1
|
Li G, Che X, Wang S, Liu D, Xie D, Jiang B, Zheng Z, Zheng X, Wu G. The role of cisplatin in modulating the tumor immune microenvironment and its combination therapy strategies: a new approach to enhance anti-tumor efficacy. Ann Med 2025; 57:2447403. [PMID: 39757995 PMCID: PMC11705547 DOI: 10.1080/07853890.2024.2447403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 11/23/2024] [Indexed: 01/07/2025] Open
Abstract
Cisplatin is a platinum-based drug that is frequently used to treat multiple tumors. The anti-tumor effect of cisplatin is closely related to the tumor immune microenvironment (TIME), which includes several immune cell types, such as the tumor-associated macrophages (TAMs), cytotoxic T-lymphocytes (CTLs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and natural killer (NK) cells. The interaction between these immune cells can promote tumor survival and chemoresistance, and decrease the efficacy of cisplatin monotherapy. Therefore, various combination treatment strategies have been devised to enhance patient responsiveness to cisplatin therapy. Cisplatin can augment anti-tumor immune responses in combination with immune checkpoint blockers (such as PD-1/PD-L1 or CTLA4 inhibitors), lipid metabolism disruptors (like FASN inhibitors and SCD inhibitors) and nanoparticles (NPs), resulting in better outcomes. Exploring the interaction between cisplatin and the TIME will help identify potential therapeutic targets for improving the treatment outcomes in cancer patients.
Collapse
Affiliation(s)
- Guandu Li
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shijin Wang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Deqian Xie
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Jiang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zunwen Zheng
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Ruan L, Wang L. Adoptive cell therapy against tumor immune evasion: mechanisms, innovations, and future directions. Front Oncol 2025; 15:1530541. [PMID: 40094019 PMCID: PMC11906336 DOI: 10.3389/fonc.2025.1530541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Tumors employ a range of strategies to evade detection and eradication by the host's immune system. These include downregulating antigen expression, altering antigen presentation processes, and inhibiting immune checkpoint pathways. etc. Adoptive Cell Therapy (ACT) represents a strategy that boosts anti-tumor immunity. This is achieved by amplifying or genetically engineering immune cells, which are either sourced from the patient or a donor, in a laboratory setting. Subsequently, these cells are reintroduced into the patient to bolster their immune response against cancer. ACT has successfully restored anti-tumor immune responses by amplifying the activity of T cells from patients or donors. This review focuses on the mechanisms underlying tumor escape, including alterations in tumor cell antigens, the immunosuppressive tumor microenvironment (TME), and modulation of immune checkpoint pathways. It further explores how ACT can avddress these factors to enhance therapeutic efficacy. Additionally, the review discusses the application of gene-editing technologies (such as CRISPR) in ACT, highlighting their potential to strengthen the anti-tumor capabilities of T cells. Looking forward, the personalized design of ACT, combined with immune checkpoint inhibitors and targeted therapies, is expected to significantly improve treatment outcomes, positioning this approach as a key strategy in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Liqin Ruan
- Department of Hepatobiliary Surgery, JiuJiang City Key Laboratory of Cell Therapy, JiuJiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| | - Lu Wang
- Department of Oncology, JiuJiang City Key Laboratory of Cell Therapy, JiuJiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
3
|
Guo Z, Liu Y, Chen D, Sun Y, Li D, Meng Y, Zhou Q, Zeng F, Deng G, Chen X. Targeting regulated cell death: Apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis in anticancer immunity. J Transl Int Med 2025; 13:10-32. [PMID: 40115032 PMCID: PMC11921819 DOI: 10.1515/jtim-2025-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
In the evolving landscape of cancer treatment, the strategic manipulation of regulated cell death (RCD) pathways has emerged as a crucial component of effective anti-tumor immunity. Evidence suggests that tumor cells undergoing RCD can modify the immunogenicity of the tumor microenvironment (TME), potentially enhancing its ability to suppress cancer progression and metastasis. In this review, we first explore the mechanisms of apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis, along with the crosstalk between these cell death modalities. We then discuss how these processes activate antigen-presenting cells, facilitate the cross-priming of CD8+ T cells, and trigger anti-tumor immune responses, highlighting the complex effects of novel forms of tumor cell death on TME and tumor biology. Furthermore, we summarize potential drugs and nanoparticles that can induce or inhibit these emerging RCD pathways and their therapeutic roles in cancer treatment. Finally, we put forward existing challenges and future prospects for targeting RCD in anti-cancer immunity. Overall, this review enhances our understanding of the molecular mechanisms and biological impacts of RCD-based therapies, providing new perspectives and strategies for cancer treatment.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Danyao Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yuming Sun
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Furong Zeng
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan Province, China
- Furong Laboratory, Changsha 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
4
|
Li Y, Zhao H, Shen Z, Zheng Y, Jiang Y, Song Y, Cai Y. Enhancing DOX efficacy against NSCLC through UDCA-mediated modulation of the TGF-β/MAPK autophagy pathways. Sci Rep 2024; 14:27169. [PMID: 39511265 PMCID: PMC11544154 DOI: 10.1038/s41598-024-73736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
Lung carcinoma, predominantly manifested as non-small cell lung cancer (NSCLC), significantly contributes to oncological mortality, underscoring an imperative for novel therapeutic paradigms. Amidst this context, the present investigation delineates the synergistic potentiation of doxorubicin (DOX)-a canonical chemotherapeutic-by Ursodeoxycholic acid (UDCA), a compound with a historical pedigree in hepatobiliary medicine, now repositioned within oncological pharmacotherapy due to its dichotomous cellular modulation-affording cytoprotection to non-malignant epithelia whilst eliciting apoptotic cascades in neoplastic counterparts. This study, through a rigorous methodological framework, elucidates UDCA's capacity to inhibit NSCLC cellular proliferation and induce apoptosis, thereby significantly amplifying DOX's chemotherapeutic efficacy. Notably, the co-administration of UDCA and DOX was observed to attenuate DOX-induced autophagy via the modulation of the TGF-β/MAPK signaling axis, a pathway pivotal in mediating cellular survival and autophagic mechanisms. Such findings not only underscore the therapeutic potential of UDCA as a chemosensitizer but also illuminate the molecular underpinnings of its modulatory effects, thereby contributing to the corpus of knowledge necessary to surmount chemoresistance in NSCLC. The implications of this research are twofold: firstly, it offers a compelling evidence base for the clinical reevaluation of UDCA in combinatory chemotherapeutic regimens; secondly, it posits a novel mechanistic insight into the modulation of chemotherapeutic efficacy and resistance. Collectively, these insights advocate for the expedited clinical translation of UDCA-DOX synergy, potentially heralding a paradigm shift in the management of NSCLC, thereby addressing a critical lacuna in contemporary oncological therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Nursing, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Helian Zhao
- Department of Nursing, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Zhoumin Shen
- Department of Nursing, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Yao Zheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Yuanyuan Jiang
- Department of Nursing, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Ying Song
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China.
| | - Yimin Cai
- Department of Nursing, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China.
| |
Collapse
|
5
|
Wang F, Qin S, Zhang J, Huang M, Liu Q, Xu P, Hu Y. Low-dose doxorubicin loaded extracellular vesicles combined Fas/FasL pathway-mediated chemo-sensitization and immunotherapy against tumor. Int J Pharm 2024; 660:124349. [PMID: 38885778 DOI: 10.1016/j.ijpharm.2024.124349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/20/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The clinical application of doxorubicin (DOX) is mainly restricted by its serious side effects, poor drug delivery efficiency, and limited immunogenic death (ICD) effect. To improve DOX-based chemotherapy and ameliorate its adverse effects, we utilized 3LL cell-derived extracellular vesicles to encapsulate DOX and sodium nitroprusside (SNP) to obtain DOX/SNP@CM, which could effectively target the tumor site by harnessing the inherent homologous targeting property of tumor cell membranes. DOX performed its role on chemotherapy, and SNP successfully respond to the intracellular GSH to continuously generate nitric oxide (NO). The in situ-produced NO upregulated the Fas expression on the tumor cell surface, thereby sensitizing the Fas/FasL pathway-mediated tumor cell apoptosis of DOX. Furthermore, NO also boosted the intratumoral infiltration of cytotoxic T cells by promoted ICD effect towards tumor cells. Importantly, the anti-tumor immunity tightly cooperated with Fas/FasL mediated tumor cell apoptosis by NO-mediated manipulation on Fas/FasL interaction, collectively making DOX/SNP@CM exert significant tumor growth inhibition with low-dose DOX. Remarkably, DOX and SNP both are widely used clinical medicines, ensuring DOX/SNP@CM a potential opportunity for future practical applications.
Collapse
Affiliation(s)
- Fei Wang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shuheng Qin
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jiejie Zhang
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210093, China
| | - Menglu Huang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qin Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210093, China.
