1
|
Tran NA, Moonshi SS, Lam AK, Lu CT, Vu CQ, Arai S, Ta HT. Nanomaterials in cancer starvation therapy: pioneering advances, therapeutic potential, and clinical challenges. Cancer Metastasis Rev 2025; 44:51. [PMID: 40347350 PMCID: PMC12065774 DOI: 10.1007/s10555-025-10267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Gaining significant attention in recent years, starvation therapy based on the blocking nutrients supply to cancer cells via blood occlusion and metabolic interventions is a promisingly novel approach in cancer treatment. However, there are many crucial obstacles to overcome to achieve effective treatment, for example, poor-targeting delivery, cellular hypoxia, adverse effects, and ineffective monotherapy. The starvation-based multitherapy based on multifunctional nanomaterials can narrow these gaps and pave a promising way for future clinical translation. This review focuses on the progression in nanomaterials-mediated muti-therapeutic modalities based on starvation therapy in recent years and therapeutic limitations that prevent their clinical applications. Moreover, unlike previous reviews that focused on a single aspect of the field, this comprehensive review presents a broader perspective on starvation therapy by summarising advancements across its various therapeutic strategies.
Collapse
Affiliation(s)
- Nam Anh Tran
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Shehzahdi S Moonshi
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cu Tai Lu
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cong Quang Vu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
2
|
Khamespanah E, Asad S, Vanak Z, Mehrshad M. Niche-Aware Metagenomic Screening for Enzyme Methioninase Illuminates Its Contribution to Metabolic Syntrophy. MICROBIAL ECOLOGY 2024; 87:141. [PMID: 39546027 PMCID: PMC11568061 DOI: 10.1007/s00248-024-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
The single-step methioninase-mediated degradation of methionine (as a sulfur containing amino acid) is a reaction at the interface of carbon, nitrogen, sulfur, and methane metabolism in microbes. This enzyme also has therapeutic application due to its role in starving auxotrophic cancer cells. Applying our refined in silico screening pipeline on 33,469 publicly available genome assemblies and 1878 metagenome assembled genomes/single-cell amplified genomes from brackish waters of the Caspian Sea and the Fennoscandian Shield deep groundwater resulted in recovering 1845 methioninases. The majority of recovered methioninases belong to representatives of phyla Proteobacteria (50%), Firmicutes (29%), and Firmicutes_A (13%). Prevalence of methioninase among anaerobic microbes and in the anoxic deep groundwater together with the relevance of its products for energy conservation in anaerobic metabolism highlights such environments as desirable targets for screening novel methioninases and resolving its contribution to microbial metabolism and interactions. Among archaea, majority of detected methioninases are from representatives of Methanosarcina that are able to use methanethiol, the sulfur containing product from methionine degradation, as a precursor for methanogenesis. Branching just outside these archaeal methioninases in the phylogenetic tree, we recovered three methioninases belonging to representatives of Patescibacteria reconstructed from deep groundwater metagenomes. We hypothesize that methioninase in Patescibacteria could contribute to their syntrophic interactions where their methanogenic partners/hosts benefit from the produced 2-oxobutyrate and methanethiol. Our results underscore the significance of accounting for specific ecological niche in screening for enzyme variates with desired characteristics. Finally, complementing of our findings with experimental validation of methioninase activity confirms the potential of our in silico screening in clarifying the peculiar ecological role of methioninase in anoxic environments.
Collapse
Affiliation(s)
- Erfan Khamespanah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Zeynab Vanak
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden.
| |
Collapse
|
3
|
Barciszewska AM, Belter A, Barciszewski JF, Gawrońska I, Giel-Pietraszuk M, Naskręt-Barciszewska MZ. Mechanistic Insights on Metformin and Arginine Implementation as Repurposed Drugs in Glioblastoma Treatment. Int J Mol Sci 2024; 25:9460. [PMID: 39273414 PMCID: PMC11394688 DOI: 10.3390/ijms25179460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
As the most common and aggressive primary malignant brain tumor, glioblastoma is still lacking a satisfactory curative approach. The standard management consisting of gross total resection followed by radiotherapy and chemotherapy with temozolomide only prolongs patients' life moderately. In recent years, many therapeutics have failed to give a breakthrough in GBM treatment. In the search for new treatment solutions, we became interested in the repurposing of existing medicines, which have established safety profiles. We focused on the possible implementation of well-known drugs, metformin, and arginine. Metformin is widely used in diabetes treatment, but arginine is mainly a cardiovascular protective drug. We evaluated the effects of metformin and arginine on total DNA methylation, as well as the oxidative stress evoked by treatment with those agents. In glioblastoma cell lines, a decrease in 5-methylcytosine contents was observed with increasing drug concentration. When combined with temozolomide, both guanidines parallelly increased DNA methylation and decreased 8-oxo-deoxyguanosine contents. These effects can be explained by specific interactions of the guanidine group with m5CpG dinucleotide. We showed that metformin and arginine act on the epigenetic level, influencing the foreground and potent DNA regulatory mechanisms. Therefore, they can be used separately or in combination with temozolomide, in various stages of disease, depending on desired treatment effects.
Collapse
Affiliation(s)
- Anna-Maria Barciszewska
- Intraoperative Imaging Unit, Chair and Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
- Department of Neurosurgery and Neurotraumatology, University Clinical Hospital, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Agnieszka Belter
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Jakub F Barciszewski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Iwona Gawrońska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Małgorzata Giel-Pietraszuk
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | | |
Collapse
|
4
|
Prasad YR, Anakha J, Pande AH. Treating liver cancer through arginine depletion. Drug Discov Today 2024; 29:103940. [PMID: 38452923 DOI: 10.1016/j.drudis.2024.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Liver cancer, the sixth most common cancer globally and the second-leading cause of cancer-related deaths, presents a critical public health threat. Diagnosis often occurs in advanced stages of the disease, aligning incidence with fatality rates. Given that established treatments, such as stereotactic body radiation therapy and transarterial radioembolization, face accessibility and affordability challenges, the emerging focus on cancer cell metabolism, particularly arginine (Arg) depletion, offers a promising research avenue. Arg-depleting enzymes show efficacy against Arg-auxotrophic cancers, including hepatocellular carcinoma (HCC). Thus, in this review, we explore the limitations of current therapies and highlight the potential of Arg depletion, emphasizing various Arg-hydrolyzing enzymes in clinical development.
Collapse
Affiliation(s)
- Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
5
|
Xia H, Zhu J, Zheng Z, Xiao P, Yu X, Wu M, Xue L, Xu X, Wang X, Guo Y, Zheng C, Ding S, Wang Y, Peng X, Fu S, Li J, Deng X. Amino acids and their roles in tumor immunotherapy of breast cancer. J Gene Med 2024; 26:e3647. [PMID: 38084655 DOI: 10.1002/jgm.3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women. The primary treatment options include surgery, radiotherapy, chemotherapy, targeted therapy and hormone therapy. The effectiveness of breast cancer therapy varies depending on the stage and aggressiveness of the cancer, as well as individual factors. Advances in early detection and improved treatments have significantly increased survival rates for breast cancer patients. Nevertheless, specific subtypes of breast cancer, particularly triple-negative breast cancer, still lack effective treatment strategies. Thus, novel and effective therapeutic targets for breast cancer need to be explored. As substrates of protein synthesis, amino acids are important sources of energy and nutrition, only secondly to glucose. The rich supply of amino acids enables the tumor to maintain its proliferative competence through participation in energy generation, nucleoside synthesis and maintenance of cellular redox balance. Amino acids also play an important role in immune-suppressive microenvironment formation. Thus, the biological effects of amino acids may change unexpectedly in tumor-specific or oncogene-dependent manners. In recent years, there has been significant progress in the study of amino acid metabolism, particularly in their potential application as therapeutic targets in breast cancer. In this review, we provide an update on amino acid metabolism and discuss the therapeutic implications of amino acids in breast cancer.
Collapse
Affiliation(s)
- Hongzhuo Xia
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Jianyu Zhu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
- Department of Pathophysiology, Jishou University, Jishou, Hunan, China
| | - Zhuomeng Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Peiyao Xiao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xiaohui Yu
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Muyao Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Lian Xue
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xi Xu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xinyu Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Yuxuan Guo
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Siyu Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Yian Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoning Peng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
- Department of Pathophysiology, Jishou University, Jishou, Hunan, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| | - Junjun Li
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Pathophysiology, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
6
|
Wei X, Chow HY, Chong HC, Leung SL, Ho MK, Lee MY, Leung YC. Arginine Is a Novel Drug Target for Arginine Decarboxylase in Human Colorectal Cancer Cells. Int J Mol Sci 2023; 24:13741. [PMID: 37762044 PMCID: PMC10531272 DOI: 10.3390/ijms241813741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) has been proven to be highly reliant on arginine availability. Limiting arginine-rich foods or treating patients with arginine-depleting enzymes arginine deiminase (ADI) or arginase can suppress colon cancer. However, arginase and ADI are not the best drug candidates for CRC. Ornithine, the product of arginase, can enhance the supply of polyamine, which favors CRC cell growth, while citrulline, the product of ADI, faces the problem of arginine recycling due to the overexpression of argininosuccinate synthetase (ASS). Biosynthetic arginine decarboxylase (ADC), an enzyme that catalyzes the conversion of arginine to agmatine and carbon dioxide, may be a better choice as it combines both arginine depletion and suppression of intracellular polyamine synthesis via its product agmatine. ADC has anti-tumor potential yet has received much less attention than the other two arginine-depleting enzymes. In order to gain a better understanding of ADC, the preparation and the anti-cancer properties of this enzyme were explored in this study. When tested in vitro, ADC inhibited the proliferation of three colorectal cancer cell lines regardless of their ASS cellular expression. In contrast, ADC had a lesser cytotoxic effect on the human foreskin fibroblasts and rat primary hepatocytes. Further in vitro studies revealed that ADC induced S and G2/M phase cell-cycle arrest and apoptosis in HCT116 and LoVo cells. ADC-induced apoptosis in HCT116 cells followed the mitochondrial apoptotic pathway and was caspase-3-dependent. With all results obtained, we suggest that arginine is a potential target for treating colorectal cancer with ADC, and the anti-cancer properties of ADC should be more deeply investigated in the future.
Collapse
Affiliation(s)
- Xinlei Wei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ho-Yin Chow
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hiu-Chi Chong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Siu-Lun Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mei-Ki Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Man-Yuen Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Jiménez-Alonso JJ, López-Lázaro M. Dietary Manipulation of Amino Acids for Cancer Therapy. Nutrients 2023; 15:2879. [PMID: 37447206 DOI: 10.3390/nu15132879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer cells cannot proliferate and survive unless they obtain sufficient levels of the 20 proteinogenic amino acids (AAs). Unlike normal cells, cancer cells have genetic and metabolic alterations that may limit their capacity to obtain adequate levels of the 20 AAs in challenging metabolic environments. However, since normal diets provide all AAs at relatively constant levels and ratios, these potentially lethal genetic and metabolic defects are eventually harmless to cancer cells. If we temporarily replace the normal diet of cancer patients with artificial diets in which the levels of specific AAs are manipulated, cancer cells may be unable to proliferate and survive. This article reviews in vivo studies that have evaluated the antitumor activity of diets restricted in or supplemented with the 20 proteinogenic AAs, individually and in combination. It also reviews our recent studies that show that manipulating the levels of several AAs simultaneously can lead to marked survival improvements in mice with metastatic cancers.
