1
|
Groulx-Boivin E, Bouchet T, Myers KA. Understanding of Consciousness in Absence Seizures: A Literature Review. Neuropsychiatr Dis Treat 2024; 20:1345-1353. [PMID: 38947367 PMCID: PMC11212660 DOI: 10.2147/ndt.s391052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Absence seizures are classically associated with behavioral arrest and transient deficits in consciousness, yet substantial variability exists in the severity of the impairment. Despite several decades of research on the topic, the pathophysiology of absence seizures and the mechanisms underlying behavioral impairment remain unclear. Several rationales have been proposed including widespread cortical deactivation, reduced perception of external stimuli, and transient suspension of the default mode network, among others. This review aims to summarize the current knowledge on the neural correlates of impaired consciousness in absence seizures. We review evidence from studies using animal models of absence epilepsy, electroencephalography, functional magnetic resonance imaging, magnetoencephalography, positron emission tomography, and single photon emission computed tomography.
Collapse
Affiliation(s)
- Emilie Groulx-Boivin
- Department of Neurology and Neurosurgery, Montreal Children’s Hospital, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Montreal Children’s Hospital, McGill University, Montreal, Quebec, Canada
| | - Tasha Bouchet
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kenneth A Myers
- Department of Neurology and Neurosurgery, Montreal Children’s Hospital, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Montreal Children’s Hospital, McGill University, Montreal, Quebec, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Warren AEL, Tobochnik S, Chua MMJ, Singh H, Stamm MA, Rolston JD. Neurostimulation for Generalized Epilepsy: Should Therapy be Syndrome-specific? Neurosurg Clin N Am 2024; 35:27-48. [PMID: 38000840 PMCID: PMC10676463 DOI: 10.1016/j.nec.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Current applications of neurostimulation for generalized epilepsy use a one-target-fits-all approach that is agnostic to the specific epilepsy syndrome and seizure type being treated. The authors describe similarities and differences between the 2 "archetypes" of generalized epilepsy-Lennox-Gastaut syndrome and Idiopathic Generalized Epilepsy-and review recent neuroimaging evidence for syndrome-specific brain networks underlying seizures. Implications for stimulation targeting and programming are discussed using 5 clinical questions: What epilepsy syndrome does the patient have? What brain networks are involved? What is the optimal stimulation target? What is the optimal stimulation paradigm? What is the plan for adjusting stimulation over time?
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa M J Chua
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hargunbir Singh
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michaela A Stamm
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Source localization of epileptiform discharges in childhood absence epilepsy using a distributed source model: a standardized, low-resolution, brain electromagnetic tomography (sLORETA) study. Neurol Sci 2019; 40:993-1000. [PMID: 30756246 DOI: 10.1007/s10072-019-03751-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
Localizing the source of epileptiform discharges in generalized epilepsy has been controversial for the past few decades. Recent neuroimaging studies have shown that epileptiform discharges in generalized epilepsy can be localized to a particular region. Childhood absence epilepsy (CAE) is the most common generalized epilepsy in childhood and is considered the prototype of idiopathic generalized epilepsy (IGE). To better understand electrophysiological changes and their development in CAE, we investigated the origin of epileptiform discharges. We performed distributed source localization with standardized, low-resolution, brain electromagnetic tomography (sLORETA). In 16 children with CAE, sLORETA images corresponding to the midpoint of the ascending phase and the negative peak of the spike were obtained from a total of 242 EEG epochs (121 epochs at each timepoint). Maximal current source density (CSD) was mostly located in the frontal lobe (69.4%). At the gyral level, maximal CSD was most commonly in the superior frontal gyrus (39.3%) followed by the middle frontal gyrus (14.0%) and medial frontal gyrus (8.7%). At the hemisphere level, maximal CSD was dominant in the right cerebral hemisphere (63.6%). These results were consistent at the midpoint of the ascending phase and the negative peak of the spike. Our results demonstrated that the major source of epileptiform discharges in CAE was the frontal lobe. These results suggest that the frontal lobe is involved in generating CAE. This finding is consistent with recent studies that have suggested selective cortical involvement, especially in the frontal regions, in IGE.