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Nanjing University (Suzhou) High-tech Institute, Renai Road 150, Suzhou Industrial Park, Suzhou 215123, China.
| |
Collapse
|
6
|
Ye Z, Cheng P, Huang Q, Hu J, Huang L, Hu G. Immunocytes interact directly with cancer cells in the tumor microenvironment: one coin with two sides and future perspectives. Front Immunol 2024; 15:1388176. [PMID: 38840908 PMCID: PMC11150710 DOI: 10.3389/fimmu.2024.1388176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The tumor microenvironment is closely linked to the initiation, promotion, and progression of solid tumors. Among its constitutions, immunologic cells emerge as critical players, facilitating immune evasion and tumor progression. Apart from their indirect impact on anti-tumor immunity, immunocytes directly influence neoplastic cells, either bolstering or impeding tumor advancement. However, current therapeutic modalities aimed at alleviating immunosuppression from regulatory cells on effector immune cell populations may not consistently yield satisfactory results in various solid tumors, such as breast carcinoma, colorectal cancer, etc. Therefore, this review outlines and summarizes the direct, dualistic effects of immunocytes such as T cells, innate lymphoid cells, B cells, eosinophils, and tumor-associated macrophages on tumor cells within the tumor microenvironment. The review also delves into the underlying mechanisms involved and presents the outcomes of clinical trials based on these direct effects, aiming to propose innovative and efficacious therapeutic strategies for addressing solid tumors.
Collapse
Affiliation(s)
- Zhiyi Ye
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Hu
- School of Medicine, Shaoxing University, Zhejiang, China
| | - Liming Huang
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Li J, Zhou L, Jiang Y, Gao H, Maierhaba T, Gong H. Long noncoding RNA RMRP ameliorates doxorubicin-induced apoptosis by interacting with PFN1 in a P53-Dependent manner. Mol Cell Probes 2023; 72:101937. [PMID: 37820747 DOI: 10.1016/j.mcp.2023.101937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/27/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Doxorubicin (DOX) often causes acute or chronic cardiotoxicity during its application. LncRNA RMRP has been reported to be associated with several biological processes, such as cartilage-hair hypoplasia, but the relationship between RMRP and DOX-induced cardiotoxicity and chronic heart failure remains obscure. To test this hypothesis, GSE124401 and GSE149870 were processed for bioinformatics, and differentially expressed RMRP was then verified in the peripheral blood of 21 patients with heart failure compared with 7 controls. For in vitro validation, we used AC16 and HEK-293T cells. qPCR was used to detect the mRNA expression levels. The degree of apoptosis was detected by Western blot and TUNEL staining. Furthermore, the interaction between RMRP and PFN1 mRNA was verified by dual-luciferase reporter assays. In bioinformatics, RMRP showed significant downregulation, which was verified in clinical samples (p < 0.001) and DOX-treated AC16 models (p < 0.0001). Next, overexpression of RMRP could significantly alleviate DOX-induced apoptosis, and a potential downstream molecule of RMRP, PFN1, was also negatively associated with this change. RESCUE experiments further confirmed that PFN1 could be regulated by RMRP at both the RNA and protein levels, serving as a downstream mediator of RMRP's cardioprotective effects. This interaction was then confirmed to be a direct combination (p < 0.0001). Finally, we found that overexpression of RMRP could inhibit the expression of p53 and its phosphorylation level by suppressing PFN1. In summary, RMRP could exert cardioprotective effects via the PFN1/p53 axis, holding great promise for serving as a therapeutic target and potential biomarker.
Collapse
Affiliation(s)
- Juexing Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, 201508, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lei Zhou
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, 201508, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hailan Gao
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, 201508, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tuersuntuoheti Maierhaba
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, 201508, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, 201508, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Scimeca M, Rovella V, Palumbo V, Scioli MP, Bonfiglio R, Tor Centre, Melino G, Piacentini M, Frati L, Agostini M, Candi E, Mauriello A. Programmed Cell Death Pathways in Cholangiocarcinoma: Opportunities for Targeted Therapy. Cancers (Basel) 2023; 15:3638. [PMID: 37509299 PMCID: PMC10377326 DOI: 10.3390/cancers15143638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cholangiocarcinoma is a highly aggressive cancer arising from the bile ducts. The limited effectiveness of conventional therapies has prompted the search for new approaches to target this disease. Recent evidence suggests that distinct programmed cell death mechanisms, namely, apoptosis, ferroptosis, pyroptosis and necroptosis, play a critical role in the development and progression of cholangiocarcinoma. This review aims to summarize the current knowledge on the role of programmed cell death in cholangiocarcinoma and its potential implications for the development of novel therapies. Several studies have shown that the dysregulation of apoptotic signaling pathways contributes to cholangiocarcinoma tumorigenesis and resistance to treatment. Similarly, ferroptosis, pyroptosis and necroptosis, which are pro-inflammatory forms of cell death, have been implicated in promoting immune cell recruitment and activation, thus enhancing the antitumor immune response. Moreover, recent studies have suggested that targeting cell death pathways could sensitize cholangiocarcinoma cells to chemotherapy and immunotherapy. In conclusion, programmed cell death represents a relevant molecular mechanism of pathogenesis in cholangiocarcinoma, and further research is needed to fully elucidate the underlying details and possibly identify therapeutic strategies.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luigi Frati
- Institute Pasteur Italy-Cenci Bolognetti Foundation, Via Regina Elena 291, 00161 Rome, Italy
- IRCCS Neuromed S.p.A., Via Atinense 18, 86077 Pozzilli, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
9
|
Van Doren SR. MMP-7 marks severe pancreatic cancer and alters tumor cell signaling by proteolytic release of ectodomains. Biochem Soc Trans 2022; 50:839-851. [PMID: 35343563 PMCID: PMC10443904 DOI: 10.1042/bst20210640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Pancreatic cancer incurs the worst survival rate of the major cancers. High levels of the protease matrix metalloproteinase-7 (MMP-7) in circulation correlate with poor prognosis and limited survival of patients. MMP-7 is required for a key path of pancreatic tumorigenesis in mice and is present throughout tumor progression. Enhancements to chemotherapies are needed for increasing the number of pancreatic tumors that can be removed and for preventing relapses after surgery. With these ends in mind, selective inhibition of MMP-7 may be worth investigation. An anti-MMP-7 monoclonal antibody was recently shown to increase the susceptibility of several pancreatic cancer cell lines to chemotherapeutics, increase their apoptosis, and decrease their migration. MMP-7 activities are most apparent at the surfaces of innate immune, epithelial, and tumor cells. Proteolytic shedding of multiple protein ectodomains by MMP-7 from such cell surfaces influence apoptosis, proliferation, migration, and invasion. These activities warrant targeting of MMP-7 selectively in pancreatic cancer and other tumors of mucosal epithelia. Competitive and non-competitive modes of MMP-7 inhibition are discussed.
Collapse
Affiliation(s)
- Steven R. Van Doren
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
10
|
Casanova JM, Almeida JS, Reith JD, Sousa LM, Fonseca R, Freitas-Tavares P, Santos-Rosa M, Rodrigues-Santos P. Tumor-Infiltrating Lymphocytes and Cancer Markers in Osteosarcoma: Influence on Patient Survival. Cancers (Basel) 2021; 13:cancers13236075. [PMID: 34885185 PMCID: PMC8656728 DOI: 10.3390/cancers13236075] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Osteosarcoma (OST) is the most common type of high-grade primary bone tumor, which mainly affects young adults. Despite the efforts that have been made to address the importance of immune-related factors in OST, there is still a lot to understand. The purpose of the current study was to evaluate the tumor-infiltrating lymphocytes (TIL), the expression of proteins involved in tumor biology, and their impact on the clinical outcome of OST patients. Our results suggest that the presence of tumor-infiltrating CD4+ cells provides protection to patients, and that CD8+ cells have a significant impact on the patient’s overall survival (OS) and progression-free survival (PFS). In addition, a strong association of tumor-infiltrating CD4+ cells and the presence of CD44s expression in tumor samples was observed. These findings reinforce the idea that TIL and the expression of tumor markers should be taken into consideration in order to improve OST treatment and management. Abstract Osteosarcoma (OST) is the most common type of high-grade primary bone tumor, which mainly affects young adults. The current standard of care for OST combines surgical resection with chemotherapy. The clinical outcomes and the current options to treat OST patients are unsatisfactory and novel treatment strategies are needed. The crosstalk between tumor cells and immune cells is essential to the OST microenvironment. Despite the efforts that have been made to address the importance of immune-related factors in OST, there is still a lot to understand. The purpose of the current study was to evaluate the tumor-infiltrating lymphocytes (TIL), the expression of proteins involved in tumor biology, and their impact on the clinical outcome of OST patients. We studied 93 samples of OST patients using immunohistochemistry and histomorphometry. We looked for the infiltration of CD3+, CD4+, CD8+, TIA1+ and CD20+ cells and for the expression of CD44 standard (CD44s) and variant 6 (CD44v6), CD95/Fas, Fas-L, p53 and p-glycoprotein. All the parameters were analyzed for the influence on the occurrence of death and metastasis, plus patient overall survival (OS) and progression-free survival (PFS). The effect of sex, age, tumor location (distal femur or proximal tibia) and the combination with neoadjuvant chemotherapy was also assessed. Our results suggest that the presence of tumor-infiltrating CD4+ cells provides protection to OST patients, and that CD8+ cells have a significant impact on the patient’s overall survival (OS) and progression-free survival (PFS), which is more evident in male patients. In addition, a strong association between tumor-infiltrating CD4+ cells and the presence of CD44s expression in tumor samples was observed. Analysis of TIL and tumor markers related to tumor biology could be useful to stratify patients and monitor the response to therapy, as well as to assist with the development of immunotherapy strategies to improve the effects of cytotoxic TIL to eradicate the tumor cells.