Collapse
Affiliation(s)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
8
|
Thakker DP, Narayanan R. Arginine deiminase produced by lactic acid bacteria as a potent anti-cancer drug. Med Oncol 2023; 40:175. [PMID: 37171497 DOI: 10.1007/s12032-023-02043-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
Bacterial-based cancer immunotherapy has recently gained widespread attention due to its exceptional mechanism of rich pathogen-associated molecular patterns in anti-cancer immune responses. Contrary to conventional cancer therapies such as surgery, chemotherapy, radiation and phototherapy, bacteria-based cancer immunotherapy has the unique ability to suppress cancer by selectively accumulating and growing in tumours. In the view of this, several bacterial strains are being used for the treatment of cancer. Of which, lactic acid bacteria are a powerful, albeit still inadequately understood bacteria that possess a wide source of bioactive chemicals. Lactic acid bacteria metabolites, such as bacteriocins, short-chain fatty acids, exopolysaccharides show antitumour property. Amino acid pathways, which have lately been focussed as a new strategy to cancer therapy, are key element of the adaptability and dysregulation of metabolic pathways identified in proliferation of tumour cells. Arginine metabolism, in particular, has been shown to be critical for cancer therapy. As a result, better understanding of arginine metabolism in LAB and cancer cells could lead to new cancer therapeutic targets. This review will outline current advances in the interaction of arginine metabolism with cancer therapy and propose an arginine deiminase expression system to combat cancer more effectively.
Collapse
Affiliation(s)
- Darshali P Thakker
- Department of Genetic Engineering, College of Engineering & Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India
| | - Rajnish Narayanan
- Department of Genetic Engineering, College of Engineering & Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
9
|
Muller Bark J, Karpe AV, Doecke JD, Leo P, Jeffree RL, Chua B, Day BW, Beale DJ, Punyadeera C. A pilot study: Metabolic profiling of plasma and saliva samples from newly diagnosed glioblastoma patients. Cancer Med 2023; 12:11427-11437. [PMID: 37031458 PMCID: PMC10242862 DOI: 10.1002/cam4.5857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Despite aggressive treatment, more than 90% of glioblastoma (GBM) patients experience recurrences. GBM response to therapy is currently assessed by imaging techniques and tissue biopsy. However, difficulties with these methods may cause misinterpretation of treatment outcomes. Currently, no validated therapy response biomarkers are available for monitoring GBM progression. Metabolomics holds potential as a complementary tool to improve the interpretation of therapy responses to help in clinical interventions for GBM patients. METHODS Saliva and blood from GBM patients were collected pre and postoperatively. Patients were stratified conforming their progression-free survival (PFS) into favourable or unfavourable clinical outcomes (>9 months or PFS ≤ 9 months, respectively). Analysis of saliva (whole-mouth and oral rinse) and plasma samples was conducted utilising LC-QqQ-MS and LC-QTOF-MS to determine the metabolomic and lipidomic profiles. The data were investigated using univariate and multivariate statistical analyses and graphical LASSO-based graphic network analyses. RESULTS Altogether, 151 metabolites and 197 lipids were detected within all saliva and plasma samples. Among the patients with unfavourable outcomes, metabolites such as cyclic-AMP, 3-hydroxy-kynurenine, dihydroorotate, UDP and cis-aconitate were elevated, compared to patients with favourable outcomes during pre-and post-surgery. These metabolites showed to impact the pentose phosphate and Warburg effect pathways. The lipid profile of patients who experienced unfavourable outcomes revealed a higher heterogeneity in the abundance of lipids and fewer associations between markers in contrast to the favourable outcome group. CONCLUSION Our findings indicate that changes in salivary and plasma metabolites in GBM patients can potentially be employed as less invasive prognostic biomarkers/biomarker panel but validation with larger cohorts is required.
Collapse
Affiliation(s)
- Juliana Muller Bark
- Faculty of Health, Centre for Biomedical TechnologiesSchool of Biomedical Sciences, Queensland University of TechnologyBrisbaneQueenslandAustralia
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery – Griffith UniversityBrisbaneQueenslandAustralia
- Faculty of HealthSchool of Biomedical Sciences, Queensland University of TechnologyGardens PointQueenslandAustralia
| | - Avinash V. Karpe
- Environment, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences PrecinctDutton ParkQueenslandAustralia
- Agriculture and FoodCommonwealth Scientific and Industrial Research Organization (CSIRO)ActonAustralian Capital TerritoryAustralia
| | - James D. Doecke
- Australian eHealth Research Centre, CSIRO. Level 7, Surgical Treatment and Rehabilitation Service – STARSRoyal Brisbane and Women's HospitalHerstonQueenslandAustralia
| | - Paul Leo
- Faculty of HealthSchool of Biomedical Sciences, Queensland University of TechnologyGardens PointQueenslandAustralia
- Faculty of Health, Translational Genomics GroupSchool of Biomedical Sciences, Queensland University of TechnologyWoolloongabbaAustralia
| | - Rosalind L. Jeffree
- QIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
- Faculty of MedicineUniversity of QueenslandHerstonQueenslandAustralia
- Kenneth G. Jamieson Department of NeurosurgeryRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
- Cell and Molecular Biology Department, Sid Faithfull Brain Cancer LaboratoryQIMR Berghofer MRIBrisbaneQueenslandAustralia
| | - Benjamin Chua
- Faculty of MedicineUniversity of QueenslandHerstonQueenslandAustralia
- Cancer Care ServicesRoyal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - Bryan W. Day
- Faculty of HealthSchool of Biomedical Sciences, Queensland University of TechnologyGardens PointQueenslandAustralia
- Faculty of MedicineUniversity of QueenslandHerstonQueenslandAustralia
- Cell and Molecular Biology Department, Sid Faithfull Brain Cancer LaboratoryQIMR Berghofer MRIBrisbaneQueenslandAustralia
| | - David J. Beale
- Environment, Commonwealth Scientific and Industrial Research Organization (CSIRO), Ecosciences PrecinctDutton ParkQueenslandAustralia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational LaboratoryGriffith Institute for Drug Discovery – Griffith UniversityBrisbaneQueenslandAustralia
- Menzies Health Institute, Griffith UniversitySouthportQueenslandAustralia
- Translational Research InstituteWoolloongabbaQueenslandAustralia
| |
Collapse
|
10
|
Guillén-Mancina E, Jiménez-Alonso JJ, Calderón-Montaño JM, Jiménez-González V, Díaz-Ortega P, Burgos-Morón E, López-Lázaro M. Artificial Diets with Selective Restriction of Amino Acids and Very Low Levels of Lipids Induce Anticancer Activity in Mice with Metastatic Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:cancers15051540. [PMID: 36900331 PMCID: PMC10000978 DOI: 10.3390/cancers15051540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Patients with metastatic triple negative breast cancer (TNBC) need new therapies to improve the low survival rates achieved with standard treatments. In this work, we show for the first time that the survival of mice with metastatic TNBC can be markedly increased by replacing their normal diet with artificial diets in which the levels of amino acids (AAs) and lipids are strongly manipulated. After observing selective anticancer activity in vitro, we prepared five artificial diets and evaluated their anticancer activity in a challenging model of metastatic TNBC. The model was established by injecting 4T1 murine TNBC cells into the tail vein of immunocompetent BALB/cAnNRj mice. First-line drugs doxorubicin and capecitabine were also tested in this model. AA manipulation led to modest improvements in mice survival when the levels of lipids were normal. Reducing lipid levels to 1% markedly improved the activity of several diets with different AA content. Some mice fed the artificial diets as monotherapy lived much longer than mice treated with doxorubicin and capecitabine. An artificial diet without 10 non-essential AAs, with reduced levels of essential AAs, and with 1% lipids improved the survival not only of mice with TNBC but also of mice with other types of metastatic cancers.
Collapse
|
11
|
He Z, Chen Q, He W, Cao J, Yao S, Huang Q, Zheng Y. Hepatocellular carcinoma subtypes based on metabolic pathways reveals potential therapeutic targets. Front Oncol 2023; 13:1086604. [PMID: 36937389 PMCID: PMC10017446 DOI: 10.3389/fonc.2023.1086604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is an aggressive malignancy with steadily increasing incidence rates worldwide and poor therapeutic outcomes. Studies show that metabolic reprogramming plays a key role in tumor genesis and progression. In this study, we analyzed the metabolic heterogeneity of epithelial cells in the HCC and screened for potential biomarkers. Methods The hepatic single-cell RNA sequencing (scRNA-seq) datasets of HCC patients and healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Based on data intergration and measurement of differences among groups, the metabolic epithelial cell subpopulations were identified. The single-cell metabolic pathway was analyzed and the myeloid subpopulations were identified. Cell-cell interaction analysis and single-cell proliferation analysis were performed. The gene expression profiles of HCC patients were obtained from the GSE14520 dataset of GEO and TCGA-LIHC cohort of the UCSC Xena website. Immune analysis was performed. The differentially expressed genes (DEGs) were identified and functionally annotated. Tumor tissues from HCC patients were probed with anti-ALDOA, anti-CD68, anti-CD163, anti-CD4 and anti-FOXP3 antibodies. Results We analyzed the scRNA-seq data from 48 HCC patients and 14 healthy controls. The epithelial cells were significantly enriched in HCC patients compared to the controls (p = 0.011). The epithelial cells from HCC patients were classified into two metabolism-related subpopulations (MRSs) - pertaining to amino acid metabolism (MRS1) and glycolysis (MRS2). Depending on the abundance of these metabolic subpopulations, the HCC patients were also classified into the MRS1 and MRS2 subtype distinct prognoses and immune infiltration. The MRS2 group had significantly worse clinical outcomes and more inflamed tumor microenvironment (TME), as well as a stronger crosstalk between MRS2 cells and immune subpopulations that resulted in an immunosuppressive TME. We also detected high expression levels of ALDOA in the MRS2 cells and HCC tissues. In the clinical cohort, HCC patients with higher ALDOA expression showed greater enrichment of immunosuppressive cells including M2 macrophages and T regulatory cells. Discussion The glycolytic subtype of HCC cells with high ALDOA expression is associated with an immunosuppressive TME and predicts worse clinical outcomes, providing new insights into the metabolism and prognosis of HCC.