Collapse
|
4
|
Ikeda H, Imai K, Ikeda H, Matsuda K, Takahashi Y, Inoue Y. Ictal single photon emission computed tomographic study of myoclonic absence seizures. Brain Dev 2018; 40:126-129. [PMID: 28823645 DOI: 10.1016/j.braindev.2017.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epilepsy with myoclonic absences (EMAs) is a rare epileptic disorder characterized by a predominant type of seizures, myoclonic absences (MAs). The pathophysiology of MAs in patients with EMAs remains unknown. Here, we report the first characterization of the ictal phase of MAs by single photon emission computed tomography (SPECT). METHODS We evaluated 1 male (Patient 1) and 1 female (Patient 2) patient with EMAs, aged 8 and 4years at first SPECT investigation, respectively. We performed ictal and interictal 99 mTc-ethyl cysteinate dimer (ECD) SPECT. We then generated images of subtraction ictal SPECT co-registered to MRI (SISCOM) from the interictal and ictal data to evaluate topographic changes in cerebral blood flow (CBF) during MAs as compared to the interictal state. RESULTS In Patient 1, the CBF increased in the perirolandic areas, thalamus, caudate nucleus, and precuneus, and decreased in the middle frontal gyrus and bilateral orbitofrontal regions. In Patient 2, CBF increased in the thalamus, putamen, and globus pallidus. In contrast to the CBF in Patient 1, CBF was decreased in the precuneus. CONCLUSIONS Using SPECT, we showed that, in addition to the thalamus and basal ganglia, the perirolandic cortical motor area is involved in MAs. We hypothesize that in MAs the blood perfusion in the perirolandic cortical motor area might have changed under the influence of the cortico-thalamic network oscillation features. The CBF properties observed by means of our SPECT procedure may represent key features of the pathophysiological mechanisms underlying MAs.
Collapse
Affiliation(s)
- Hiroko Ikeda
- Epilepsy Centre, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan.
| | - Katsumi Imai
- Epilepsy Centre, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Hitoshi Ikeda
- Epilepsy Centre, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Kazumi Matsuda
- Epilepsy Centre, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Yukitoshi Takahashi
- Epilepsy Centre, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Yushi Inoue
- Epilepsy Centre, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| |
Collapse
|
5
|
Martín-López D, Jiménez-Jiménez D, Cabañés-Martínez L, Selway RP, Valentín A, Alarcón G. The Role of Thalamus Versus Cortex in Epilepsy: Evidence from Human Ictal Centromedian Recordings in Patients Assessed for Deep Brain Stimulation. Int J Neural Syst 2017; 27:1750010. [DOI: 10.1142/s0129065717500101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: The onset of generalized seizures is a long debated subject in epilepsy. The relative roles of cortex and thalamus in initiating and maintaining the different seizure types are unclear. Objective: The purpose of the study is to estimate whether the cortex or the centromedian thalamic nucleus is leading in initiating and maintaining seizures in humans. Methods: We report human ictal recordings with simultaneous thalamic and cortical electrodes from three patients without anesthesia being assessed for deep brain stimulation (DBS). Patients 1 and 2 had idiopathic generalized epilepsy whereas patient 3 had frontal lobe epilepsy. Visual inspection was combined with nonlinear correlation analysis. Results: In patient 1, seizure onset was bilateral cortical and the belated onset of leading thalamic discharges was associated with an increase in rhythmicity of discharges, both in thalamus and cortex. In patient 2, we observed bilateral independent interictal discharges restricted to the thalamus. However, ictal onset was diffuse, with discharges larger in the cortex even though they were led by the thalamus. In patient 3, seizure onset was largely restricted to frontal structures, with belated lagging thalamic involvement. Conclusion: In human generalized seizures, the thalamus may become involved early or late in the seizure but, once it becomes involved, it leads the cortex. In contrast, in human frontal seizures the thalamus gets involved late in the seizure and, once it becomes involved, it lags behind the cortex. In addition, the centromedian nucleus of the thalamus is capable of autonomous epileptogenesis as suggested by the presence of independent focal unilateral epileptiform discharges restricted to thalamic structures. The thalamus may also be responsible for maintaining the rhythmicity of ictal discharges.