Collapse
Affiliation(s)
- José Manuel Casanova
- Tumor Unit of the Locomotor Apparatus (UTAL), University Clinic of Orthopedics, Orthopedics Service, Coimbra Hospital and Universitary Centre (CHUC), 3000-075 Coimbra, Portugal; (J.M.C.); (R.F.); (P.F.-T.)
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.-S.A.); (M.S.-R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
- Department of Pathology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Jani-Sofia Almeida
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.-S.A.); (M.S.-R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
- Department of Pathology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
| | - John David Reith
- Department of Pathology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Luana Madalena Sousa
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Ruben Fonseca
- Tumor Unit of the Locomotor Apparatus (UTAL), University Clinic of Orthopedics, Orthopedics Service, Coimbra Hospital and Universitary Centre (CHUC), 3000-075 Coimbra, Portugal; (J.M.C.); (R.F.); (P.F.-T.)
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Paulo Freitas-Tavares
- Tumor Unit of the Locomotor Apparatus (UTAL), University Clinic of Orthopedics, Orthopedics Service, Coimbra Hospital and Universitary Centre (CHUC), 3000-075 Coimbra, Portugal; (J.M.C.); (R.F.); (P.F.-T.)
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Manuel Santos-Rosa
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.-S.A.); (M.S.-R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.-S.A.); (M.S.-R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-85-77-77 (ext. 24-28-44)
| |
Collapse
|
11
|
Zhu S, Li S, Yi M, Li N, Wu K. Roles of Microvesicles in Tumor Progression and Clinical Applications. Int J Nanomedicine 2021; 16:7071-7090. [PMID: 34703228 PMCID: PMC8536885 DOI: 10.2147/ijn.s325448] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Microvesicles are extracellular vesicles with diameter ranging from 100 to 1000 nm that are secreted by tumor cells or other cells in the tumor microenvironment. A growing number of studies demonstrate that tumor-derived microvesicles are involved in tumor initiation and progression, as well as drug resistance. In addition, tumor-derived microvesicles carry a variety of immunogenic molecules and inhibit tumor response to immunotherapy; therefore, they can be exploited for use in tumor vaccines. Moreover, because of their high stability, tumor-derived microvesicles extracted from body fluids can be used as biomarkers for cancer diagnosis or assessment of prognosis. Tumor-derived microvesicles can also be deployed to reverse drug resistance of tumor regenerative cells, or to deliver chemotherapeutic drugs and oncolytic adenovirus for the treatment of cancer patients. This review summarizes the general characteristics of tumor-derived microvesicles, focusing on their biological characteristics, their involvement in tumor progression, and their clinical applications.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| |
Collapse
|
12
|
Zhao T, Li W, Chen J, Qin W. Genomic variants in Fas-mediated apoptosis pathway predict a poor response to Platinum-based Chemotherapy for Chinese Gastric Cancer Patients. J Cancer 2021; 12:849-859. [PMID: 33403042 PMCID: PMC7778532 DOI: 10.7150/jca.48120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022] Open
Abstract
Platinum-based adjuvant chemotherapy is very common for gastric cancer (GC) patients, but the chemotherapy sensitivity is very heterogeneous. The genomic variants and the gene-gene interactions involved in Fas-mediated apoptosis pathway including Fas (FAS 1377 G > A and 670 A > G), FasL (FASL 844 C > T) and caspase-8 (CASP8 -652 6N ins > del or I > D), may paly vital roles in the response to platinum-based treatment. In our investigation, 662 stage II-III postoperative GC patients were enrolled between 1998 and 2006. 261 patients accepted platinum-based regimens and the remaining 401 were not. The log rank tests, Kaplan Meier plots, Pearson chi-square tests, Student t-tests and Cox regression analyses were performed. For the chemotherapy cohort, FAS 1377 G > A or FAS 670 A > G variants alone was related with inferior survival, and a greater than additive effect was identified when patients simultaneously carrying FAS 1377 GA and FAS 670 GA genotypes. But the poor response was neutralized when patients simultaneously carrying FASL 844 C > T or CASP8 -652 6N ins > del mutations. Our study suggested that FAS 1377 G > A and FAS 670 A > G variants may serve as potential biomarkers to predict the response to platinum-based adjuvant chemotherapy, and the gene-gene interactions involved in Fas-mediated apoptosis pathway may enhance or neutralize the chemosensitivity.
Collapse
Affiliation(s)
- Tingting Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 21000, China
| | - Wei Li
- Department of Gynecology, Zhenjiang Maternity and Childcare Hospital, Zhenjiang, 212000, China
| | - Jinfei Chen
- Cancer Center, Taikang Xianlin Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, 21000, China
| | - Weisong Qin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 21000, China
| |
Collapse
|
13
|
Aggarwal V, Kumar G, Aggarwal D, Yerer MB, Cumaoğlu A, Kumar M, Sak K, Mittal S, Tuli HS, Sethi G. Cancer preventive role of olives and olive oil via modulation of apoptosis and nuclear factor-kappa B activation. OLIVES AND OLIVE OIL IN HEALTH AND DISEASE PREVENTION 2021:377-388. [DOI: 10.1016/b978-0-12-819528-4.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
14
|
Oda SK, Anderson KG, Ravikumar P, Bonson P, Garcia NM, Jenkins CM, Zhuang S, Daman AW, Chiu EY, Bates BM, Greenberg PD. A Fas-4-1BB fusion protein converts a death to a pro-survival signal and enhances T cell therapy. J Exp Med 2020; 217:e20191166. [PMID: 32860705 PMCID: PMC7953733 DOI: 10.1084/jem.20191166] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 06/02/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Adoptive T cell therapy (ACT) with genetically modified T cells has shown impressive results against some hematologic cancers, but efficacy in solid tumors can be limited by restrictive tumor microenvironments (TMEs). For example, Fas ligand is commonly overexpressed in TMEs and induces apoptosis in tumor-infiltrating, Fas receptor-positive lymphocytes. We engineered immunomodulatory fusion proteins (IFPs) to enhance ACT efficacy, combining an inhibitory receptor ectodomain with a costimulatory endodomain to convert negative into positive signals. We developed a Fas-4-1BB IFP that replaces the Fas intracellular tail with costimulatory 4-1BB. Fas-4-1BB IFP-engineered murine T cells exhibited increased pro-survival signaling, proliferation, antitumor function, and altered metabolism in vitro. In vivo, Fas-4-1BB ACT eradicated leukemia and significantly improved survival in the aggressive KPC pancreatic cancer model. Fas-4-1BB IFP expression also enhanced primary human T cell function in vitro. Thus, Fas-4-1BB IFP expression is a novel strategy to improve multiple T cell functions and enhance ACT against solid tumors and hematologic malignancies.