Collapse
Affiliation(s)
- Zehua He
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, Guangxi, China
- *Correspondence: Qingfeng Chen,
| | - Wanrong He
- Department of Gastroenterology, People’s Hospital of Guangxi, Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Junyue Cao
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Shunhan Yao
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Qingqiang Huang
- Guigang City Department of Radiology, People’s Hospital, Guigang, Guangxi, China
| | - Yu Zheng
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Ragni M, Fornelli C, Nisoli E, Penna F. Amino Acids in Cancer and Cachexia: An Integrated View. Cancers (Basel) 2022; 14:5691. [PMID: 36428783 PMCID: PMC9688864 DOI: 10.3390/cancers14225691] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Rapid tumor growth requires elevated biosynthetic activity, supported by metabolic rewiring occurring both intrinsically in cancer cells and extrinsically in the cancer host. The Warburg effect is one such example, burning glucose to produce a continuous flux of biomass substrates in cancer cells at the cost of energy wasting metabolic cycles in the host to maintain stable glycemia. Amino acid (AA) metabolism is profoundly altered in cancer cells, which use AAs for energy production and for supporting cell proliferation. The peculiarities in cancer AA metabolism allow the identification of specific vulnerabilities as targets of anti-cancer treatments. In the current review, specific approaches targeting AAs in terms of either deprivation or supplementation are discussed. Although based on opposed strategies, both show, in vitro and in vivo, positive effects. Any AA-targeted intervention will inevitably impact the cancer host, who frequently already has cachexia. Cancer cachexia is a wasting syndrome, also due to malnutrition, that compromises the effectiveness of anti-cancer drugs and eventually causes the patient's death. AA deprivation may exacerbate malnutrition and cachexia, while AA supplementation may improve the nutritional status, counteract cachexia, and predispose the patient to a more effective anti-cancer treatment. Here is provided an attempt to describe the AA-based therapeutic approaches that integrate currently distant points of view on cancer-centered and host-centered research, providing a glimpse of several potential investigations that approach cachexia as a unique cancer disease.
Collapse
Affiliation(s)
- Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Claudia Fornelli
- Department of Clinical and Biological Sciences, University of Torino, 10125 Turin, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10125 Turin, Italy
| |
Collapse
|
13
|
Kumar R, Mishra A, Gautam P, Feroz Z, Vijayaraghavalu S, Likos EM, Shukla GC, Kumar M. Metabolic Pathways, Enzymes, and Metabolites: Opportunities in Cancer Therapy. Cancers (Basel) 2022; 14:5268. [PMID: 36358687 PMCID: PMC9656396 DOI: 10.3390/cancers14215268] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Metabolic reprogramming enables cancer cells to proliferate and produce tumor biomass under a nutrient-deficient microenvironment and the stress of metabolic waste. A cancer cell adeptly undergoes a variety of adaptations in metabolic pathways and differential expression of metabolic enzyme genes. Metabolic adaptation is mainly determined by the physiological demands of the cancer cell of origin and the host tissue. Numerous metabolic regulators that assist cancer cell proliferation include uncontrolled anabolism/catabolism of glucose metabolism, fatty acids, amino acids metabolism, nucleotide metabolism, tumor suppressor genes, microRNAs, and many regulatory enzymes and genes. Using this paradigm, we review the current understanding of metabolic reprogramming in tumors and discuss the new strategies of cancer metabolomics that can be tapped into for cancer therapeutics.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Priyanka Gautam
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Zainab Feroz
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | | | - Eviania M. Likos
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| |
Collapse
|
14
|
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, Wang S, Hu T, Wu F, Zhou H. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol 2022; 15:135. [PMID: 36115986 PMCID: PMC9482317 DOI: 10.1186/s13045-022-01349-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 12/30/2022] Open
Abstract
AbstractTransforming growth factor-β (TGF-β) signaling has a paradoxical role in cancer progression, and it acts as a tumor suppressor in the early stages but a tumor promoter in the late stages of cancer. Once cancer cells are generated, TGF-β signaling is responsible for the orchestration of the immunosuppressive tumor microenvironment (TME) and supports cancer growth, invasion, metastasis, recurrence, and therapy resistance. These progressive behaviors are driven by an “engine” of the metabolic reprogramming in cancer. Recent studies have revealed that TGF-β signaling regulates cancer metabolic reprogramming and is a metabolic driver in the tumor metabolic microenvironment (TMME). Intriguingly, TGF-β ligands act as an “endocrine” cytokine and influence host metabolism. Therefore, having insight into the role of TGF-β signaling in the TMME is instrumental for acknowledging its wide range of effects and designing new cancer treatment strategies. Herein, we try to illustrate the concise definition of TMME based on the published literature. Then, we review the metabolic reprogramming in the TMME and elaborate on the contribution of TGF-β to metabolic rewiring at the cellular (intracellular), tissular (intercellular), and organismal (cancer-host) levels. Furthermore, we propose three potential applications of targeting TGF-β-dependent mechanism reprogramming, paving the way for TGF-β-related antitumor therapy from the perspective of metabolism.
Collapse
|
15
|
Du Z, Li T, Huang J, Chen Y, Chen C. Arginase: Mechanisms and Clinical Application in Hematologic Malignancy. Front Oncol 2022; 12:905893. [PMID: 35814439 PMCID: PMC9260017 DOI: 10.3389/fonc.2022.905893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Compared to normal tissues and cells, the metabolic patterns of tumor illnesses are more complex, and there are hallmarks of metabolic reprogramming in energy metabolism, lipid metabolism, and amino acid metabolism. When tumor cells are in a state of fast growth, they are susceptible to food shortage, resulting in growth suppression. Using this metabolic sensitivity of tumor cells to construct amino acid consumption therapy does not harm the function of normal cells, which is the focus of metabolic therapy research at the moment. As a non-essential amino acid, arginine is involved in numerous crucial biological processes, including the signaling system, cell proliferation, and material metabolism. Rapidly dividing tumor cells are more likely to be deficient in arginine; hence, utilizing arginase to consume arginine can suppress tumor growth. Due to the absence of arginine succinate synthase, arginine succinate lyase, and ornithine carbamoyl transferase in some blood tumors, arginases may be employed to treat blood tumors. By investigating the mechanism of arginase treatment and the mechanism of drug resistance in greater depth, arginase treatment becomes more successful in hematological cancers and a new anti-cancer agent in clinical practice.
Collapse
Affiliation(s)
- Zefan Du
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Tianwen Li
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Junbin Huang
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen,
| | - Chun Chen
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen,
| |
Collapse
|
16
|
Characterisation of Expression the Arginine Pathway Enzymes in Childhood Brain Tumours to Determine Susceptibility to Therapeutic Arginine Depletion. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9008685. [PMID: 35782058 PMCID: PMC9242779 DOI: 10.1155/2022/9008685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Despite significant improvements in treatment and survival in paediatric cancers, outcomes for children with brain tumours remain poor. Novel therapeutic approaches are needed to improve survival and quality of survival. Extracellular arginine dependency (auxotrophy) has been recognised in several tumours as a potential therapeutic target. This dependency is due to the inability of cancer cells to recycle or synthesise intracellular arginine through the urea cycle pathway compared to normal cells. Whilst adult glioblastoma exhibits this dependency, the expression of the arginine pathway enzymes has not been delineated in paediatric brain tumours. We used immunohistochemical (IHC) methods to stain for arginine pathway enzymes in paediatric high-grade glioma (pHGG), low-grade glioma (pLGG), ependymoma (EPN), and medulloblastoma (MB) tumour tissue microarrays (TMAs). The antibodies detected protein expression of the metaboliser arginase (Arg1 and Arg2); recycling enzymes ornithine transcarbamoylase (OTC), argininosuccinate synthetase (ASS1), and argininosuccinate lyase (ASL); and the transporter SLC7A1. Deficiency of OTC, ASS1, and ASL was seen in 87.5%, 94%, and 79% of pHGG samples, respectively, consistent with an auxotrophic signature. Similar result was obtained in pLGG with 96%, 93%, and 91% of tumours being deficient in ASL, ASS1, and OTC, respectively. 79%, 88%, and 85% of MB cases were ASL, ASS1, and OTC deficient whilst ASL and OTC were deficient in 57% and 91% of EPN samples. All tumour types highly expressed SLC7A1 and Arginase, with Arg2 being the main isoform, demonstrating that they could transport and utilise arginine. Our results show that pHGG, pLGG, EPN, and MB demonstrate arginine auxotrophy based on protein expression and are likely to be susceptible to arginine depletion. Pegylated arginase (BCT-100) is currently in phase I/II trials in relapsed pHGG. Our results suggest that therapeutic arginine depletion may also be useful in other tumour types and IHC analysis of patient tumour samples could help identify patients likely to benefit from this treatment.
Collapse
|
17
|
Yau T, Cheng PNM, Chiu J, Kwok GGW, Leung R, Liu AM, Cheung TT, Ng CT. A phase 1 study of pegylated recombinant arginase (PEG-BCT-100) in combination with systemic chemotherapy (capecitabine and oxaliplatin)[PACOX] in advanced hepatocellular carcinoma patients. Invest New Drugs 2022; 40:314-321. [PMID: 34735674 DOI: 10.1007/s10637-021-01178-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/12/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION We investigated the safety and efficacy of a pegylated arginase (PEG-BCT-100) in combination with chemotherapy (oxaliplatin and capecitabine) [PACOX] in advanced HCC patients. METHODS This was a single centre phase 1 trial to assess the safety and tolerability of PACOX. All the enrolled subjects received treatment in 3-weekly cycles: intravenous PEG-BCT-100 2.7 mg/kg on days 1, 8 and 15 of each cycle; oral capecitabine 1000 mg/m2 twice daily on day 1-14 of each cycle and intravenous oxaliplatin on day 1. Three dose levels of oxaliplatin (85 mg/m2, 100 mg/m2 or 130 mg/m2) were studied to define the maximum tolerated dose (MTD). Adverse events (AEs), efficacy by RECIST v1.1, time to progression (TTP), progression-free survival (PFS) and overall survival (OS) were studied. RESULTS Seventeen patients were enrolled at 3 dose levels of oxaliplatin: 85 mg/m2 (8 patients), 100 mg/m2 (3 patients), and 130 mg/m2 (6 patients). The median age was 55 years; all had had locoregional chemotherapy or targeted therapy such as sorafenib, but no systemic chemotherapy. The most common AEs were nausea (82%), injection site reaction (76%), palmar-plantar erythrodysesthesia (59%), oral mucositis (53%) and vomiting (53%). There was no dose-limiting toxicity (DLT). Median duration on study was 8 weeks overall. In 14 evaluable cases, one achieved partial response (PR), 4 had stable disease (SD); disease control rate was 36%; most responses were observed in the 130 mg/m2 cohort with 1 PR and 2 SDs. Median TTP and PFS were both 7.0 weeks. Overall median OS was 10.7 months; the median OS was not reached at 19.4 months of follow-up in the 130 mg/m2 cohort. CONCLUSION The PACOX regimen demonstrated good anti-cancer activity and survival advantage in advanced pre-treated HCC with favourable safety profile. It warrants further phase II/III studies.