Collapse
Affiliation(s)
- David Martín-López
- Department of Clinical Neurophysiology, Kingston Hospital NHS FT, London, UK
- Department of Clinical Neurophysiology, St George’s University Hospitals NHS FT, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Diego Jiménez-Jiménez
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Universidad San Francisco de Quito, School of Medicine, Quito, Ecuador
| | | | - Richard P. Selway
- Department of Neurosurgery, King’s College Hospital NHS FT, London, UK
| | - Antonio Valentín
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
| | - Gonzalo Alarcón
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Comprehensive Epilepsy Center Neuroscience Institute, Academic Health Systems, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
6
|
Chen G, Lei D, Ren J, Zuo P, Suo X, Wang DJJ, Wang M, Zhou D, Gong Q. Patterns of postictal cerebral perfusion in idiopathic generalized epilepsy: a multi-delay multi-parametric arterial spin labelling perfusion MRI study. Sci Rep 2016; 6:28867. [PMID: 27374369 PMCID: PMC4931466 DOI: 10.1038/srep28867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/06/2016] [Indexed: 02/05/2023] Open
Abstract
The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective.
Collapse
Affiliation(s)
- Guangxiang Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.,Department of Radiology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jiechuan Ren
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Panli Zuo
- Siemens Healthcare, MR Collaborations NE Asia, Beijing, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | | | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital &the People's Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
7
|
|
8
|
Bai X, Guo J, Killory B, Vestal M, Berman R, Negishi M, Danielson N, Novotny EJ, Constable RT, Blumenfeld H. Resting functional connectivity between the hemispheres in childhood absence epilepsy. Neurology 2011; 76:1960-7. [PMID: 21646622 DOI: 10.1212/wnl.0b013e31821e54de] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The fundamental mechanisms by which childhood absence epilepsy (CAE) changes neural networks even between seizures remain poorly understood. During seizures, cortical and subcortical networks exhibit bihemspheric synchronous activity based on prior EEG-fMRI studies. Our aim was to investigate whether this abnormal bisynchrony may extend to the interictal period, using a blood oxygen level-dependent (BOLD) resting functional connectivity approach. METHODS EEG-fMRI data were recorded from 16 patients with CAE and 16 age- and gender-matched controls. Three analyses were performed. 1) Using 16 pairs of seizure-related regions of interest (ROI), we compared the between-hemisphere interictal resting functional connectivity of patients and controls. 2) For regions showing significantly increased interhemispheric connectivity in CAE, we then calculated connectivity to the entire brain. 3) A paired-voxel approach was performed to calculate resting functional connectivity between hemispheres without the constraint of predefined ROIs. RESULTS We found significantly increased resting functional connectivity between hemispheres in the lateral orbitofrontal cortex of patients with CAE compared to normal controls. Enhanced between-hemisphere connectivity localized to the lateral orbitofrontal cortex was confirmed by all 3 analysis methods. CONCLUSIONS Our results demonstrate abnormal increased connectivity between the hemispheres in patients with CAE in seizure-related regions, even when seizures were not occurring. These findings suggest that the lateral orbitofrontal cortex may play an important role in CAE pathophysiology, warranting further investigation. In addition, resting functional connectivity analysis may provide a promising biomarker to improve our understanding of altered brain function in CAE during the interictal period.
Collapse
Affiliation(s)
- X Bai
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520-8018, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Killory BD, Bai X, Negishi M, Vega C, Spann MN, Vestal M, Guo J, Berman R, Danielson N, Trejo J, Shisler D, Novotny EJ, Constable RT, Blumenfeld H. Impaired attention and network connectivity in childhood absence epilepsy. Neuroimage 2011; 56:2209-17. [PMID: 21421063 DOI: 10.1016/j.neuroimage.2011.03.036] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 02/07/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022] Open
Abstract
Patients with childhood absence epilepsy (CAE) often demonstrate impaired interictal attention, even with control of their seizures. No previous study has investigated the brain networks involved in this impairment. We used the continuous performance task (CPT) of attentional vigilance and the repetitive tapping task (RTT), a control motor task, to examine interictal attention in 26 children with CAE and 22 matched healthy controls. Each subject underwent simultaneous 3T functional magnetic resonance imaging-electroencephalography (fMRI-EEG) and CPT/RTT testing. Areas of activation on fMRI during the CPT task were correlated with behavioral performance and used as seed regions for resting functional connectivity analysis. All behavioral measures reflecting inattention were significantly higher in patients. Correlation analysis revealed that impairment on all measures of inattention on the CPT task was associated with decreased medial frontal cortex (MFC) activation during CPT. In addition, analysis of resting functional connectivity revealed an overall decrease within an 'attention network' in patients relative to controls. Patients demonstrated significantly impaired connectivity between the right anterior insula/frontal operculum (In/FO) and MFC relative to controls. Our results suggest that there is impaired function in an attention network comprising anterior In/FO and MFC in patients with CAE. These findings provide an anatomical and functional basis for impaired interictal attention in CAE, which may allow the development of improved treatments targeted at these networks.