Collapse
Affiliation(s)
- Shannon K. Oda
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Pranali Ravikumar
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Patrick Bonson
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Nicolas M. Garcia
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Cody M. Jenkins
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Summer Zhuang
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Andrew W. Daman
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Edison Y. Chiu
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Breanna M. Bates
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Philip D. Greenberg
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine/Oncology, University of Washington, Seattle, WA
| |
Collapse
|
15
|
Wang MD, Xing H, Li C, Liang L, Wu H, Xu XF, Sun LY, Wu MC, Shen F, Yang T. A novel role of Krüppel-like factor 8 as an apoptosis repressor in hepatocellular carcinoma. Cancer Cell Int 2020; 20:422. [PMID: 32874135 PMCID: PMC7456055 DOI: 10.1186/s12935-020-01513-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/21/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Krüppel-like factor 8 (KLF8), a cancer-promoting factor that regulates critical gene transcription and cellular cancer-related events, has been implicated in tumor development and progression. However, the functional role of KLF8 in the pathogenesis of hepatocellular carcinoma (HCC) remains largely unknown. METHODS The gene expression patterns and genome-wide regulatory profiles of HCC cells after KLF8 knockout were analyzed by using RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) of histone H3 lysine 27 acetylation (H3K27ac) combined with bioinformatics analysis. Transcription factor-binding motifs that recognized by KLF8 were evaluated by motif analysis. For the predicted target genes, transcriptional changes were examined by ChIP, and loss of function experiments were conducted by siRNA transfection. RESULTS KLF8 functioned as a transcription repressor in HCC and mainly regulated apoptotic-related genes directly. A total of 1,816 differentially expressed genes after KLF8 knockout were identified and significantly corresponded to global changes in H3K27ac status. Furthermore, two predicted target genes, high-mobility group AT-hook 2 (HMGA2) and matrix metalloproteinase 7 (MMP7), were identified as important participants in KLF8-mediated anti-apoptotic effect in HCC. Knockout of KLF8 enhanced cell apoptosis process and caused increase in the associated H3K27ac, whereas suppression HMGA2 or MMP7 attenuated these biological effects. CONCLUSIONS Our work suggests a novel role and mechanism for KLF8 in the regulation of cell apoptosis in HCC and facilitates the discovery of potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Hao Xing
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Lei Liang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Han Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Xin-Fei Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Li-Yang Sun
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
- Department of Clinical Medicine, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Meng-Chao Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), No. 225, Changhai Road, Shanghai, 200438 China
| |
Collapse
|
16
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Potes Y, Shabeeb D, Musa AE. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci 2019; 228:228-241. [DOI: 10.1016/j.lfs.2019.05.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
|
17
|
Oocyte Aging: The Role of Cellular and Environmental Factors and Impact on Female Fertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1247:109-123. [PMID: 31802446 DOI: 10.1007/5584_2019_456] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Female aging is one of the most important factors that impacts human reproduction. With aging, there is a natural decline in female fertility. The decrease in fertility is slow and steady in women aged 30-35 years; however, this decline is accelerated after the age of 35 due to decreases in the ovarian reserve and oocyte quality. Human oocyte aging is affected by different environmental factors, such as dietary habits and lifestyle. The ovarian microenvironment contributes to oocyte aging and longevity. The immediate oocyte microenvironment consists of the surrounding cells. Crosstalk between the oocyte and microenvironment is mediated by direct contact with surrounding cells, the extracellular matrix, and signalling molecules, including hormones, growth factors, and metabolic products. In this review, we highlight the different microenvironmental factors that accelerate human oocyte aging and decrease oocyte function. The ovarian microenvironment and the stress that is induced by environmental pollutants and a poor diet, along with other factors, impact oocyte quality and function and contribute to accelerated oocyte aging and diseases of infertility.
Collapse
|
18
|
López-Verdín S, Lavalle-Carrasco J, Carreón-Burciaga RG, Serafín-Higuera N, Molina-Frechero N, González-González R, Bologna-Molina R. Molecular Markers of Anticancer Drug Resistance in Head and Neck Squamous Cell Carcinoma: A Literature Review. Cancers (Basel) 2018; 10:376. [PMID: 30308958 PMCID: PMC6210289 DOI: 10.3390/cancers10100376] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
This manuscript provides an update to the literature on molecules with roles in tumor resistance therapy in head and neck squamous cell carcinoma (HNSCC). Although significant improvements have been made in the treatment for head and neck squamous cell carcinoma, physicians face yet another challenge-that of preserving oral functions, which involves the use of multidisciplinary therapies, such as multiple chemotherapies (CT) and radiotherapy (RT). Designing personalized therapeutic options requires the study of genes involved in drug resistance. This review provides an overview of the molecules that have been linked to resistance to chemotherapy in HNSCC, including the family of ATP-binding cassette transporters (ABCs), nucleotide excision repair/base excision repair (NER/BER) enzymatic complexes (which act on nonspecific DNA lesions generated by gamma and ultraviolet radiation by cross-linking and forming intra/interchain chemical adducts), cisplatin (a chemotherapeutic agent that causes DNA damage and induces apoptosis, which is a paradox because its effectiveness is based on the integrity of the genes involved in apoptotic signaling pathways), and cetuximab, including a discussion of the genes involved in the cell cycle and the proliferation of possible markers that confer resistance to cetuximab.
Collapse
Affiliation(s)
- Sandra López-Verdín
- Research Institute of Dentistry, Health Science Center, Universidad de Guadalajara, Guadalajara 4430, JAL, Mexico.
| | - Jesús Lavalle-Carrasco
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, DGO, Mexico.
| | - Ramón G Carreón-Burciaga
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, DGO, Mexico.
| | - Nicolás Serafín-Higuera
- Molecular Biology Department, School of Dentistry, Universidad Autónoma de Baja California, Mexicali 21040, Mexico.
| | - Nelly Molina-Frechero
- Department of Health Care, Xochimilco Unit, Universidad Autónoma Metropolitana (UAM) Xochimilco, Mexico City 04960, Mexico.
| | - Rogelio González-González
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, DGO, Mexico.
| | - Ronell Bologna-Molina
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, DGO, Mexico.
- Molecular Pathology Area, School of Dentistry, Universidad de la República, Montevideo 11600, Uruguay.
| |
Collapse
|
19
|
Ruwali M. Role of Genetic Variations in Determining Treatment Outcome in Head and Neck Cancer. EUROPEAN MEDICAL JOURNAL 2017. [DOI: 10.33590/emj/10313625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Worldwide, head and neck squamous cell carcinoma (HNSCC) is responsible for >550,000 diagnoses and 380,000 deaths annually. It originates in the upper aerodigestive tract and has a multifactorial origin involving both genetic and lifestyle risk factors. The clinical management of HNSCC involves surgery, radiotherapy, and chemotherapy. Several studies point to the role of genetic variations in predicting drug efficacy and toxicity. Cancer pharmacogenomics has fast emerged as a new and promising field for the early identification of genetic markers that can predict drug response or toxicity, with the number of studies of genetic polymorphisms as prognostic factors of HNSCC treatment outcomes growing. The number of studies evaluating the association of candidate polymorphisms in drug-metabolising Phase I and II enzymes with treatment outcome far exceed the studies involving other candidate genes, such as those involved in drug metabolism, DNA repair, and cell cycle regulation. This review focusses on the relevance of genetic variations in genes, where the corresponding gene products play an important role in drug metabolism (TPMT, DPD), DNA repair (X-ray repair cross complementing 1), cell cycle (tumour protein P53), and carcinogenesis (matrix metalloproteinase 3 and 7), thereby contributing to the treatment outcome for HNSCC. This could greatly help clinicians in identifying genetic markers useful for the selection of optimal drugs, dose, and treatment duration on an individual basis, resulting in improved drug efficacy and decreased toxicity. However, further studies are needed in well characterised and larger HNSCC populations with proper validation of pharmacogenetic markers in experimental settings before application in clinical routine diagnostics.
Collapse
Affiliation(s)
- Munindra Ruwali
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon (Manesar), India
| |
Collapse
|
20
|
Simstein R, Burow M, Parker A, Weldon C, Beckman B. Apoptosis, Chemoresistance, and Breast Cancer: Insights From the MCF-7 Cell Model System. Exp Biol Med (Maywood) 2016; 228:995-1003. [PMID: 14530507 DOI: 10.1177/153537020322800903] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The MCF-7 cell line was derived from a patient with metastatic breast cancer in 1970. Since then it has become a prominent model system for the study of estrogen receptor-positive breast cancer. With this model as a focus, this review summarizes important studies addressing tumor necrosis factor-α as a prototypical apoptosis-inducing cytokine in MCF-7 cells. Both survival and death receptor signaling pathways are discussed in terms of their role in chemotherapy-induced apoptosis as well as in chemoresistance. Novel therapeutic approaches to the treatment of breast cancer are proposed utilizing knowledge of these signaling pathways as targets. Specifically, ceramide metabolism is proposed as a novel target for chemosensitivity, perhaps combined with selective inhibitors of Bcl-2 or PI3K/Akt/nuclear factor-κB. Suggested areas of future research include translational studies manipulating candidate survival and death signaling pathways.
Collapse
Affiliation(s)
- Rebecca Simstein
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
21
|
The relationship between apoptosis, chromatin configuration, histone modification and competence of oocytes: A study using the mouse ovary-holding stress model. Sci Rep 2016; 6:28347. [PMID: 27321442 PMCID: PMC4913248 DOI: 10.1038/srep28347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
The epigenetic factors causing competence differences between SN (surrounded nucleolus) and NSN (non-surrounded nucleolus) oocytes, the significance for the increased histone acetylation and methylation in SN oocytes, and whether chromatin configuration or histone modification determines oocyte competence, are unclear. This study has addressed these issues by using the ovary-holding (OH) stress models where oocyte SN configuration was uncoupled from histone modifications and developmental potential. Prepubertal mouse ovaries containing high percentages of NSN oocytes were preserved at 37 or 39 °C for 1 or 2 h before examination for oocyte chromatin configuration, developmental competence, histone modification and apoptosis. Whereas 1-h OH at 37 °C caused a moderate apoptosis with increased oocyte competence, improved histone modification and a normal NSN-to-SN transition, harsher OH conditions induced a severe apoptosis with decreased oocyte competence, impaired histone modification and a pseudo (premature) NSN-to-SN transition. Observations on Fas/FasL expression and using the gld (generalized lymphoproliferative disorder) mice harboring FasL mutations indicated that OH triggered oocyte apoptosis with activation of the Fas signaling. It was concluded that OH stress caused oocyte apoptosis with activation of the Fas/FasL system and that oocyte competence was more closely correlated with histone modification than with chromatin configuration.