Collapse
Affiliation(s)
- Thomas Yau
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hongkong.
| | - Paul N M Cheng
- Bio-Cancer Treatment International Ltd, Shatin, Hongkong
| | - Joanne Chiu
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hongkong
| | - Gerry Gin Wai Kwok
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hongkong
| | - Roland Leung
- Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hongkong
| | - Angela M Liu
- Bio-Cancer Treatment International Ltd, Shatin, Hongkong
| | - Tan To Cheung
- Department of Surgery, The University of Hong Kong, Pok Fu Lam, Hongkong
| | - Chi Tao Ng
- Clinical Trials Centre, The University of Hong Kong, Pok Fu Lam, Hongkong
| |
Collapse
|
18
|
Zhou Z, Yang Z, Xia L, Zhang H. Construction of an enzyme-based all-fiber SPR biosensor for detection of enantiomers. Biosens Bioelectron 2022; 198:113836. [PMID: 34847363 DOI: 10.1016/j.bios.2021.113836] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022]
Abstract
Chiral analysis of amino acids (AAs) is of great importance in medical science due to the distinctive effect of AA isomers on human health. Although various chiral recognition techniques have been developed, the quantitative chiral recognition of low-level AA isomers remains challenging. Here, we combined the fiber optic SPR with an enzyme-substrate recognition mechanism to construct a direct-assay-type chiral AA biosensor. As a proof-of-concept attempt, a recently discovered Rasamsonia emersonii D-amino acid oxidase (ReDAAO) with a wide substrate spectrum and high stability was immobilized on the graphene oxide and gold nanorods composites (GO-AuNRs), using both EDC/NHS coupling and the gold-binding peptide (GBP) method. Such a biosensor can distinguish two AA isomers at the same concentration. It achieved specific detection of D-amino acids (D-AAs) with a linear range from 5x10-4 mM to 30 mM. Furthermore, it showed good resistance to enantiomeric interference. When the percentage of D-AA increases in the isomer mixture, a good linear relationship between the D/(D + L)-AA ratio and SPR spectral shift was obtained. This unique combination of the enzyme, nanocomposite, and SPR taps into the rich reservoir of proteins for chiral receptors. It lays the foundation for protein-based chiral recognition of other clinically important small molecules in future biosensor designs.
Collapse
Affiliation(s)
- Zhuoyue Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhao Yang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Xia
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Houjin Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
19
|
Gayan S, Teli A, Nair A, Tomar G, Dey T. Macro- and micro-nutrient-based multiplex stress conditions modulate in vitro tumorigenesis and aggressive behavior of breast cancer spheroids. IN VITRO MODELS 2022; 1:85-101. [PMID: 39872971 PMCID: PMC11756478 DOI: 10.1007/s44164-021-00006-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 01/30/2025]
Abstract
Purpose The aggressive nature of a tumor is presumably its inherent one, but different environmental cues can manipulate it in many ways. In this context, the influence of metabolic stresses on tumor behavior needs to be analyzed to understand their far-reaching implications on tumor aggression and dormancy. This work investigates different facets of the tumor, such as tumorigenic capacity, tumor phenotype, and migration, under multiple metabolic stress conditions. Methods Non-invasive and invasive multicellular spheroids (MTS) were created and subjected to multiple stress conditions, namely glucose, amino acid, and oxygen deprivation. Altered behavior of the MTS has been evaluated in the context of in vitro tumorigenesis, spheroid formation capacity, phenotype, mRNA profile, migration, and recruitment of mesenchymal stem cells. Results The metabolic stress conditions were observed to negatively impact the in vitro tumorigenesis and spheroid formation process of invasive and non-invasive breast cancer cells. While the stress seemingly influences the growth and phenotype of spheroids, it does not alter the organization of sub-cellular entities significantly. Metabolic stress conditions impact the transcriptomic landscape of hypoxic, angiogenic, ECM deformation, glycolysis shift, and protein starvation-related gene clusters. MTSs do not adhere or migrate under stress, but they exhibit different modalities of migration when rescued. Invasive spheroids, after the rescue, exhibit increased aggressiveness. Furthermore, stressed spheroid was observed to control the migration and recruitment of mesenchymal stem cells. Conclusion Multiplex metabolic stresses could control the tumorigenesis while influencing the physiology of invasive and non-invasive breast cancer spheroids along with their migration pattern and tumor-stromal crosstalk. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-021-00006-5.
Collapse
Affiliation(s)
- Sukanya Gayan
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Abhishek Teli
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Anish Nair
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Geetanjali Tomar
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Institute of Bioinformatics & Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
20
|
Chen Y, Li Y. Metabolic reprogramming and immunity in cancer. CANCER IMMUNOLOGY AND IMMUNOTHERAPY 2022:137-196. [DOI: 10.1016/b978-0-12-823397-9.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Heslop KA, Milesi V, Maldonado EN. VDAC Modulation of Cancer Metabolism: Advances and Therapeutic Challenges. Front Physiol 2021; 12:742839. [PMID: 34658929 PMCID: PMC8511398 DOI: 10.3389/fphys.2021.742839] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Most anionic metabolites including respiratory substrates, glycolytic adenosine triphosphate (ATP), and small cations that enter mitochondria, and mitochondrial ATP moving to the cytosol, cross the outer mitochondrial membrane (OMM) through voltage dependent anion channels (VDAC). The closed states of VDAC block the passage of anionic metabolites, and increase the flux of small cations, including calcium. Consequently, physiological or pharmacological regulation of VDAC opening, by conditioning the magnitude of both anion and cation fluxes, is a major contributor to mitochondrial metabolism. Tumor cells display a pro-proliferative Warburg phenotype characterized by enhanced aerobic glycolysis in the presence of partial suppression of mitochondrial metabolism. The heterogeneous and flexible metabolic traits of most human tumors render cells able to adapt to the constantly changing energetic and biosynthetic demands by switching between predominantly glycolytic or oxidative phenotypes. Here, we describe the biological consequences of changes in the conformational state of VDAC for cancer metabolism, the mechanisms by which VDAC-openers promote cancer cell death, and the advantages of VDAC opening as a valuable pharmacological target. Particular emphasis is given to the endogenous regulation of VDAC by free tubulin and the effects of VDAC-tubulin antagonists in cancer cells. Because of its function and location, VDAC operates as a switch to turn-off mitochondrial metabolism (closed state) and increase aerobic glycolysis (pro-Warburg), or to turn-on mitochondrial metabolism (open state) and decrease glycolysis (anti-Warburg). A better understanding of the role of VDAC regulation in tumor progression is relevant both for cancer biology and for developing novel cancer chemotherapies.
Collapse
Affiliation(s)
- Kareem A Heslop
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Veronica Milesi
- Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, CIC PBA, La Plata, Argentina
| | - Eduardo N Maldonado
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
22
|
Li M, Qin J, Xiong K, Jiang B, Zhang T. Review of arginase as a promising biocatalyst: characteristics, preparation, applications and future challenges. Crit Rev Biotechnol 2021; 42:651-667. [PMID: 34612104 DOI: 10.1080/07388551.2021.1947962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a committed step in the urea cycle, arginase cleaves l-arginine to form l-ornithine and urea. l-Ornithine is essential to: cell proliferation, collagen formation and other physiological functions, while the urea cycle itself converts highly toxic ammonia to urea for excretion. Recently, arginase was exploited as an efficient catalyst for the environmentally friendly synthesis of l-ornithine, an abundant nonprotein amino acid that is widely employed as a food supplement and nutrition product. It was also proposed as an arginine-reducing agent in order to treat arginase deficiency and to be a means of depleting arginine to treat arginine auxotrophic tumors. Targeting arginase inhibitors of the arginase/ornithine pathway offers great promise as a therapy for: cardiovascular, central nervous system diseases and cancers with high arginase expression. In this review, recent advances in the characteristics, structure, catalytic mechanism and preparation of arginase were summarized, with a focus being placed on the biotechnical and medical applications of arginase. In particular, perspectives have been presented on the challenges and opportunities for the environmentally friendly utilization of arginase during l-ornithine production and in therapies.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kai Xiong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
23
|
Chan SL, Cheng PNM, Liu AM, Chan LL, Li L, Chu CM, Chong CCN, Lau YM, Yeo W, Ng KKC, Yu SCH, Mok TSK, Chan AWH. A phase II clinical study on the efficacy and predictive biomarker of pegylated recombinant arginase on hepatocellular carcinoma. Invest New Drugs 2021; 39:1375-1382. [PMID: 33856599 PMCID: PMC8426309 DOI: 10.1007/s10637-021-01111-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND Pegylated recombinant human arginase (PEG-BCT-100) is an arginine depleting drug. Preclinical studies showed that HCC is reliant on exogenous arginine for growth due to the under-expression of the arginine regenerating enzymes argininosuccinate synthetase (ASS) and ornithine transcarbamylase (OTC). METHODS This is a single arm open-label Phase II trial to assess the potential clinical efficacy of PEG-BCT-100 in chemo naïve sorafenib-failure HCC patients. Pre-treatment tumour biopsy was mandated for ASS and OTC expression by immunohistochemistry (IHC). Weekly intravenous PEG-BCT-100 at 2.7 mg/kg was given. Primary endpoint was time to progression (TTP); secondary endpoints included radiological response as per RECIST1.1, progression free survival (PFS) and overall survival (OS). Treatment outcomes were correlated with tumour immunohistochemical expressions of ASS and OTC. RESULTS In total 27 patients were recruited. The median TTP and PFS were both 6 weeks (95% CI, 5.9-6.0 weeks). The disease control rate (DCR) was 21.7% (5 stable disease). The drug was well tolerated. Post hoc analysis showed that duration of arginine depletion correlated with OS. For patients with available IHC results, 10 patients with ASS-negative tumour had OS of 35 weeks (95% CI: 8.3-78.0 weeks) vs. 15.14 weeks (95% CI: 13.4-15.1 weeks) in 3 with ASS-positive tumour; expression of OTC did not correlate with treatment outcomes. CONCLUSIONS PEG-BCT-100 in chemo naïve post-sorafenib HCC is well tolerated with moderate DCR. ASS-negative confers OS advantage over ASS-positive HCC. ASS-negativity is a potential biomarker for OS in HCC and possibly for other ASS-negative arginine auxotrophic cancers. TRIAL REGISTRATION NUMBER NCT01092091. Date of registration: March 23, 2010.
Collapse
Affiliation(s)
- Stephen L Chan
- State Key Laboratory of Translational Oncology, Hong Kong, China.