Collapse
Affiliation(s)
- Brendan D Killory
- Department of Neurosurgery, Barrow Neurosurgical Institute, 350 Thomas Rd, Phoenix, AZ 85023, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Abstract
Generalized spike-wave seizures are typically brief events associated with dynamic changes in brain physiology, metabolism, and behavior. Functional magnetic resonance imaging (fMRI) provides a relatively high spatiotemporal resolution method for imaging cortical-subcortical network activity during spike-wave seizures. Patients with spike-wave seizures often have episodes of staring and unresponsiveness which interfere with normal behavior. Results from human fMRI studies suggest that spike-wave seizures disrupt specific networks in the thalamus and frontoparietal association cortex which are critical for normal attentive consciousness. However, the neuronal activity underlying imaging changes seen during fMRI is not well understood, particularly in abnormal conditions such as seizures. Animal models have begun to provide important fundamental insights into the neuronal basis for fMRI changes during spike-wave activity. Work from these models including both fMRI and direct neuronal recordings suggest that, in humans, specific cortical-subcortical networks are involved in spike-wave, while other regions are spared. Regions showing fMRI increases demonstrate correlated increases in neuronal activity in animal models. The mechanisms of fMRI decreases in spike-wave will require further investigation. A better understanding of the specific brain regions involved in generating spike-wave seizures may help guide efforts to develop targeted therapies aimed at preventing or reversing abnormal excitability in these brain regions, ultimately leading to a cure for this disorder.
Collapse
Affiliation(s)
- Joshua E. Motelow
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
- QNMR, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| |
Collapse
|
12
|
Joo EY, Tae WS, Hong SB. Cerebral blood flow abnormality in patients with idiopathic generalized epilepsy. J Neurol 2008; 255:520-5. [DOI: 10.1007/s00415-008-0727-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/02/2007] [Accepted: 09/03/2007] [Indexed: 10/22/2022]
|
13
|
Wolf P. Basic principles of the ILAE syndrome classification. Epilepsy Res 2006; 70 Suppl 1:S20-6. [PMID: 16870398 DOI: 10.1016/j.eplepsyres.2006.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Revised: 01/12/2006] [Accepted: 01/19/2006] [Indexed: 11/24/2022]
Abstract
The basic principles of the ILAE syndrome classification can be summarised as: clear definitions; reference to the seizure classification; expert consensus based on literature research; providing a taxonomy rather than a diagnostic manual; use of the dichotomies generalised versus localisation-related and idiopathic versus symptomatic; openness for the incorporation of new findings; and promotion of nosological thought. In fact, the publication of the classification stimulated research, especially in the fields of genetics, reflex epileptic mechanisms and advanced imaging, which will probably lead to a major revision of the nosology of epilepsies. Both localisation-related and "generalised" idiopathic epilepsies are about to be understood as related variants of system disorders of the brain, with an ictogenesis making pathological use of existing functional anatomic networks.
Collapse
Affiliation(s)
- Peter Wolf
- The Danish Epilepsy Centre, Dianalund, Denmark.
| |
Collapse
|
14
|
Hamandi K, Salek-Haddadi A, Laufs H, Liston A, Friston K, Fish DR, Duncan JS, Lemieux L. EEG-fMRI of idiopathic and secondarily generalized epilepsies. Neuroimage 2006; 31:1700-10. [PMID: 16624589 DOI: 10.1016/j.neuroimage.2006.02.016] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 02/02/2006] [Accepted: 02/07/2006] [Indexed: 10/24/2022] Open
Abstract
We used simultaneous EEG and functional MRI (EEG-fMRI) to study generalized spike wave activity (GSW) in idiopathic and secondary generalized epilepsy (SGE). Recent studies have demonstrated thalamic and cortical fMRI signal changes in association with GSW in idiopathic generalized epilepsy (IGE). We report on a large cohort of patients that included both IGE and SGE, and give a functional interpretation of our findings. Forty-six patients with GSW were studied with EEG-fMRI; 30 with IGE and 16 with SGE. GSW-related BOLD signal changes were seen in 25 of 36 individual patients who had GSW during EEG-fMRI. This was seen in thalamus (60%) and symmetrically in frontal cortex (92%), parietal cortex (76%), and posterior cingulate cortex/precuneus (80%). Thalamic BOLD changes were predominantly positive and cortical changes predominantly negative. Group analysis showed a negative BOLD response in the cortex in the IGE group and to a lesser extent a positive response in thalamus. Thalamic activation was consistent with its known role in GSW, and its detection in individual cases with EEG-fMRI may in part be related to the number and duration of GSW epochs recorded. The spatial distribution of the cortical fMRI response to GSW in both IGE and SGE involved areas of association cortex that are most active during conscious rest. Reduction of activity in these regions during GSW is consistent with the clinical manifestation of absence seizures.