Collapse
|
22
|
Martin-Broto J, Pousa AL, de Las Peñas R, García Del Muro X, Gutierrez A, Martinez-Trufero J, Cruz J, Alvarez R, Cubedo R, Redondo A, Maurel J, Carrasco JA, López-Martin JA, Sala Á, Meana JA, Ramos R, Martinez-Serra J, Lopez-Guerrero JA, Sevilla I, Balaña C, Vaz Á, De Juan A, Alemany R, Poveda A. Randomized Phase II Study of Trabectedin and Doxorubicin Compared With Doxorubicin Alone as First-Line Treatment in Patients With Advanced Soft Tissue Sarcomas: A Spanish Group for Research on Sarcoma Study. J Clin Oncol 2016; 34:2294-302. [PMID: 27185843 DOI: 10.1200/jco.2015.65.3329] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Doxorubicin and trabectedin are considered active drugs in soft tissue sarcoma (STS). The combination of both drugs was hypothesized to be advantageous and safe on the basis of preclinical evidence and a previous phase I trial, respectively. The aim of this study was to compare the clinical outcome of trabectedin plus doxorubicin with doxorubicin as first-line treatment of advanced STS patients. PATIENTS AND METHODS In this open-label randomized phase II trial, the main end point was progression-free survival (PFS). Trabectedin 1.1 mg/m(2) in a 3-hour infusion plus doxorubicin 60 mg/m(2) as the experimental arm and doxorubicin 75 mg/m(2) as the control arm were administered for up to six cycles. Translational research was planned to correlate the expression of apoptotic and DNA repair genes with clinical outcome. RESULTS In 115 randomly assigned patients, the median PFS was 5.5 months in the control arm and 5.7 months in the experimental arm (hazard ratio, 1.16; 95% CI, 0.79 to 1.71; P = .45) in the intent-to-treat analysis. The trial was stopped for futility after the interim analysis, because the results in the experimental arm showed the risk reduction for the main end point to be < 9.64%. The proportion of patients with grade 3 or 4 thrombocytopenia, asthenia, and liver toxicity was significantly higher in the experimental arm. FAS and p53 were shown to be prognostic factors for PFS (7.0 months if FAS+ and p53-; 3.4 months if FAS+/p53+ or FAS-/p53-; and 0.7 months if FAS- and p53+; P < .001) and for overall survival. CONCLUSION Trabectedin plus doxorubicin did not show superiority over doxorubicin alone as first-line treatment of advanced STS. The prognostic role of apoptotic key genes, FAS and p53, was shown to be robust enough to continue this research line.
Collapse
Affiliation(s)
- Javier Martin-Broto
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain.
| | - Antonio López Pousa
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Ramón de Las Peñas
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Xavier García Del Muro
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Antonio Gutierrez
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Javier Martinez-Trufero
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Josefina Cruz
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Rosa Alvarez
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Ricardo Cubedo
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Andrés Redondo
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Joan Maurel
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Juan A Carrasco
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - José A López-Martin
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Ángeles Sala
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - José Andrés Meana
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Rafael Ramos
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Jordi Martinez-Serra
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - José A Lopez-Guerrero
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Isabel Sevilla
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Carmen Balaña
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Ángeles Vaz
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Ana De Juan
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Regina Alemany
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| | - Andrés Poveda
- Javier Martin-Broto, Virgen del Rocio Hospital and Biomedicine Institute, Sevilla; Antonio López Pousa, Sant Pau Hospital; Xavier García del Muro, Institut Català d'Oncologia; and Joan Maurel, CIBERehd, IDIBAPS, Hospital Clinic, Barcelona; Ramón de las Peñas, Provincial Hospital, Castellón; Antonio Gutierrez, Rafael Ramos, and Jordi Martinez-Serra, Son Espases Hospital; and Regina Alemany, Balearic Islands University, Palma de Mallorca; Javier Martinez-Trufero, Miguel Servet Hospital, Zaragoza; Josefina Cruz, University Hospital Canarias, Tenerife; Rosa Alvarez, Gregorio Marañón Hospital; Ricardo Cubedo, Puerta de Hierro Hospital; Andrés Redondo, La Paz University Hospital; José A. López-Martin, 12 de Octubre Hospital; and Ángeles Vaz, Ramón y Cajal Hospital, Madrid; Juan A. Carrasco, Xeral Cies Hospital, Vigo; Ángeles Sala and Ana De Juan, Basurto Hospital, Bilbao; José Andrés Meana, University General Hospital, Alicante; José A. Lopez-Guerrero and Andrés Poveda, Valencian Oncologic Institute, Valencia; Isabel Sevilla, Virgen de la Victoria Hospital, Málaga; and Carmen Balaña, Insitut Català d'Oncologia, Badalona, Spain
| |
Collapse
|
23
|
Cumulus cells accelerate oocyte aging by releasing soluble Fas ligand in mice. Sci Rep 2015; 5:8683. [PMID: 25731893 PMCID: PMC4346792 DOI: 10.1038/srep08683] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/29/2015] [Indexed: 11/08/2022] Open
Abstract
Although previous studies have suggested that cumulus cells (CCs) accelerate oocyte aging by secreting soluble and heat-sensitive paracrine factors, the factors involved are not well characterized. Because Fas-mediated apoptosis represents a major pathway in induction of apoptosis in various cells, we proposed that CCs facilitate oocyte aging by releasing soluble Fas ligand (sFasL). In this study, we reported that when the aging of freshly ovulated mouse oocytes were studied in vitro, both the apoptotic rates of CCs and the amount of CCs produced sFasL increased significantly with the culture time. We found that oocytes expressed stable levels of Fas receptors up to 24 h of in vitro aging. Moreover, culture of cumulus-denuded oocytes in CCs-conditioned CZB medium (CM), in CZB supplemented with recombinant sFasL, or in CM containing sFasL neutralizing antibodies all showed that sFasL impaired the developmental potential of the oocytes whereas facilitating activation and fragmentation of aging oocytes. Furthermore, CCs from the FasL-defective gld mice did not accelerate oocyte aging due to the lack of functional FasL. In conclusion, we propose that CCs surrounding aging oocytes released sFasL in an apoptosis-related manner, and the released sFasL accelerated oocyte aging by binding to Fas receptors.
Collapse
|
24
|
Berkova Z, Wang S, Ao X, Wise JF, Braun FK, Rezaeian AH, Sehgal L, Goldenberg DM, Samaniego F. CD74 interferes with the expression of fas receptor on the surface of lymphoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:80. [PMID: 25304249 PMCID: PMC4210479 DOI: 10.1186/s13046-014-0080-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/22/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Resistance to Fas-mediated apoptosis limits the efficacy of currently available chemotherapy regimens. We identified CD74, which is known to be overexpressed in hematological malignancies, as one of the factors interfering with Fas-mediated apoptosis. METHODS CD74 expression was suppressed in human B-lymphoma cell lines, BJAB and Raji, by either transduction with lentivirus particles or transfection with episomal vector, both encoding CD74-specific shRNAs or non-target shRNA. Effect of CD74 expression on Fas signaling was evaluated by comparing survival of mice hydrodynamically transfected with vector encoding full-length CD74 or empty vector. Sensitivity of cells with suppressed CD74 expression to FasL, edelfosine, doxorubicin, and a humanized CD74-specific antibody, milatuzumab, was evaluated by flow cytometry and compared to control cells. Fas signaling in response to FasL stimulation and the expression of Fas signaling components were evaluated by Western blot. Surface expression of Fas was detected by flow cytometry. RESULTS We determined that cells with suppressed CD74 are more sensitive to FasL-induced apoptosis and Fas signaling-dependent chemotherapies, edelfosine and doxorubicin, than control CD74-expressing cells. On the other hand, expression of full-length CD74 in livers protected the mice from a lethal challenge with agonistic anti-Fas antibody Jo2. A detailed analysis of Fas signaling in cells lacking CD74 and control cells revealed increased cleavage/activation of pro-caspase-8 and corresponding enhancement of caspase-3 activation in the absence of CD74, suggesting that CD74 affects the immediate early steps in Fas signaling at the plasma membrane. Cells with suppressed CD74 expression showed increased staining of Fas receptor on their surface. Pre-treatment with milatuzumab sensitized BJAB cells to Fas-mediated apoptosis. CONCLUSION We anticipate that specific targeting of the CD74 on the cell surface will sensitize CD74-expressing cancer cells to Fas-mediated apoptosis, and thus will increase effectiveness of chemotherapy regimens for hematological malignancies.