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China.
| | - Paul N M Cheng
- Bio-Cancer Treatment International Ltd., Hong Kong, China
| | - Angela M Liu
- Bio-Cancer Treatment International Ltd., Hong Kong, China
| | - Landon L Chan
- Department of Oncology, Princess Margaret Hospital, Hong Kong, China
| | - Leung Li
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheuk M Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Charing C N Chong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Yat M Lau
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Winnie Yeo
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin K C Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon C H Yu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tony S K Mok
- State Key Laboratory of Translational Oncology, Hong Kong, China
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony W H Chan
- Department of Anatomical and Cellular Pathology|, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Kumari N, Bansal S. Arginine depriving enzymes: applications as emerging therapeutics in cancer treatment. Cancer Chemother Pharmacol 2021; 88:565-594. [PMID: 34309734 DOI: 10.1007/s00280-021-04335-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of death globally. Chemotherapy and radiation therapy and other medications are employed to treat various types of cancer. However, each treatment has its own set of side effects, owing to its low specificity. As a result, there is an urgent need for newer therapeutics that do not disrupt healthy cells' normal functioning. Depriving nutrient or non/semi-essential amino acids to which cancerous cells are auxotrophic remains one such promising anticancer strategy. L-Arginine (Arg) is a semi-essential vital amino acid involved in versatile metabolic processes, signaling pathways, and cancer cell proliferation. Hence, the administration of Arg depriving enzymes (ADE) such as arginase, arginine decarboxylase (ADC), and arginine deiminase (ADI) could be effective in cancer therapy. The Arg auxotrophic cancerous cells like hepatocellular carcinoma, human colon cancer, leukemia, and breast cancer cells are sensitive to ADE treatment due to low expression of crucial enzymes argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL), and ornithine transcarbamylase (OCT). These therapeutic enzyme treatments induce cell death through inducing autophagy, apoptosis, generation of oxidative species, i.e., oxidative stress, and arresting the progression and expansion of cancerous cells at certain cell cycle checkpoints. The enzymes are undergoing clinical trials and could be successfully exploited as potential anticancer agents in the future.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India.
| |
Collapse
|
25
|
Cheng PNM, Liu AM, Bessudo A, Mussai F. Safety, PK/PD and preliminary anti-tumor activities of pegylated recombinant human arginase 1 (BCT-100) in patients with advanced arginine auxotrophic tumors. Invest New Drugs 2021; 39:1633-1640. [PMID: 34287772 DOI: 10.1007/s10637-021-01149-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Background The study determined the safety, pharmacokinetics/pharmacodynamics (PK/PD), and recommended Phase II dose of BCT-100 for arginine auxotrophic tumours in a non-Chinese population. Methods This is a Phase I, 3 + 3 dose-escalation, open-label, multi-centre study in two arginine auxotrophic cancers-Malignant Melanoma (MM) and Castration Resistant Prostate Cancer (CRPC). Patients were enrolled to receive weekly intravenous BCT-100. The dose cohorts were respectively 0.5 mg/kg, 1.0 mg/kg, 1.7 mg/kg and 2.7 mg/kg. Results There were 14 MM and 9 CRPC patients, 16 males and 7 females with a median age of 71. No dose-limiting toxicities were reported. Among all the AEs, 18 were drug-related (mostly were Grade 1). Although there were individual variations in PKs amongst the patients in each cohort, the median arginine level was maintained at 2.5 µM (lower limit of quantification) in all 4 cohorts of patients after the second BCT-100 injection. Therapeutic Arginine Depletion was found in the 1.7 and 2.7 mg/kg/week cohorts when anti-tumor activities were observed. The two cohorts had a similar AUC (20,947 and 19,614 h*µg/ml respectively). Since the 2.7 mg/kg/week cohort had a more sustained arginine depletion for 2 weeks, the 2.7 mg/kg/week dose is chosen as the future phase II dose. There were two complete remissions (1 MM & 1 CRPC), 1PR (MM) and 2 stable diseases with a disease control rate (CR + PR + SD) of 5/23 (22%). Conclusions BCT-100 is safe in a non-Chinese population and has anti-tumor activities in both MM and CRPC. Weekly BCT-100 at 2.7 mg/kg is defined as the optimal biological dose for future clinical phase II studies.
Collapse
Affiliation(s)
- Paul N M Cheng
- Bio-Cancer Treatment International Ltd, Hong Kong, China.
| | - Angela M Liu
- Bio-Cancer Treatment International Ltd, Hong Kong, China
| | - Alberto Bessudo
- California Cancer Associates for Research and Excellence, Fresno, CA, US
| | - Francis Mussai
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
26
|
Butler M, van der Meer LT, van Leeuwen FN. Amino Acid Depletion Therapies: Starving Cancer Cells to Death. Trends Endocrinol Metab 2021; 32:367-381. [PMID: 33795176 DOI: 10.1016/j.tem.2021.03.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 01/01/2023]
Abstract
Targeting tumor cell metabolism is an attractive form of therapy, as it may enhance treatment response in therapy resistant cancers as well as mitigate treatment-related toxicities by reducing the need for genotoxic agents. To meet their increased demand for biomass accumulation and energy production and to maintain redox homeostasis, tumor cells undergo profound changes in their metabolism. In addition to the diversion of glucose metabolism, this is achieved by upregulation of amino acid metabolism. Interfering with amino acid availability can be selectively lethal to tumor cells and has proven to be a cancer specific Achilles' heel. Here we review the biology behind such cancer specific amino acid dependencies and discuss how these vulnerabilities can be exploited to improve cancer therapies.
Collapse
Affiliation(s)
- Miriam Butler
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | | | | |
Collapse
|
27
|
Xu C, Yang H, Xiao Z, Zhang T, Guan Z, Chen J, Lai H, Xu X, Huang Y, Huang Z, Zhao C. Reduction-responsive dehydroepiandrosterone prodrug nanoparticles loaded with camptothecin for cancer therapy by enhancing oxidation therapy and cell replication inhibition. Int J Pharm 2021; 603:120671. [PMID: 33961957 DOI: 10.1016/j.ijpharm.2021.120671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/18/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022]
Abstract
The pentose phosphate pathway (PPP) plays a critical role by providing ribulose-5-phosphate (Ru5P) and NADPH for nucleotide synthesis and reduction energy, respectively. Accordingly, blocking the PPP process may be an effective strategy for enhancing oxidation therapy and inhibiting cell replication. Here, we designed a novel reduction-responsive PEGylated prodrug and constructed nanoparticles PsD@CPT to simultaneously deliver a PPP blocker, dehydroepiandrosterone (DHEA), and chemotherapeutic camptothecin (CPT) to integrate amplification of oxidation therapy and enhance cell replication inhibition. Following cellular uptake, DHEA and CPT were released from PsD@CPT in the presence of high glutathione (GSH) levels. As expected, DHEA-mediated reduction level decreases and CPT-induced oxidation level increases synergistically, breaking the redox balance to aggravate cancer oxidative stress. In addition, suppressing nucleotide synthesis by DHEA through the reduction of Ru5P and blocking DNA replication by CPT further motivates a synergistic inhibition effect on tumor cell proliferation. The results showed that PsD@CPT featuring multimodal treatment has satisfactory antitumor activity both in vitro and in vivo. This study provides a new tumor treatment strategy, which combines the amplification of oxidative stress and enhancement of inhibition of cell proliferation based on inhibition of the PPP process.
Collapse
Affiliation(s)
- Congjun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Haolan Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhanghong Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zilin Guan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jie Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Hualu Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xiaoyu Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
28
|
Accumulation of 8-hydroxydeoxyguanosine, L-arginine and Glucose Metabolites by Liver Tumor Cells Are the Important Characteristic Features of Metabolic Syndrome and Non-Alcoholic Steatohepatitis-Associated Hepatocarcinogenesis. Int J Mol Sci 2020; 21:ijms21207746. [PMID: 33092030 PMCID: PMC7594076 DOI: 10.3390/ijms21207746] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
To uncover mechanisms and explore novel biomarkers of obesity, type 2 diabetes (T2DM) and nonalcoholic steatohepatitis (NASH)-associated hepatocarcinogenesis, cellular and molecular alterations in the liver, and hepatocellular carcinomas (HCCs) were investigated in NASH model 60-week-old Tsumura, Suzuki, Obese Diabetic (TSOD) mice and NASH HCC patients. Markedly elevated lipid deposition, inflammation, fibrosis, and peroxisome proliferation in the liver, preneoplastic lesions, and HCCs of TSOD mice were accompanied by accumulation of polysaccharides in the cellular cytoplasm and nuclei and increase of oxidative DNA damage marker, 8-hydroxydeoxyguanosine (8-OHdG) formation in the liver and altered foci. Metabolomics of TSOD mice HCCs demonstrated significant elevation of the concentration of amino acid L-arginine, phosphocreatine, S-adenosylmethionine/S-adenosylhomocysteine ratio, adenylate, and guanylate energy charges in coordination with tremendous rise of glucose metabolites, mostly fructose 1,6-diphosphate. L-arginine accumulation in HCCs was associated with significant under-expression of arginase 1 (ARG1), suppression of the urea cycle, methionine and putrescine degradation pathways, activation of Ser and Thr kinase Akt AKT, phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinase 1/2 (ERK1/2) kinases, β-catenin, mammalian target of rapamycin (mTOR), and cell proliferation. Furthermore, clinicopathological analysis in 20 metabolic syndrome/NASH and 80 HCV-positive HCC patients demonstrated significant correlation of negative ARG1 expression with poor tumor differentiation, higher pathological stage, and significant decrease of survival in metabolic syndrome/NASH-associated HCC patients, thus indicating that ARG1 could become a potential marker for NASH HCC. From these results, formation of oxidative stress and 8-OHdG in the DNA and elevation of glucose metabolites and L-arginine due to ARG1 suppression in mice liver cells are the important characteristics of T2DM/NASH-associated hepatocarcinogenesis, which may take part in activating oxidative stress resistance, synthesis of phosphocreatine, cell signaling, methylation, and proliferation.
Collapse
|
29
|
Recombinant Bacillus caldovelox Arginase Mutant (BCA-M) Induces Apoptosis, Autophagy, Cell Cycle Arrest and Growth Inhibition in Human Cervical Cancer Cells. Int J Mol Sci 2020; 21:ijms21207445. [PMID: 33050217 PMCID: PMC7589785 DOI: 10.3390/ijms21207445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
With our recent success in developing a recombinant human arginase drug against broad-spectrum cancer cell lines, we have explored the potential of a recombinant Bacillus caldovelox arginase mutant (BCA-M) for human cervical cancer treatment. Our studies demonstrated that BCA-M significantly inhibited the growth of human cervical cancer cells in vitro regardless of argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) expression. Drug susceptibilities correlate well with the expressions of major urea cycle genes and completeness of L-arginine regeneration pathways. With the expressions of ASS and ASL genes conferring resistance to L-arginine deiminase (ADI) which is undergoing Phase III clinical trial, BCA-M offers the advantage of a broader spectrum of susceptible cancer cells. Mechanistic studies showed that BCA-M inhibited the growth of human cervical cancer cells by inducing apoptosis and cell cycle arrest at S and/or G2/M phases. Our results also displayed that autophagy served as a protective mechanism, while the growth inhibitory effects of BCA-M could be enhanced synergistically by its combination to the autophagy inhibitor, chloroquine (CQ), on human cervical cancer cells.
Collapse
|
30
|
The Ubiquitin Proteasome System in Hematological Malignancies: New Insight into Its Functional Role and Therapeutic Options. Cancers (Basel) 2020; 12:cancers12071898. [PMID: 32674429 PMCID: PMC7409207 DOI: 10.3390/cancers12071898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin proteasome system (UPS) is the main cellular degradation machinery designed for controlling turnover of critical proteins involved in cancer pathogenesis, including hematological malignancies. UPS plays a functional role in regulating turnover of key proteins involved in cell cycle arrest, apoptosis and terminal differentiation. When deregulated, it leads to several disorders, including cancer. Several studies indicate that, in some subtypes of human hematological neoplasms such as multiple myeloma and Burkitt’s lymphoma, abnormalities in the UPS made it an attractive therapeutic target due to pro-cancer activity. In this review, we discuss the aberrant role of UPS evaluating its impact in hematological malignancies. Finally, we also review the most promising therapeutic approaches to target UPS as powerful strategies to improve treatment of blood cancers.