Collapse
Affiliation(s)
- Khalid Hamandi
- National Society for Epilepsy and Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queen Square, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Spike-wave seizures are often considered a relatively "pure" form of epilepsy, with a uniform defect present in all patients and involvement of the whole brain homogeneously. Here, we present evidence against these common misconceptions. Rather than a uniform disorder, spike-wave rhythms arise from the normal inherent network properties of brain excitatory and inhibitory circuits, where they can be provoked by many different insults in several different brain networks. Here we discuss several different cellular and molecular mechanisms that may contribute to the generation of spike-wave seizures, particularly in idiopathic generalized epilepsy. In addition, we discuss growing evidence that electrical, neuroimaging, and molecular changes in spike-wave seizures do not involve the entire brain homogeneously. Rather, spike-wave discharges occur selectively in some thalamocortical networks, while sparing others. It is hoped that improved understanding of the heterogeneous defects and selective brain regions involved will ultimately lead to more effective treatments for spike-wave seizures.
Collapse
Affiliation(s)
- Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520-8018, USA.
| |
Collapse
|
16
|
Abstract
While it is generally accepted that there is no neuroimaging abnormality in idiopathic generalized epilepsy (IGE), image processing and quantitative magnetic resonance imaging (MRI) studies suggest that there may be subtle structural abnormalities. Magnetic resonance spectroscopy indicates neuronal dysfunction with differing abnormalities in the IGE subsyndromes, and high concentrations of glutamate and glutamine have been inferred in the frontal lobes, and low gamma-aminobutyric acid levels in the occipital lobe. Studies of cerebral blood distribution at the time of absences have given complex results. The general consensus is of an increase in the thalamus and broad decreases in the neocortex, reflecting a suppression of neuronal activity, but with some increases, that may indicate focal areas of activation. Positron emission tomography (PET) ligand studies with an opioid tracer have inferred neocortical release of endogenous opioids at the time of serial absences. In combination with neurophysiological methods, PET studies with specific ligands have the potential to clarify the functional anatomy and neurochemical circuits that underlie IGE.
Collapse
Affiliation(s)
- John S Duncan
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, and National Society for Epilepsy, London, United Kingdom.
| |
Collapse
|
17
|
Monaco F, Mula M, Cavanna AE. Consciousness, epilepsy, and emotional qualia. Epilepsy Behav 2005; 7:150-60. [PMID: 16046279 DOI: 10.1016/j.yebeh.2005.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/23/2005] [Accepted: 05/25/2005] [Indexed: 11/15/2022]
Abstract
The last decade has seen a renaissance of consciousness studies, witnessed by the growing number of scientific investigations on this topic. The concept of consciousness is central in epileptology, despite the methodological difficulties concerning its application to the multifaced ictal phenomenology. The authors provide an up-to-date review of the neurological literature on the relationship between epilepsy and consciousness and propose a bidimensional model (level vs contents of consciousness) for the description of seizure-induced alterations of conscious states, according to the findings of recent neuroimaging studies. The neurophysiological correlates of ictal loss and impairment of consciousness are also reviewed. Special attention is paid to the subjective experiential states associated with medial temporal lobe epilepsy. Such ictal phenomenal experiences are suggested as a paradigm for a neuroscientific approach to the apparently elusive philosophical concept of qualia. Epilepsy is confirmed to represent a privileged window over basic neurobiological mechanisms of consciousness.
