerous proteins have been identified that are able to direct the synthesis of new tissue. Such proteins include growth factors, cytokines and, more recently, transcription factors.
Collapse
Affiliation(s)
- M Braddock
- Disease Cell Biology Unit, GlaxoWellcome Medicines Research Centre, Stevenage, Herts, UK.
| |
Collapse
|
24
|
Lu Y, Edwards RB, Kalscheur VL, Nho S, Cole BJ, Markel MD. Effect of bipolar radiofrequency energy on human articular cartilage. Comparison of confocal laser microscopy and light microscopy. Arthroscopy 2001; 17:117-23. [PMID: 11172239 DOI: 10.1053/jars.2001.21903] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate chondrocyte viability using confocal laser microscopy (CLM) following exposure to bipolar radiofrequency energy (bRFE) and to contrast CLM with standard light microscopy (LM) techniques. TYPE OF STUDY In vitro analysis using chondromalacic human cartilage. METHODS Twelve fresh chondral specimens were treated with the ArthroCare 2000 bRFE system (ArthroCare, Sunnyvale, CA) coupled with 1 of 2 types of probes and at 3 energy delivery settings (S2, S4, S6). A sham-operated group was treated with no energy delivered. Specimens were analyzed for chondrocyte viability and chondral morphology with CLM using fluorescent vital cell staining and with LM using H&E and safranin-O staining. RESULTS LM with H&E staining showed smoothing of fine fronds of fibrillated cartilage; thickened fronds were minimally modified. Chondrocyte nuclei were present and not morphologically different than nuclei within sham-operated and adjacent untreated regions. LM with safranin-O staining showed a clear demarcation between treated and untreated regions. CLM, however, showed chondrocyte death: the depth and width of chondrocyte death increased with increasing bRFE settings. CONCLUSIONS CLM showed that bRFE delivered through the probes investigated created significant chondrocyte death. These changes were not apparent using LM techniques.
Collapse
Affiliation(s)
- Y Lu
- Comparative Orthopaedic Research Laboratory, Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|