Collapse
Affiliation(s)
- Zuzana Berkova
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Shu Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Xue Ao
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Jillian F Wise
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Frank K Braun
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Abdol H Rezaeian
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Lalit Sehgal
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - David M Goldenberg
- Immunomedics, Inc., Morris Plains, NJ, 07950, USA. .,Center for Molecular Medicine and Immunology, Garden State Cancer Center, Morris Plains, NJ, 07950, USA.
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Sehgal L, Mathur R, Braun FK, Wise JF, Berkova Z, Neelapu S, Kwak LW, Samaniego F. FAS-antisense 1 lncRNA and production of soluble versus membrane Fas in B-cell lymphoma. Leukemia 2014; 28:2376-87. [PMID: 24811343 DOI: 10.1038/leu.2014.126] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/10/2014] [Accepted: 03/13/2014] [Indexed: 12/15/2022]
Abstract
Impaired Fas-mediated apoptosis is associated with poor clinical outcomes and cancer chemoresistance. Soluble Fas receptor (sFas), produced by skipping of exon 6, inhibits apoptosis by sequestering Fas ligand. Serum sFas is associated with poor prognosis of non-Hodgkin's lymphomas. We found that the alternative splicing of Fas in lymphomas is tightly regulated by a long-noncoding RNA corresponding to an antisense transcript of Fas (FAS-AS1). Levels of FAS-AS1 correlate inversely with production of sFas, and FAS-AS1 binding to the RBM5 inhibits RBM5-mediated exon 6 skipping. EZH2, often mutated or overexpressed in lymphomas, hyper-methylates the FAS-AS1 promoter and represses the FAS-AS1 expression. EZH2-mediated repression of FAS-AS1 promoter can be released by DZNeP (3-Deazaneplanocin A) or overcome by ectopic expression of FAS-AS1, both of which increase levels of FAS-AS1 and correspondingly decrease expression of sFas. Treatment with Bruton's tyrosine kinase inhibitor or EZH2 knockdown decreases the levels of EZH2, RBM5 and sFas, thereby enhancing Fas-mediated apoptosis. This is the first report showing functional regulation of Fas repression by its antisense RNA. Our results reveal new therapeutic targets in lymphomas and provide a rationale for the use of EZH2 inhibitors or ibrutinib in combination with chemotherapeutic agents that recruit Fas for effective cell killing.
Collapse
Affiliation(s)
- L Sehgal
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Mathur
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - F K Braun
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J F Wise
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Z Berkova
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L W Kwak
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - F Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Participation of the Fas/FasL signaling pathway and the lung microenvironment in the development of osteosarcoma lung metastases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:203-17. [PMID: 24924176 DOI: 10.1007/978-3-319-04843-7_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The lungs are the most common site for the metastatic spread of osteosarcoma. Success in using chemotherapy to improve overall survival has reached a plateau. Understanding the biologic properties that permit osteosarcoma cells to grow in the lungs may allow the identification of novel therapeutic approaches-the goal being to alter the tumor cells' expression of cell surface proteins so that there is no longer compatibility with the metastatic niche. We have demonstrated that the Fas Ligand positive (FasL(+)) lung microenvironment eliminates Fas(+) osteosarcoma cells that metastasize to the lungs. Indeed, osteosarcoma lung metastases from patients are Fas(-), similar to what we found in several different mouse models. The Fas(+) cells are cleared from the lungs through apoptosis induced by the Fas signaling pathway following interaction of Fas on the tumor cell surface with the lung FasL. Blocking the Fas signaling pathway interferes with this process, allowing the Fas(+) cells to grow in the lungs. Our investigations show that Fas expression in osteosarcoma cells is regulated epigenetically by the micro-RNA miR-20a, encoded by the miR-17-92 cluster. Our studies support the feasibility of finding agents that can re-induce Fas expression as a novel therapeutic approach to treat osteosarcoma patients with lung metastases. We have identified two such agents, the histone deacetylase inhibitor entinostat and the chemotherapeutic agent gemcitabine (GCB). Aerosol GCB and oral entinostat induce the upregulation of Fas and the regression of established osteosarcoma lung metastases. Aerosol GCB was not effective in the FasL-deficient gld mouse confirming that the lung microenvironment was central to the success of this therapy. Our studies establish the critical role of the lung microenvironment in the metastatic process of osteosarcoma to the lungs and suggest an alternative focus for therapy, that is, incorporating the lung microenvironment as part of the treatment strategy against established osteosarcoma disease in the lungs.
Collapse
|
27
|
Ahn BJ, Pollack IF, Okada H. Immune-checkpoint blockade and active immunotherapy for glioma. Cancers (Basel) 2013; 5:1379-412. [PMID: 24202450 PMCID: PMC3875944 DOI: 10.3390/cancers5041379] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 02/01/2023] Open
Abstract
Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.
Collapse
Affiliation(s)
- Brian J. Ahn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; E-Mail:
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; E-Mail:
| | - Ian F. Pollack
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; E-Mail:
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hideho Okada
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; E-Mail:
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; E-Mail:
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-412-623-3111; Fax: +1-412-623-1415
| |
Collapse
|
28
|
Wise JF, Berkova Z, Mathur R, Zhu H, Braun FK, Tao RH, Sabichi AL, Ao X, Maeng H, Samaniego F. Nucleolin inhibits Fas ligand binding and suppresses Fas-mediated apoptosis in vivo via a surface nucleolin-Fas complex. Blood 2013; 121:4729-39. [PMID: 23599269 PMCID: PMC3674671 DOI: 10.1182/blood-2012-12-471094] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/10/2013] [Indexed: 12/16/2022] Open
Abstract
Resistance to Fas-mediated apoptosis is associated with poor cancer outcomes and chemoresistance. To elucidate potential mechanisms of defective Fas signaling, we screened primary lymphoma cell extracts for Fas-associated proteins that would have the potential to regulate Fas signaling. An activation-resistant Fas complex selectively included nucleolin. We confirmed the presence of nucleolin-Fas complexes in B-cell lymphoma cells and primary tissues, and the absence of such complexes in B-lymphocytes from healthy donors. RNA-binding domain 4 and the glycine/arginine-rich domain of nucleolin were essential for its association with Fas. Nucleolin colocalized with Fas on the surface of B-cell lymphoma cells. Nucleolin knockdown sensitized BJAB cells to Fas ligand (FasL)-induced and Fas agonistic antibody-induced apoptosis through enhanced binding, suggesting that nucleolin blocks the FasL-Fas interaction. Mice transfected with nucleolin were protected from the lethal effects of agonistic anti-mouse Fas antibody (Jo2) and had lower rates of hepatocyte apoptosis, compared with vector and a non-Fas-binding mutant of nucleolin. Our results show that cell surface nucleolin binds Fas, inhibits ligand binding, and thus prevents induction of Fas-mediated apoptosis in B-cell lymphomas and may serve as a new therapeutic target.
Collapse
Affiliation(s)
- Jillian F Wise
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sun M, Zhou T, Jonasch E, Jope RS. DDX3 regulates DNA damage-induced apoptosis and p53 stabilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1489-97. [PMID: 23470959 DOI: 10.1016/j.bbamcr.2013.02.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/04/2013] [Accepted: 02/21/2013] [Indexed: 12/19/2022]
Abstract
The DEAD box protein family member DDX3 was previously identified as an inhibitor of death receptor-mediated extrinsic apoptotic signaling. However, there had been no studies of the role of DDX3 in regulating the other major type of apoptosis, intrinsic apoptotic signaling, which was examined here. Intrinsic apoptosis was induced in MCF-7 cells by treatment with staurosporine, a general kinase inhibitor, thapsigargin, which induces endoplasmic reticulum (ER) stress, and camptothecin, which causes DNA damage. Each of these treatments caused time-dependent activation of caspase-7, the predominant executioner caspase in these cells. Depletion of DDX3 using shRNA did not alter apoptotic responses to staurosporine or thapsigargin. However, caspase-7 activation induced by camptothecin was regulated by DDX3 in a manner dependent on the functional status of p53. Depletion of DDX3 abrogated camptothecin-induced caspase-7 activation in MCF-7 cells expressing functional wild-type p53, but oppositely potentiated camptothecin-mediated caspase activation in cells expressing mutant or non-functional p53, which was accompanied by increased activation of the extrinsic apoptotic signaling initiator caspase-8. In MCF-7 cells, depletion of DDX3 reduced by more than 50% camptothecin-induced p53 accumulation, and this effect was blocked by inhibition of the proteasome with MG132, indicating that DDX3 regulates p53 not at expression level but rather its stabilization after DNA damage. Co-immunoprecipitation experiments demonstrated that DDX3 associates with p53, and overexpression of DDX3 was sufficient to double the accumulation of p53 in the nucleus after DNA damage. Thus, DDX3 associates with p53, increases p53 accumulation, and positively regulates camptothecin-induced apoptotic signaling in cells expressing functional wild-type p53, whereas in cells expressing mutant or non-functional p53 DDX3 inhibits activation of the extrinsic apoptotic pathway to reduce caspase activation. These results demonstrate that DDX3 not only regulates extrinsic apoptotic signaling, as previously reported, but also selectively regulates intrinsic apoptotic signaling following DNA damage.