Collapse
Affiliation(s)
- Francesco Monaco
- Department of Neurology, Amedeo Avogadro University, Novara, Italy
| | | | | |
Collapse
|
18
|
Blumenfeld H. Consciousness and epilepsy: why are patients with absence seizures absent? PROGRESS IN BRAIN RESEARCH 2005; 150:271-86. [PMID: 16186030 PMCID: PMC3153469 DOI: 10.1016/s0079-6123(05)50020-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Epileptic seizures cause dynamic, reversible changes in brain function and are often associated with loss of consciousness. Of all seizure types, absence seizures lead to the most selective deficits in consciousness, with relatively little motor or other manifestations. Impaired consciousness in absence seizures is not monolithic, but varies in severity between patients and even between episodes in the same patient. In addition, some aspects of consciousness may be more severely involved than other aspects. The mechanisms for this variability are not known. Here we review the literature on human absence seizures and discuss a hypothesis for why effects on consciousness may be variable. Based on behavioral studies, electrophysiology, and recent neuroimaging and molecular investigations, we propose absence seizures impair focal, not generalized brain functions. Impaired consciousness in absence seizures may be caused by focal disruption of information processing in specific corticothalamic networks, while other networks are spared. Deficits in selective and varying cognitive functions may lead to impairment in different aspects of consciousness. Further investigations of the relationship between behavior and altered network function in absence seizures may improve our understanding of both normal and impaired consciousness.
Collapse
Affiliation(s)
- Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Abstract
It has been traditionally held that there is no radiological abnormality in patients with idiopathic generalized epilepsy (IGE). Sophisticated image processing and quantitative magnetic resonance imaging (MRI) studies suggest that, in some cases, there may be a subtle structural abnormality. Magnetic resonance spectroscopy indicates neuronal dysfunction with differing patterns of abnormality in the IGE sub-syndromes, and high levels of glutamate and glutamine have been suggested in the frontal lobes, and low GABA levels in the occipital lobe. Studies reflecting cerebral blood flow at the time of absences have given complex results. The principal consensus is of an increase in the thalamus and broad decreases in the neocortex, reflecting a suppression of neuronal activity, but with the possibility of some increases, that could perhaps reflect focal areas of neuronal activation. PET ligand studies with an opioid tracer have implied neocortical release of endogenous opioids at the time of serial absences. In combination with high time-resolution neurophysiological methods, static and dynamic PET studies with specific ligands have the potential to elucidate the functional anatomy and neurochemical circuits that under-lie IGE.
Collapse
Affiliation(s)
- John S Duncan
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Buckinghamshire, UK.
| |
Collapse
|
20
|
Nersesyan H, Herman P, Erdogan E, Hyder F, Blumenfeld H. Relative changes in cerebral blood flow and neuronal activity in local microdomains during generalized seizures. J Cereb Blood Flow Metab 2004; 24:1057-68. [PMID: 15356426 DOI: 10.1097/01.wcb.0000131669.02027.3e] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is broad agreement that generalized tonic-clonic seizures (GTCS) and normal somatosensory stimulation are associated with increases in regional CBF. However, the data regarding CBF changes during absence seizures are controversial. Electrophysiologic studies in WAG/Rij rats, an established animal model of absence seizures, have shown spike-wave discharges (SWD) that are largest in the perioral somatosensory cortex while sparing the visual cortex. Recent functional magnetic resonance imaging (fMRI) studies in the same model have also shown localized increases in fMRI signals in the perioral somatosensory cortex during SWD. Because fMRI signals are only indirectly related to neuronal activity, the authors directly measured CBF and neuronal activity from specific microdomains of the WAG/Rij cortex using a specially designed probe combining laser-Doppler flowmetry and extra-cellular microelectrode recordings under fentanyl/haloperidol anesthesia. Using this approach, parallel increases in neuronal activity and CBF were observed during SWD in the whisker somatosensory (barrel) cortex, whereas the visual cortex showed no significant changes. For comparison, these measurements were repeated during somatosensory (whisker) stimulation, and bicuculline-induced GTCS in the same animals. Interestingly, whisker stimulation increased neuronal activity and CBF in the barrel cortex more than during SWD. During GTCS, much larger increases that included both the somatosensory and visual cortex were observed. Thus, SWD in this model produce parallel localized increases in neuronal activity and CBF with similar distribution to somatosensory stimulation, whereas GTCS produce larger and more widespread changes. The normal response to somatosensory stimulation appears to be poised between two abnormal responses produced by two physiologically different types of seizures.