Collapse
|
31
|
Ramalho R, Rao M, Zhang C, Agrati C, Ippolito G, Wang FS, Zumla A, Maeurer M. Immunometabolism: new insights and lessons from antigen-directed cellular immune responses. Semin Immunopathol 2020; 42:279-313. [PMID: 32519148 PMCID: PMC7282544 DOI: 10.1007/s00281-020-00798-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Modulation of immune responses by nutrients is an important area of study in cellular biology and clinical sciences in the context of cancer therapies and anti-pathogen-directed immune responses in health and disease. We review metabolic pathways that influence immune cell function and cellular persistence in chronic infections. We also highlight the role of nutrients in altering the tissue microenvironment with lessons from the tumor microenvironment that shapes the quality and quantity of cellular immune responses. Multiple layers of biological networks, including the nature of nutritional supplements, the genetic background, previous exposures, and gut microbiota status have impact on cellular performance and immune competence against molecularly defined targets. We discuss how immune metabolism determines the differentiation pathway of antigen-specific immune cells and how these insights can be explored to devise better strategies to strengthen anti-pathogen-directed immune responses, while curbing unwanted, non-productive inflammation.
Collapse
Affiliation(s)
- Renata Ramalho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM, U4585 FCT), Applied Nutrition Studies Group G.E.N.A.-IUEM), Instituto Universitário Egas Moniz, Egas Moniz Higher Education School, Monte de Caparica, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | | | | | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.
- I Medizinische Klinik, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
32
|
Métayer LE, Brown RD, Carlebur S, Burke GAA, Brown GC. Mechanisms of cell death induced by arginase and asparaginase in precursor B-cell lymphoblasts. Apoptosis 2020; 24:145-156. [PMID: 30578463 PMCID: PMC6373273 DOI: 10.1007/s10495-018-1506-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arginase has therapeutic potential as a cytotoxic agent in some cancers, but this is unclear for precursor B acute lymphoblastic leukaemia (pre-B ALL), the commonest form of childhood leukaemia. We compared arginase cytotoxicity with asparaginase, currently used in pre-B ALL treatment, and characterised the forms of cell death induced in a pre-B ALL cell line 697. Arginase and asparaginase both efficiently killed 697 cells and mature B lymphoma cell line Ramos, but neither enzyme killed normal lymphocytes. Arginase depleted cellular arginine, and arginase-treated media induced cell death, blocked by addition of arginine or arginine-precursor citrulline. Asparaginase depleted both asparagine and glutamine, and asparaginase-treated media induced cell death, blocked by asparagine, but not glutamine. Both enzymes induced caspase cleavage and activation, chromatin condensation and phosphatidylserine exposure, indicating apoptosis. Both arginase- and asparaginase-induced death were blocked by caspase inhibitors, but with different sensitivities. BCL-2 overexpression inhibited arginase- and asparaginase-induced cell death, but did not prevent arginase-induced cytostasis, indicating a different mechanism of growth arrest. An autophagy inhibitor, chloroquine, had no effect on the cell death induced by arginase, but doubled the cell death induced by asparaginase. In conclusion, arginase causes death of lymphoblasts by arginine-depletion induced apoptosis, via mechanism distinct from asparaginase. Therapeutic implications for childhood ALL include: arginase might be used as treatment (but antagonised by dietary arginine and citrulline), chloroquine may enhance efficacy of asparaginase treatment, and partial resistance to arginase and asparaginase may develop by BCL-2 expression. Arginase or asparaginase might potentially be used to treat Burkitt lymphoma.
Collapse
Affiliation(s)
- Lucy E Métayer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Richard D Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Saskia Carlebur
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - G A Amos Burke
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
33
|
Zolfaghar M, Amoozegar MA, Khajeh K, Babavalian H, Tebyanian H. Isolation and screening of extracellular anticancer enzymes from halophilic and halotolerant bacteria from different saline environments in Iran. Mol Biol Rep 2019; 46:3275-3286. [PMID: 30993582 DOI: 10.1007/s11033-019-04787-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
It was confirmed that several enzymes have anti-cancer activity. The enzymes L-asparaginase, L-glutaminase, and L-arginase were chosen according to amino acids starvation in cancer cells and screened in halophilic and halotolerant bacteria, given probably less immunological reactions of halophilic or halotolerant enzymes in patients. Out of 110 halophilic and halotolerant strains, isolated from different saline environments in Iran and screened, some could produce a variety of anticancer enzymes. A total of 29, 4, and 2 strains produced L-asparaginase, L-glutaminase, and L-arginase, respectively. According to the phenotypic characteristics and partial 16S rRNA gene sequence analysis, the positive strains-strains with the ability to produce these anticancer enzymes-were identified as the members of the genera: Bacillus, Dietzia, Halobacillus, Rhodococcus, Paenibacillus and Planococcus as Gram-positive bacteria and Pseudomonas, Marinobacter, Halomonas, Idiomarina, Vibrio and Stappia as Gram-negative bacteria. The production of anticancer enzymes was mostly observed in the rod-shaped Gram-negative isolates, particularly in the members of the genera Halomonas and Marinobacter. Most of the enzymes were produced in the stationary phase of growth and the maximum enzyme activity was experienced in strain GBPx3 (Vibrio sp.) for L-asparaginase at 1.0 IU/ml, strain R2S25 (Rhodococcus sp.) for L-glutaminase at 0.6 IU/ml and strain GAAy3 (Planococcus sp.) for L-arginase at 3.1 IU/ml. The optimum temperature and pH for L-asparaginase and L-glutaminase activities in selected strains were similar to the physiological conditions of human body and the enzymes could tolerate NaCl up to 7.5% concentration.
Collapse
Affiliation(s)
- Mahdis Zolfaghar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hamid Babavalian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Wang L, Liu Y, Zhao TL, Li ZZ, He JY, Zhang BJ, Du HZ, Jiang JW, Yuan ST, Sun L. Topotecan induces apoptosis via ASCT2 mediated oxidative stress in gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:117-128. [PMID: 30668314 DOI: 10.1016/j.phymed.2018.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Topotecan (TPT) is a Topo I inhibitor and shows obvious anti-cancer effects on gastric cancer. Cancer cells reprogram their metabolic pathways to increase nutrients uptake, which has already been a hallmark of cancer. But the effect of TPT on metabolism in gastric cancer remains unknown. PURPOSE To investigate the effect of TPT on metabolism in gastric cancer. METHODS ATP production was measured by ATP Assay kit. Glucose and glutamine uptake were measured by Glucose (HK) Assay Kit and Glutamine/Glutamate Determination Kit respectively. To detect glutathione (GSH) concentration and reactive oxygen species (ROS) generation, GSH and GSSG Assay Kit and ROS Assay Kit were adopted. Apoptosis rates, mitochondrial membrane potential (MMP) were determined by flow cytometry and protein levels were analyzed by immumohistochemical staining and western blotting. RESULTS TPT increased ATP production. TPT promoted glucose uptake possibly via up-regulation of hexokinase 2 (HK2) or glucose transporter 1 (GLUT1) expression, while decreased glutamine uptake by down-regulation of ASCT2 expression. ASCT2 inhibitor GPNA and ASCT2 knockdown significantly suppressed the growth of gastric cancer cells. Inhibition of ASCT2 reduced glutamine uptake which led to decreased production of GSH and increased ROS level. ASCT2 knockdown induced apoptosis via the mitochondrial pathway and weakened anti-cancer effect of TPT. CONCLUSION TPT inhibits glutamine uptake via down-regulation of ASCT2 which causes oxidative stress and induces apoptosis through the mitochondrial pathway. Moreover, TPT inhibits proliferation partially via ASCT2. These observations reveal a previously undescribed mechanism of ASCT2 regulated gastric cancer proliferation and demonstrate ASCT2 is a potential anti-cancer target of TPT.
Collapse
Affiliation(s)
- Lai Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | - Yang Liu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | - Ting-Li Zhao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | - Zheng-Zheng Li
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | - Jin-Yong He
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | - Ben-Jia Zhang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | - Hong-Zhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Huang jia hu Road West, Wuhan, China
| | - Jing-Wei Jiang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | - Sheng-Tao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China.
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China.
| |
Collapse
|
35
|
Darnell AM, Subramaniam AR, O'Shea EK. Translational Control through Differential Ribosome Pausing during Amino Acid Limitation in Mammalian Cells. Mol Cell 2019; 71:229-243.e11. [PMID: 30029003 DOI: 10.1016/j.molcel.2018.06.041] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/07/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022]
Abstract
Limitation for amino acids is thought to regulate translation in mammalian cells primarily by signaling through the kinases mTORC1 and GCN2. We find that a selective loss of arginine tRNA charging during limitation for arginine regulates translation through ribosome pausing at two of six arginine codons. Surprisingly, limitation for leucine, an essential and abundant amino acid in protein, results in little or no ribosome pausing. Chemical and genetic perturbation of mTORC1 and GCN2 signaling revealed that their robust response to leucine limitation prevents ribosome pausing, while an insufficient response to arginine limitation leads to loss of tRNA charging and ribosome pausing. Ribosome pausing decreases protein production and triggers premature ribosome termination without reducing mRNA levels. Together, our results suggest that amino acids that are not optimally sensed by the mTORC1 and GCN2 pathways still regulate translation through an evolutionarily conserved mechanism based on codon-specific ribosome pausing.
Collapse
Affiliation(s)
- Alicia M Darnell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Arvind R Subramaniam
- Basic Sciences Division and Computational Biology Program of Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Erin K O'Shea
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology and Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
36
|
Mejlvang J, Olsvik H, Svenning S, Bruun JA, Abudu YP, Larsen KB, Brech A, Hansen TE, Brenne H, Hansen T, Stenmark H, Johansen T. Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. J Cell Biol 2018; 217:3640-3655. [PMID: 30018090 PMCID: PMC6168274 DOI: 10.1083/jcb.201711002] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/20/2018] [Accepted: 06/27/2018] [Indexed: 01/02/2023] Open
Abstract
It is not clear to what extent starvation-induced autophagy affects the proteome on a global scale and whether it is selective. In this study, we report based on quantitative proteomics that cells during the first 4 h of acute starvation elicit lysosomal degradation of up to 2-3% of the proteome. The most significant changes are caused by an immediate autophagic response elicited by shortage of amino acids but executed independently of mechanistic target of rapamycin and macroautophagy. Intriguingly, the autophagy receptors p62/SQSTM1, NBR1, TAX1BP1, NDP52, and NCOA4 are among the most efficiently degraded substrates. Already 1 h after induction of starvation, they are rapidly degraded by a process that selectively delivers autophagy receptors to vesicles inside late endosomes/multivesicular bodies depending on the endosomal sorting complex required for transport III (ESCRT-III). Our data support a model in which amino acid deprivation elicits endocytosis of specific membrane receptors, induction of macroautophagy, and rapid degradation of autophagy receptors by endosomal microautophagy.