Collapse
Affiliation(s)
- Mianen Sun
- Department of Genitourinary Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | | | | | | |
Collapse
|
30
|
Involvement of C-jun NH2
-terminal kinase and apoptosis induced factor in apoptosis induced by deglycosylated bleomycin in laryngeal carcinoma cells. Cell Biol Int 2013; 33:964-70. [DOI: 10.1016/j.cellbi.2009.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 04/28/2009] [Accepted: 06/03/2009] [Indexed: 11/22/2022]
|
31
|
Liu L, Wu J, Zhong R, Wu C, Zou L, Yang B, Chen W, Zhu B, Duan S, Yu D, Tan W, Nie S, Lin D, Miao X. Multi-loci analysis reveals the importance of genetic variations in sensitivity of platinum-based chemotherapy in non-small-cell lung cancer. Mol Carcinog 2012; 52:923-31. [PMID: 22821704 DOI: 10.1002/mc.21942] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/02/2012] [Accepted: 06/26/2012] [Indexed: 01/12/2023]
Abstract
Polymorphisms in DNA repair and apoptotic pathways may cause variations in chemosensitivity of non-small-cell lung cancer (NSCLC) through complex gene-gene and gene-environment interactions. A total of 200 advanced NSCLC patients who received platinum-based chemotherapies were recruited. The short-term clinical outcomes were classified as chemosensitive group, including complete remission (CR) and partial remission (PR), and chemoresistant group, namely stable disease (SD) and progression disease (PD) at the end of treatment. We applied multifactor dimensionality reduction (MDR), classification and regression tree (CART) and traditional logistic regression (LR) to explore high-order gene-gene and gene-environment interactions among 11 functional single nucleotide polymorphisms (SNPs), smoking status, cancer stages and treatment regimens in the response to chemotherapy. Multi-loci analyses consistently indicated that interactions among XRCC1 Arg194Trp, XPC PAT, FAS G-1377A, and FASL T-844C were associated with sensitivity to platinum-based chemotherapy. In MDR analysis, the four-factor model yielded the highest test accuracy of 0.72 (permutation P = 0.001). In CART analysis, these four SNPs were the determinant nodes of the growth of regression tree. Patients carrying XRCC1 Arg194Arg, FAS-1377GG, and FASL-844T allele displayed completely no response to platinum, whereas patients with XRCC1 194Trp allele and XPC PAT +/+ had 68.8% response rate to platinum. In LR analysis, a significant gene-dosage effect was detected along with the increasing number of favorable genotypes of these four polymorphisms (P trend = 0.00002). Multi-loci analysis reveals the importance of genetic variations involved in DNA repair and apoptotic pathways in sensitivity of platinum-based chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Li Liu
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Goren A, Gilert A, Meyron-Holtz E, Melamed D, Machluf M. Alginate encapsulated cells secreting Fas-ligand reduce lymphoma carcinogenicity. Cancer Sci 2012; 103:116-24. [PMID: 22017300 PMCID: PMC11164141 DOI: 10.1111/j.1349-7006.2011.02124.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Fas ligand (CD95L/APO-1) is considered as a potent anti-tumor agent due to its mediated cell death properties. We have designed a polymeric microencapsulation system, which encapsulates soluble FasL secreting cells. The encapsulated cells continuously release soluble FasL (sFasL) at the tumor site, while the device protects the encapsulated cells from the host immune system. The potential and efficacy of this system are demonstrated in vitro and in vivo for tumor inhibition. Polymeric microcapsules composed of Alginate Poly-l-lysine were optimized to encapsulate L5 secreting sFasL cells. The expression and anti-tumor activities of the sFasL were confirmed in vitro and tumor inhibition was studied in vivo in SCID mice bearing subcutaneous lymphoma tumors. In vitro, sFasL secreted by the encapsulated L5-sFasL cells was biologically active, inhibited proliferation and induced apoptotic cell death in Fas sensitive tumor cells. Mice injected with encapsulated L5-sFasL cells on the day of tumor injection or 10 days after tumor injection showed significant reduction in tumor volume, of 87% and 95%, respectively. Our findings show that encapsulated cells expressing sFasL can be used as a local device and efficiently suppress malignant Fas sensitive tumors with no side effects.
Collapse
Affiliation(s)
- Amit Goren
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
33
|
Matrix metalloproteinases and soluble Fas/FasL system as novel regulators of apoptosis in children and young adults on chronic dialysis. Apoptosis 2011; 16:653-9. [PMID: 21516345 PMCID: PMC3098372 DOI: 10.1007/s10495-011-0604-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The system of membrane receptor Fas and its ligand FasL compose one of the main pathways triggering apoptosis. However, the role of their soluble forms has not been clarified yet. Although sFasL can be converted from the membrane-bound form by matrix metalloproteinases (MMPs), there are no data on relations between sFas/sFasL, MMPs and their tissue inhibitors (TIMPs) in patients on chronic dialysis—neither children nor adults. The aim of our study was to evaluate serum concentrations of sFas, sFasL, and their potential regulators (MMP-2, MMP-7, MMP-9, TIMP-1, TIMP-2), in children and young adults chronically dialyzed. Twenty-two children on automated peritoneal dialysis (APD), 19 patients on hemodialysis (HD) and 30 controls were examined. Serum concentrations of sFas, sFasL, MMPs and TIMPs were assessed by ELISA. Median values of sFas, sFasL, sFas/sFasL ratio, MMP-2, MMP-7, MMP-9, TIMP-1 and TIMP-2 were significantly elevated in all dialyzed patients vs. controls, the highest values being observed in subjects on HD. A single HD session caused the decrease in values of all parameters to the levels below those seen in children on APD. Regression analysis revealed that MMP-7 and TIMP-1 were the best predictors of sFas and sFasL concentrations. Children and young adults on chronic dialysis are prone to sFas/sFasL system dysfunction, more pronounced in patients on hemodialysis. The correlations between sFas/sFasL and examined enzymes suggest that MMPs and TIMPs take part in the regulation of cell death in the pediatric population on chronic dialysis, triggering both anti- (sFas) and pro-apoptotic (sFasL) mechanisms.
Collapse
|
34
|
Minematsu T, Huang L, Ibuki A, Nakagami G, Akase T, Sugama J, Nagase T, Yoshimura K, Sanada H. Altered expression of matrix metalloproteinases and their tissue inhibitors in matured rat adipocytes in vitro. Biol Res Nurs 2011; 14:242-9. [PMID: 21669944 DOI: 10.1177/1099800411410870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Obesity is recognized as a risk factor for delayed cutaneous wound healing. The authors hypothesized that the secretion of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) from subcutaneous adipose tissue correlates with disorder of the healing process in obese subjects. Findings from previous studies on the expression of MMPs and TIMPs in obese adipose tissue are inconsistent. Since these conflicting results could be due to the effect of several intrinsic factors, the authors conducted a simple in vitro experiment to clarify the change in profile of MMPs and TIMPs in excessively matured adipocytes. The authors cultured the induced adipocytes under conditions of high or low glucose and with or without insulin supplementation. Oil red O staining and its dye extraction assay revealed excessive lipid accumulation in high glucose and insulin-supplemented adipocytes. Additionally, there was altered expression of adipokines, similar to the change in adipose tissue in obese subjects. Under these conditions, the expression/activity of MMP8 was promoted and the expression of MMP3 and TIMP3 was inhibited. Further studies to determine the effect of other obesity-related factors, such as insulin resistance, on MMPs and TIMPs are required.
Collapse
Affiliation(s)
- Takeo Minematsu
- Department of Advanced Skin Care, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tumour-mediated TRAIL-Receptor expression indicates effective apoptotic depletion of infiltrating CD8+ immune cells in clinical colorectal cancer. Eur J Cancer 2010; 46:2314-23. [PMID: 20580220 DOI: 10.1016/j.ejca.2010.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 05/19/2010] [Accepted: 05/24/2010] [Indexed: 12/15/2022]
Abstract
Expression of apoptosis-related proteins on tumour cells has been shown in several experimental models to be an efficient mechanism for a counterattack against host anti-tumour immune responses in solid tumours. Here we provide a clinical evidence for such a tumour immune escape mechanism by demonstrating tumour to T cell-directed death receptor signalling (TRAIL/TRAIL-Receptor (TRAIL-R)) in colorectal cancer (CRC). In a series of patients with CRC and completed 5-year follow up, we investigated apoptosis and expression levels of apoptosis-related proteins. Gene and protein profiles in the tumours demonstrated intratumoural upregulated gene expression for Fas, Fas-L, TRAIL, TRAIL-R and TNF-alpha (RT-qPCR). Levels of terminaldeoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick-end labelling (TUNEL)-positive events were positively correlated with TRAIL-R1-expression on tumour infiltrating immune cells. Among the immune cells, preferentially CD8+ T cells were found to express TRAIL-R1 while serial immunostaining in the same patient tumours showed abundant apoptotic (TUNEL-positive) immune cells. In conclusion, our results in tumour samples from CRC patients suggest TRAIL-R1-mediated apoptotic depletion of infiltrating immune cells (CD8+) in response to TRAIL expression by the tumour itself. This supports the notion of an efficient escape from tumour immune response and thus evasion from the attack of activated CD8+ T cells. These findings may enhance our understanding of tumour progression in CRC and might be helpful for the development of TRAIL and its death receptor-based therapy.