Collapse
Affiliation(s)
- Hrachya Nersesyan
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
21
|
Nersesyan H, Hyder F, Rothman DL, Blumenfeld H. Dynamic fMRI and EEG recordings during spike-wave seizures and generalized tonic-clonic seizures in WAG/Rij rats. J Cereb Blood Flow Metab 2004; 24:589-99. [PMID: 15181366 DOI: 10.1097/01.wcb.0000117688.98763.23] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Generalized epileptic seizures produce widespread physiological changes in the brain. Recent studies suggest that "generalized" seizures may not involve the whole brain homogeneously. For example, electrophysiological recordings in WAG/Rij rats, an established model of human absence seizures, have shown that spike-and-wave discharges are most intense in the perioral somatosensory cortex and thalamus, but spare the occipital cortex. Is this heterogeneous increased neuronal activity matched by changes in local cerebral blood flow sufficient to meet or exceed cerebral oxygen consumption? To investigate this, we performed blood oxygen level-dependent functional magnetic resonance imaging (fMRI) measurements at 7T with simultaneous electroencephalogram recordings. During spontaneous spike-wave seizures in WAG/Rij rats under fentanylhaloperidol anesthesia, we found increased fMRI signals in focal regions including the perioral somatosensory cortex, known to be intensely involved during seizures, whereas the occipital cortex was spared. For comparison, we also studied bicuculline-induced generalized tonic-clonic seizures under the same conditions, and found fMRI increases to be larger and more widespread than during spike-and-wave seizures. These findings suggest that even in regions with intense neuronal activity during epileptic seizures, oxygen delivery exceeds metabolic needs, enabling fMRI to be used for investigation of dynamic cortical and subcortical network involvement in this disorder.
Collapse
Affiliation(s)
- Hrachya Nersesyan
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
22
|
Buchheim K, Obrig H, v Pannwitz W, Müller A, Heekeren H, Villringer A, Meierkord H. Decrease in haemoglobin oxygenation during absence seizures in adult humans. Neurosci Lett 2004; 354:119-22. [PMID: 14698453 DOI: 10.1016/j.neulet.2003.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Near-infrared spectroscopy (NIRS) is a noninvasive method that allows the assessment of activation-induced cortical oxygenation changes in humans. It has been demonstrated that an increase in oxygenated and a decrease in deoxygenated haemoglobin can be expected over an area activated by functional stimulation. Likewise, an inverse oxygenation pattern has been shown to be associated with cortical deactivation. The aim of the current study was to determine the oxygenation changes that occur during absence seizures. We performed ictal NIRS simultaneously with video-EEG telemetry in three adult patients with typical absence seizures. NIRS probes were placed over the frontal cortex below the F1/F2 leads. During all absence seizures studied, pronounced changes in cerebral Hb-oxygenation were noted and there were no changes in the interval. We observed a reproducible decrease in [oxy-Hb] and an increase in [deoxy-Hb] during absence seizures indicating a reduction of cortical activity. Oxygenation changes started several seconds after the EEG-defined absence onset and outlasted the clinically defined event by 20-30 s.
Collapse
Affiliation(s)
- Katharina Buchheim
- Neurologische Klinik und Poliklinik, Universitätsklinikum Charité, Medizinische Fakultät der Humboldt-Universität zu Berlin, Schumannstrasse 20/21, 10117 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Model systems are needed for the scientific investigation of consciousness. A good model system should include variable states of consciousness, allowing the relationship between brain activity and consciousness to be investigated. Examples include sleep, anesthesia, focal brain lesions, development, evolution, and epilepsy. One advantage of epilepsy is that changes are dynamic and rapidly reversible. The authors review previous investigations of impaired consciousness in epilepsy and describe new findings that may shed light on both normal and abnormal mechanisms of consciousness. Abnormal increased activity in fronto-parietal association cortex and related subcortical structures is associated with loss of consciousness in generalized seizures. Abnormal decreased activity in these same networks may cause loss of consciousness in complex partial seizures. Thus, abnormally increased or decreased activity in the same networks can cause loss of consciousness. Information flow during normal conscious processing may require a dynamic balance between these two extremes of excitation and inhibition.