Collapse
Affiliation(s)
- Jakob Mejlvang
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Hallvard Olsvik
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Steingrim Svenning
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Jack-Ansgar Bruun
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Yakubu Princely Abudu
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Andreas Brech
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tom E Hansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Hanne Brenne
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Terkel Hansen
- Department of Pharmacy, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Harald Stenmark
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
37
|
Abstract
Cancer metabolism is emerging as a chemotherapeutic target. Enhanced glycolysis and suppression of mitochondrial metabolism characterize the Warburg phenotype in cancer cells. The flux of respiratory substrates, ADP, and Pi into mitochondria and the release of mitochondrial ATP to the cytosol occur through voltage-dependent anion channels (VDACs) located in the mitochondrial outer membrane. Catabolism of respiratory substrates in the Krebs cycle generates NADH and FADH2 that enter the electron transport chain (ETC) to generate a proton motive force that maintains mitochondrial membrane potential (ΔΨ) and is utilized to generate ATP. The ETC is also the major cellular source of mitochondrial reactive oxygen species (ROS). αβ-Tubulin heterodimers decrease VDAC conductance in lipid bilayers. High constitutive levels of cytosolic free tubulin in intact cancer cells close VDAC decreasing mitochondrial ΔΨ and mitochondrial metabolism. The VDAC-tubulin interaction regulates VDAC opening and globally controls mitochondrial metabolism, ROS formation, and the intracellular flow of energy. Erastin, a VDAC-binding molecule lethal to some cancer cell types, and erastin-like compounds identified in a high-throughput screening antagonize the inhibitory effect of tubulin on VDAC. Reversal of tubulin inhibition of VDAC increases VDAC conductance and the flux of metabolites into and out of mitochondria. VDAC opening promotes a higher mitochondrial ΔΨ and a global increase in mitochondrial metabolism leading to high cytosolic ATP/ADP ratios that inhibit glycolysis. VDAC opening also increases ROS production causing oxidative stress that, in turn, leads to mitochondrial dysfunction, bioenergetic failure, and cell death. In summary, antagonism of the VDAC-tubulin interaction promotes cell death by a "double-hit model" characterized by reversion of the proproliferative Warburg phenotype (anti-Warburg) and promotion of oxidative stress.
Collapse
Affiliation(s)
- Diana Fang
- Medical University of South Carolina, Charleston, SC, United States
| | - Eduardo N Maldonado
- Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
38
|
Setty BA, Pillay Smiley N, Pool CM, Jin Y, Liu Y, Nelin LD. Hypoxia-induced proliferation of HeLa cells depends on epidermal growth factor receptor-mediated arginase II induction. Physiol Rep 2017; 5:5/6/e13175. [PMID: 28330951 PMCID: PMC5371558 DOI: 10.14814/phy2.13175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/22/2017] [Accepted: 01/25/2017] [Indexed: 11/24/2022] Open
Abstract
Solid tumors can often be hypoxic in regions, and cancer cells can respond to hypoxia with an increase in proliferation and a decrease in apoptosis, leading to a net increase in viable cell numbers. We have recently found that in an osteosarcoma cell line, hypoxia-induced proliferation depends on arginase II induction. Epidermal growth factor receptor (EGFR) has been shown to mediate the hypoxia-induced cellular proliferation in some cancer cell lines. We hypothesized that hypoxia-induced proliferation of HeLa cells would depend on arginase II induction and that this induction of arginase II would occur through EGFR activation. Exposure of HeLa cells to hypoxia resulted in an upregulation of arginase II mRNA and protein levels, with no effect on arginase I expression. Hypoxia also resulted in significantly greater viable cell numbers than did normoxia. The hypoxia-induced increase in viable cell numbers was prevented by either a small molecule inhibitor of arginase or siRNA targeting arginase II Overexpression of arginase II resulted in an increase in viable cell numbers both in normoxia and hypoxia. Hypoxia caused a substantial induction of both epidermal growth factor (EGF) and EGFR Preventing hypoxia-induced EGFR expression using siRNA abolished hypoxia-induced arginase II expression and the increase in viable cell numbers. Treatment with EGF in normoxia not only induced arginase II expression but also resulted in an increase in viable cell numbers. Blocking EGF interactions with EGFR using either an EGF neutralizing antibody or an EGFR antibody prevented the hypoxia-induced increase in viable cell numbers. These results demonstrate an EGF/EGFR/arginase II pathway that is necessary for hypoxic proliferation in HeLa cells.
Collapse
Affiliation(s)
- Bhuvana A Setty
- Pulmonary Hypertension Group, Center for Perinatal Research The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Natasha Pillay Smiley
- Pulmonary Hypertension Group, Center for Perinatal Research The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Caitlyn M Pool
- Pulmonary Hypertension Group, Center for Perinatal Research The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research The Research Institute at Nationwide Children's Hospital, Columbus, Ohio .,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
39
|
Poursaitidis I, Wang X, Crighton T, Labuschagne C, Mason D, Cramer SL, Triplett K, Roy R, Pardo OE, Seckl MJ, Rowlinson SW, Stone E, Lamb RF. Oncogene-Selective Sensitivity to Synchronous Cell Death following Modulation of the Amino Acid Nutrient Cystine. Cell Rep 2017; 18:2547-2556. [PMID: 28297659 PMCID: PMC5368412 DOI: 10.1016/j.celrep.2017.02.054] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/30/2016] [Accepted: 02/16/2017] [Indexed: 01/18/2023] Open
Abstract
Cancer cells reprogram their metabolism, altering both uptake and utilization of extracellular nutrients. We individually depleted amino acid nutrients from isogenic cells expressing commonly activated oncogenes to identify correspondences between nutrient supply and viability. In HME (human mammary epithelial) cells, deprivation of cystine led to increased cell death in cells expressing an activated epidermal growth factor receptor (EGFR) mutant. Cell death occurred via synchronous ferroptosis, with generation of reactive oxygen species (ROS). Hydrogen peroxide promoted cell death, as both catalase and inhibition of NADPH oxidase 4 (NOX4) blocked ferroptosis. Blockade of EGFR or mitogen-activated protein kinase (MAPK) signaling similarly protected cells from ferroptosis, whereas treatment of xenografts derived from EGFR mutant non-small-cell lung cancer (NSCLC) with a cystine-depleting enzyme inhibited tumor growth in mice. Collectively, our results identify a potentially exploitable sensitization of some EGFR/MAPK-driven tumors to ferroptosis following cystine depletion. A nutrient depletion screen revealed a selective role for cystine in promoting viability Cystine was shown to promote viability by preventing ferroptosis Sensitivity to depletion of cystine was related to activation of MAPK Depletion of cystine inhibited tumor growth in a NSCLC xenograft model
Collapse
Affiliation(s)
- Ioannis Poursaitidis
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool North West Cancer Research Centre, University of Liverpool, 200 London Road, Liverpool L69 7ZB, UK
| | - Xiaomeng Wang
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool North West Cancer Research Centre, University of Liverpool, 200 London Road, Liverpool L69 7ZB, UK
| | - Thomas Crighton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool North West Cancer Research Centre, University of Liverpool, 200 London Road, Liverpool L69 7ZB, UK
| | | | - David Mason
- Centre for Cell Imaging, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Shira L Cramer
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kendra Triplett
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rajat Roy
- Division of Cancer CRUK Laboratories, 1st Floor ICTEM Building, Hammersmith Hospital Campus of Imperial College London, Du Cane Road, London W120NN, UK
| | - Olivier E Pardo
- Division of Cancer CRUK Laboratories, 1st Floor ICTEM Building, Hammersmith Hospital Campus of Imperial College London, Du Cane Road, London W120NN, UK
| | - Michael J Seckl
- Division of Cancer CRUK Laboratories, 1st Floor ICTEM Building, Hammersmith Hospital Campus of Imperial College London, Du Cane Road, London W120NN, UK
| | | | - Everett Stone
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Richard F Lamb
- School of Health Sciences, Liverpool Hope University, Hope Park Campus, Liverpool L16 9JD, UK.
| |
Collapse
|
40
|
Savaraj N, Wu C, Kuo MT, You M, Wangpaichitr M, Robles C, Spector S, Feun L. The Relationship of Arginine Deprivation, Argininosuccinate Synthetase and Cell Death in Melanoma. Drug Target Insights 2017. [DOI: 10.1177/117739280700200016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Niramol Savaraj
- VA Medical Center, Hematology-Oncology, Miami, Florida, U.S.A
| | - Chunjing Wu
- University of Miami, Hematology-Oncology, Miami, Florida, U.S.A
| | - Marcus Tien Kuo
- M.D. Anderson Cancer Center, Molecular Pathology, Houston, Texas, U.S.A
| | - Min You
- University of Miami, Hematology-Oncology, Miami, Florida, U.S.A
| | | | - Carlos Robles
- VA Medical Center, Hematology-Oncology, Miami, Florida, U.S.A
| | - Seth Spector
- VA Medical Center, Hematology-Oncology, Miami, Florida, U.S.A
| | - Lynn Feun
- University of Miami, Hematology-Oncology, Miami, Florida, U.S.A
| |
Collapse
|
41
|
Tang X, Ding CK, Wu J, Sjol J, Wardell S, Spasojevic I, George D, McDonnell DP, Hsu DS, Chang JT, Chi JT. Cystine addiction of triple-negative breast cancer associated with EMT augmented death signaling. Oncogene 2017; 36:4235-4242. [PMID: 27869167 PMCID: PMC5438912 DOI: 10.1038/onc.2016.394] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022]
Abstract
Despite the advances in the diagnosis and treatment of breast cancer, breast cancers still cause significant mortality. For some patients, especially those with triple-negative breast cancer, current treatments continue to be limited and ineffective. Therefore, there remains an unmet need for a novel therapeutic approach. One potential strategy is to target the altered metabolic state that is rewired by oncogenic transformation. Specifically, this rewiring may render certain outside nutrients indispensable. To identify such a nutrient, we performed a nutrigenetic screen by removing individual amino acids to identify possible addictions across a panel of breast cancer cells. This screen revealed that cystine deprivation triggered rapid programmed necrosis, but not apoptosis, in the basal-type breast cancer cells mostly seen in TNBC tumors. In contrast, luminal-type breast cancer cells are cystine-independent and exhibit little death during cystine deprivation. The cystine addiction phenotype is associated with a higher level of cystine-deprivation signatures noted in the basal type breast cancer cells and tumors. We found that the cystine-addicted breast cancer cells and tumors have strong activation of TNFα and MEKK4-p38-Noxa pathways that render them susceptible to cystine deprivation-induced necrosis. Consistent with this model, silencing of TNFα and MEKK4 dramatically reduces cystine-deprived death. In addition, the cystine addiction phenotype can be abrogated in the cystine-addictive cells by miR-200c, which converts the mesenchymal-like cells to adopt epithelial features. Conversely, the introduction of inducers of epithelial-mesenchymal transition (EMT) in cystine-independent breast cancer cells conferred the cystine-addiction phenotype by modulating the signaling components of cystine addiction. Together, our data reveal that cystine-addiction is associated with EMT in breast cancer during tumor progression. These findings provide the genetic and mechanistic basis to explain how cystine deprivation triggers necrosis by activating pre-existing oncogenic pathways in cystine-addicted TNBC with prominent mesenchymal features.