Collapse
Affiliation(s)
- Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520-8018, USA.
| | | |
Collapse
|
24
|
Tenney JR, Duong TQ, King JA, Ludwig R, Ferris CF. Corticothalamic modulation during absence seizures in rats: a functional MRI assessment. Epilepsia 2003; 44:1133-40. [PMID: 12919383 PMCID: PMC2962948 DOI: 10.1046/j.1528-1157.2003.61002.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Functional magnetic resonance imaging (fMRI) was used to identify areas of brain activation during absence seizures in an awake animal model. METHODS Blood-oxygenation-level-dependent (BOLD) fMRI in the brain was measured by using T2*-weighted echo planar imaging at 4.7 Tesla. BOLD imaging was performed before, during, and after absence seizure induction by using gamma-butyrolactone (GBL; 200 mg/kg, intraperitoneal). RESULTS The corticothalamic circuitry, critical for spike-wave discharge (SWD) formation in absence seizure, showed robust BOLD signal changes after GBL administration, consistent with EEG recordings in the same animals. Predominantly positive BOLD changes occurred in the thalamus. Sensory and parietal cortices showed mixed positive and negative BOLD changes, whereas temporal and motor cortices showed only negative BOLD changes. CONCLUSIONS With the BOLD fMRI technique, we demonstrated signal changes in brain areas that have been shown, with electrophysiology experiments, to be important for generating and maintaining the SWDs that characterize absence seizures. These results corroborate previous findings from lesion and electrophysiological experiments and show the technical feasibility of noninvasively imaging absence seizures in fully conscious rodents.
Collapse
Affiliation(s)
- Jeffrey R Tenney
- Center for Comparative Neuroimaging, Department of Psychiatry, University of Massachusetts Medical School Worcester, Massachusetts 01655, USA.
| | | | | | | | | |
Collapse
|
25
|
Kapucu LO, Serdaroğlu A, Okuyaz C, Köse G, Gücüyener K. Brain single photon emission computed tomographic evaluation of patients with childhood absence epilepsy. J Child Neurol 2003; 18:542-8. [PMID: 13677580 DOI: 10.1177/08830738030180080401] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was performed to determine the utility of 99mTc-hexamethylpropylenamine oxime (HMPAO) brain single photon emission computed tomography (SPECT) in evaluating patients with childhood absence epilepsy. Twenty-three patients (13 female, 10 male), aged 7 to 15 years (mean age 10.3 +/- 2.2), were studied. All patients underwent a detailed neurologic examination, interictal and ictal electroencephalography (EEG), computed tomography, and/or magnetic resonance imaging, and SPECT. The baseline study was performed during the interictal period and the activation study was performed on a separate day while the patients were having seizures provoked by hyperventilation. Their EEGs were monitored at the same time. Transaxial, sagittal, and coronal slices were obtained for both studies. The mean counts per pixel were calculated on 11 regions of interest on three representative transaxial slices. Count density was calculated for each region. Region-to-occipital cortex ratios were obtained. For each region, normalized ratios were used to obtain a side-to-side percent asymmetry index between baseline and activation studies. Visual interpretation of the baseline study showed that 10 of the 23 patients had a detectable abnormality in regional cerebral blood flow during the interictal period. These abnormalities consisted of relative hypoperfusion in the frontal lobes that could involve neighboring parietal and temporal regions. The activation study revealed that 13 of 23 patients had relative hyperperfusion in these brain regions that were relatively hypoperfused in the baseline study. These hyperperfused regions occupied larger areas than baseline hypoperfused regions. All patients had global increased perfusion in the ictal study. The side-to-side asymmetry indexes for these visually interpreted regional cerebral blood flow abnormalities ranged from 2 to 6%. The relatively consistent pattern of frontal regional cerebral blood flow alterations suggests that altered frontal lobe functions can be implicated in patients with childhood absence epilepsy.
Collapse
Affiliation(s)
- L Ozlem Kapucu
- Department of Nuclear Medicine, Gazi University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | |
Collapse
|
26
|
Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci 2002; 3:371-82. [PMID: 11988776 DOI: 10.1038/nrn811] [Citation(s) in RCA: 439] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Childhood absence epilepsy is an idiopathic, generalized non-convulsive epilepsy with a multifactorial genetic aetiology. Molecular-genetic analyses of affected human families and experimental models, together with neurobiological investigations, have led to important breakthroughs in the identification of candidate genes and loci, and potential pathophysiological mechanisms for this type of epilepsy. Here, we review these results, and compare the human and experimental phenotypes that have been investigated. Continuing efforts and comparisons of this type will help us to elucidate the multigenetic traits and pathophysiology of this form of generalized epilepsy.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- School of Bioscience, Cardiff University, Museum Avenue, Cardiff CF10 3US, Wales, UK.
| | | |
Collapse
|