Collapse
Affiliation(s)
- X Tang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - C-K Ding
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - J Wu
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - J Sjol
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - S Wardell
- Department of Pharmacology and Cancer Biology, Duke University Durham, NC, USA
| | - I Spasojevic
- Department of Medicine, Duke University, Durham, NC, USA
| | - D George
- Department of Medicine, Duke University, Durham, NC, USA
| | - D P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University Durham, NC, USA
| | - D S Hsu
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Durham, NC, USA
| | - J T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J-T Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| |
Collapse
|
42
|
Singh R, Williams J, Vince R. Puromycin based inhibitors of aminopeptidases for the potential treatment of hematologic malignancies. Eur J Med Chem 2017; 139:325-336. [PMID: 28803047 DOI: 10.1016/j.ejmech.2017.07.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/14/2017] [Accepted: 07/22/2017] [Indexed: 02/01/2023]
Abstract
Substantial progress has been described in the study of puromycin and its analogs for antibiotic properties. However, the peptidase inhibitory activity of related analogs has not been explored as extensively. Specifically, inhibiting aminopeptidases for achieving antitumor effect has been sparsely investigated. Herein, we address this challenge by reporting the synthesis of a series of analogs based on the structural template of puromycin. We also present exhaustive biochemical and in vitro analyses in support of our thesis. Analyzing the structure-activity relationship revealed a steric requirement for maximum potency. Effective inhibitors of Puromycin-Sensitive Aminopeptidase (PSA) are disclosed here. These potential therapeutic agents display superior in vitro antitumor potency against two leukemic cell lines, as compared to known inhibitors of aminopeptidases.
Collapse
Affiliation(s)
- Rohit Singh
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jessica Williams
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert Vince
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
43
|
Zhang F, Wu D, Wang GL, Hou S, Ou-Yang P, Huang J, Xu XY. Synthesis and biological evaluation of novel 1,2,3-benzotriazin-4-one derivatives as leukotriene A 4 hydrolase aminopeptidase inhibitors. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
44
|
Redel BK, Tessanne KJ, Spate LD, Murphy CN, Prather RS. Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase-dimethylarginine dimethylaminohydrolase-nitric oxide axis. Reprod Fertil Dev 2017; 27:655-66. [PMID: 25765074 DOI: 10.1071/rd14293] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 02/14/2015] [Indexed: 12/15/2022] Open
Abstract
Culture systems promote development at rates lower than the in vivo environment. Here, we evaluated the embryo's transcriptome to determine what the embryo needs during development. A previous mRNA sequencing endeavour found upregulation of solute carrier family 7 (cationic amino acid transporter, y+ system), member 1 (SLC7A1), an arginine transporter, in in vitro- compared with in vivo-cultured embryos. In the present study, we added different concentrations of arginine to our culture medium to meet the needs of the porcine embryo. Increasing arginine from 0.12 to 1.69mM improved the number of embryos that developed to the blastocyst stage. These blastocysts also had more total nuclei compared with controls and, specifically, more trophectoderm nuclei. Embryos cultured in 1.69mM arginine had lower SLC7A1 levels and a higher abundance of messages involved with glycolysis (hexokinase 1, hexokinase 2 and glutamic pyruvate transaminase (alanine aminotransferase) 2) and decreased expression of genes involved with blocking the tricarboxylic acid cycle (pyruvate dehydrogenase kinase, isozyme 1) and the pentose phosphate pathway (transaldolase 1). Expression of the protein arginine methyltransferase (PRMT) genes PRMT1, PRMT3 and PRMT5 throughout development was not affected by arginine. However, the dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2 message was found to be differentially regulated through development, and the DDAH2 protein was localised to the nuclei of blastocysts. Arginine has a positive effect on preimplantation development and may be affecting the nitric oxide-DDAH-PRMT axis.
Collapse
Affiliation(s)
- Bethany K Redel
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Kimberly J Tessanne
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Lee D Spate
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Clifton N Murphy
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Randall S Prather
- Division of Animal Science, Animal Science Research Center, 920 East Campus Drive, Columbia, MO 65211, USA
| |
Collapse
|
45
|
Maldonado EN. VDAC-Tubulin, an Anti-Warburg Pro-Oxidant Switch. Front Oncol 2017; 7:4. [PMID: 28168164 PMCID: PMC5256068 DOI: 10.3389/fonc.2017.00004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Aerobic enhanced glycolysis characterizes the Warburg phenotype. In cancer cells, suppression of mitochondrial metabolism contributes to maintain a low ATP/ADP ratio that favors glycolysis. We propose that the voltage-dependent anion channel (VDAC) located in the mitochondrial outer membrane is a metabolic link between glycolysis and oxidative phosphorylation in the Warburg phenotype. Most metabolites including respiratory substrates, ADP, and Pi enter mitochondria only through VDAC. Oxidation of respiratory substrates in the Krebs cycle generates NADH that enters the electron transport chain (ETC) to generate a proton motive force utilized to generate ATP and to maintain mitochondrial membrane potential (ΔΨ). The ETC is also the major source of mitochondrial reactive oxygen species (ROS) formation. Dimeric α-β tubulin decreases conductance of VDAC inserted in lipid bilayers, and high free tubulin in cancer cells by closing VDAC, limits the ingress of respiratory substrates and ATP decreasing mitochondrial ΔΨ. VDAC opening regulated by free tubulin operates as a “master key” that “seal–unseal” mitochondria to modulate mitochondrial metabolism, ROS formation, and the intracellular flow of energy. Erastin, a small molecule that binds to VDAC and kills cancer cells, and erastin-like compounds antagonize the inhibitory effect of tubulin on VDAC. Blockage of the VDAC–tubulin switch increases mitochondrial metabolism leading to decreased glycolysis and oxidative stress that promotes mitochondrial dysfunction, bioenergetic failure, and cell death. In summary, VDAC opening-dependent cell death follows a “metabolic double-hit model” characterized by oxidative stress and reversion of the pro-proliferative Warburg phenotype.
Collapse
Affiliation(s)
- Eduardo N Maldonado
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA; Center for Cell Death, Injury and Regeneration, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
46
|
Schultz A, Mehta S, Hu C, Hoff F, Horton T, Kornblau S, Qutub A. IDENTIFYING CANCER SPECIFIC METABOLIC SIGNATURES USING CONSTRAINT-BASED MODELS. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017; 22:485-496. [PMID: 27897000 PMCID: PMC5173378 DOI: 10.1142/9789813207813_0045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cancer metabolism differs remarkably from the metabolism of healthy surrounding tissues, and it is extremely heterogeneous across cancer types. While these metabolic differences provide promising avenues for cancer treatments, much work remains to be done in understanding how metabolism is rewired in malignant tissues. To that end, constraint-based models provide a powerful computational tool for the study of metabolism at the genome scale. To generate meaningful predictions, however, these generalized human models must first be tailored for specific cell or tissue sub-types. Here we first present two improved algorithms for (1) the generation of these context-specific metabolic models based on omics data, and (2) Monte-Carlo sampling of the metabolic model ux space. By applying these methods to generate and analyze context-specific metabolic models of diverse solid cancer cell line data, and primary leukemia pediatric patient biopsies, we demonstrate how the methodology presented in this study can generate insights into the rewiring differences across solid tumors and blood cancers.
Collapse
Affiliation(s)
- A. Schultz
- Department of Bioengineering, Rice University, Houston, Texas 77005, U.S.A
| | - S. Mehta
- Department of Bioengineering, Rice University, Houston, Texas 77005, U.S.A
| | - C.W. Hu
- Department of Bioengineering, Rice University, Houston, Texas 77005, U.S.A
| | - F.W. Hoff
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - T.M. Horton
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas 77030, U.S.A
| | - S.M. Kornblau
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, U.S.A
| | - A.A. Qutub
- Department of Bioengineering, Rice University, Houston, Texas 77005, U.S.A
| |
Collapse
|
47
|
Fernandes HS, Silva Teixeira CS, Fernandes PA, Ramos MJ, Cerqueira NMFSA. Amino acid deprivation using enzymes as a targeted therapy for cancer and viral infections. Expert Opin Ther Pat 2016; 27:283-297. [DOI: 10.1080/13543776.2017.1254194] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- H. S. Fernandes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - C. S. Silva Teixeira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - P. A. Fernandes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - M. J. Ramos
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - N. M. F. S. A. Cerqueira
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
48
|
Albaugh VL, Pinzon-Guzman C, Barbul A. Arginine-Dual roles as an onconutrient and immunonutrient. J Surg Oncol 2016; 115:273-280. [PMID: 27861915 DOI: 10.1002/jso.24490] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/22/2016] [Indexed: 12/12/2022]
Abstract
Arginine is an important player in numerous biologic processes and studies have demonstrated its importance for cellular growth that becomes limiting in states of rapid turnover (e.g., malignancy). Thus, arginine deprivation therapy is being examined as an adjuvant cancer therapy, however, arginine is also necessary for immune destruction of malignant cells. Herein we review the data supporting arginine deprivation or supplementation in cancer treatment and the currently registered trials aimed at understanding these divergent strategies. J. Surg. Oncol. 2017;115:273-280. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vance L Albaugh
- Division of General Surgery, Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Carolina Pinzon-Guzman
- Division of General Surgery, Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Adrian Barbul
- Division of General Surgery, Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
49
|
Ziemska J, Guśpiel A, Jarosz J, Nasulewicz-Goldeman A, Wietrzyk J, Kawęcki R, Pypowski K, Jarończyk M, Solecka J. Molecular docking studies, biological and toxicity evaluation of dihydroisoquinoline derivatives as potential anticancer agents. Bioorg Med Chem 2016; 24:5302-5314. [DOI: 10.1016/j.bmc.2016.08.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/05/2016] [Accepted: 08/27/2016] [Indexed: 11/26/2022]
|
50
|
Nagel R, Semenova EA, Berns A. Drugging the addict: non-oncogene addiction as a target for cancer therapy. EMBO Rep 2016; 17:1516-1531. [PMID: 27702988 PMCID: PMC5090709 DOI: 10.15252/embr.201643030] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
Historically, cancers have been treated with chemotherapeutics aimed to have profound effects on tumor cells with only limited effects on normal tissue. This approach was followed by the development of small‐molecule inhibitors that can target oncogenic pathways critical for the survival of tumor cells. The clinical targeting of these so‐called oncogene addictions, however, is in many instances hampered by the outgrowth of resistant clones. More recently, the proper functioning of non‐mutated genes has been shown to enhance the survival of many cancers, a phenomenon called non‐oncogene addiction. In the current review, we will focus on the distinct non‐oncogenic addictions found in cancer cells, including synthetic lethal interactions, the underlying stress phenotypes, and arising therapeutic opportunities.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ekaterina A Semenova
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|