Collapse
|
36
|
Huang G, Koshkina NV, Kleinerman ES. Fas expression in metastatic osteosarcoma cells is not regulated by CpG island methylation. Oncol Res 2010; 18:31-9. [PMID: 19911702 DOI: 10.3727/096504009789745638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fas expression in osteosarcoma (OS) cells is inversely correlated with the metastatic potential of OS to the lung. The purpose of this study was to determine whether loss of Fas expression in metastatic OS cells is secondary to DNA methylation of CpG islands in the Fas gene. SAOS-2 cells have high levels of Fas expression and do not form lung metastases when injected intravenously, whereas LM7 cells have low levels of Fas expression and do produce lung metastases. Using the endonucleases HpaII and MspI and a polymerase chain reaction-based methylation assay, we found that all four CpG sites in the CCGG sequence in the Fas promoter region were unmethylated in both SAOS-2 and LM7 cells. We performed detailed analysis of the 28 and 46 CpG sites in the Fas promoter and first intron region, respectively, using bisulfite-modified genomic DNA sequencing. More than 99.8% of the examined CpG sites were unmethylated and there was no difference of CpG methylation in SAOS-2 and LM7 cells as well as LM7 metastatic lung tumor tissue samples. Treatment of LM7 cells and another OS cell line, DLM8 with low levels of Fas expression, with demethylation agent, 5-azadeoxycitidine (AzadC), did not change the Fas expression and did not increase sensitivity of AzadC-treated cells to Fas ligand (FasL) treatment. In conclusion, our data indicate that decreased Fas expression in OS cells is not secondary to DNA methylation of CpG islands in the Fas gene and that Fas expression cannot be increased by using demethylation agents.
Collapse
Affiliation(s)
- Gangxiong Huang
- Division of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
37
|
Tirado OM, MacCarthy CM, Fatima N, Villar J, Mateo-Lozano S, Notario V. Caveolin-1 promotes resistance to chemotherapy-induced apoptosis in Ewing's sarcoma cells by modulating PKCalpha phosphorylation. Int J Cancer 2010; 126:426-36. [PMID: 19609943 DOI: 10.1002/ijc.24754] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Caveolin-1 (CAV1) has been implicated in the regulation of several signaling pathways and in oncogenesis. Previously, we identified CAV1 as a key determinant of the oncogenic phenotype and tumorigenic activity of cells from tumors of the Ewing's Sarcoma Family (ESFT). However, the possible CAV1 involvement in the chemotherapy resistance commonly presented by an ESFT subset has not been established to date. This report shows that CAV1 expression determines the sensitivity of ESFT cells to clinically relevant chemotherapeutic agents. Analyses of endogenous CAV1 levels in several ESFT cells and ectopic CAV1 expression into ESFT cells expressing low endogenous CAV1 showed that the higher the CAV1 levels, the greater their resistance to drug treatment. Moreover, results from antisense- and shRNA-mediated gene expression knockdown and protein re-expression experiments demonstrated that CAV1 increases the resistance of ESFT cells to doxorubicin (Dox)- and cisplatin (Cp)-induced apoptosis by a mechanism involving the activating phosphorylation of PKCalpha. CAV1 knockdown in ESFT cells led to decreased phospho(Thr(638))-PKCalpha levels and a concomitant sensitization to apoptosis, which were reversed by CAV1 re-expression. These results were recapitulated by PKCalpha knockdown and re-expression in ESFT cells in which CAV1 was previously knocked down, thus demonstrating that phospho(Thr(638))-PKCalpha acts downstream of CAV1 to determine the sensitivity of ESFT cells to chemotherapeutic drugs. These data, along with the finding that CAV1 and phospho(Thr(638))-PKCalpha are co-expressed in approximately 45% of ESFT specimens tested, imply that targeting CAV1 and/or PKCalpha may allow the development of new molecular therapeutic strategies to improve the treatment outcome for patients with ESFT.
Collapse
Affiliation(s)
- Oscar M Tirado
- Institut d'Investigació Biomédica de Bellvitge, Centre d'Oncología Molecular, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Martín R, Ibeas E, Carvalho-Tavares J, Hernández M, Ruiz-Gutierrez V, Nieto ML. Natural triterpenic diols promote apoptosis in astrocytoma cells through ROS-mediated mitochondrial depolarization and JNK activation. PLoS One 2009; 4:e5975. [PMID: 19543395 PMCID: PMC2695006 DOI: 10.1371/journal.pone.0005975] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/22/2009] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Triterpene alcohols and acids are multifunctional compounds widely distributed throughout the plant kingdom that exhibit a variety of beneficial health properties, being synthetic analogs of oleanolic acid under clinical evaluation as anti-tumoral therapeutic agents. However, the antineoplastic activity of two natural occurring triterpenoid alcohols extracted from olive oil, erythrodiol (an intermediate from oleanolic acid), and its isomer, uvaol, has barely been reported, particularly on brain cancer cells. Astrocytomas are among the most common and aggressive type of primary malignant tumors in the neurological system lacking effective treatments, and in this study, we addressed the effect of these two triterpenic diols on the human 1321N1 astrocytoma cell line. PRINCIPAL FINDINGS Erythrodiol and uvaol effectively affected cell proliferation, as well as cell cycle phases and induced 1321N1 cell death. Both triterpenes successfully modulated the apoptotic response, promoting nuclear condensation and fragmentation. They caused retraction and rounding of cultured cells, which lost adherence from their supports, while F-actin and vimentin filaments disappeared as an organized cytoplasmic network. At molecular level, changes in the expression of surface proteins associated with adhesion or death processes were also observed. Moreover, triterpene exposure resulted in the production of reactive oxygen species (ROS) with loss of mitochondrial transmembrane potential, and correlated with the activation of c-Jun N-terminal kinases (JNK). The presence of catalase reversed the triterpenic diols-induced mitochondrial depolarization, JNK activation, and apoptotic death, indicating the critical role of ROS in the action of these compounds. CONCLUSIONS Overall, we provide a significant insight into the anticarcinogenic action of erythrodiol and uvaol that may have a potential in prevention and treatment of brain tumors and other cancers.
Collapse
Affiliation(s)
- Rubén Martín
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Korpi JT, Åström P, Lehtonen N, Tjäderhane L, Kallio-Pulkkinen S, Siponen M, Sorsa T, Pirilä E, Salo T. Healing of extraction sockets in collagenase-2 (matrix metalloproteinase-8)-deficient mice. Eur J Oral Sci 2009; 117:248-54. [DOI: 10.1111/j.1600-0722.2009.00620.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
40
|
Jantas D, Lason W. Protective effect of memantine against Doxorubicin toxicity in primary neuronal cell cultures: influence a development stage. Neurotox Res 2009; 15:24-37. [PMID: 19384585 DOI: 10.1007/s12640-009-9002-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/10/2008] [Accepted: 09/10/2008] [Indexed: 01/09/2023]
Abstract
One of the serious unwanted effects of the anthracycline anticancer drug doxorubicin (Dox, adriamycin) is its neurotoxicity, which can be evoked by the activation of extracellular (FAS/CD95/Apo-1) pathway of apoptosis in cells. Since memantine, a clinically used N-methyl-D: -aspartic acid (NMDA) receptor antagonist, shows antiapoptotic action in several models of neuronal cell damage, in this study we evaluated the effect of memantine on the cell death induced by Dox in primary neuronal cell cultures. First, we investigated the effect of different concentrations of Dox (0.1-5 microM) on mouse neocortical, hippocampal, striatal, and cerebellar neurons on 7- and 12-day in vitro (DIV). The 7 DIV neuronal cell cultures were more prone to Dox-induced cell death than 12 DIV cultures. The cerebellar neurons were the most resistant to Dox-induced apoptosis in comparison to neuronal cell cultures derived from the forebrain. Memantine (0.1-2 microM) attenuated the Dox-evoked lactate dehydrogenase release in 7 DIV neuronal cell cultures with no significant effect on 12 DIV cultures. The ameliorating effect of memantine on Dox-mediated cell death was also confirmed by an increase in cell viability measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. There was no effect of memantine on Dox-induced caspase-8 and -3 activity and Dox-evoked decrease in mitochondrial potential, although attenuation in the number of cells with apoptotic DNA fragmentation was observed. We also showed that the antiapoptotic effect of memantine in our model was NMDA receptor-independent, since two other antagonists of this receptor, MK-801 and AP-5, did not attenuate Dox-induced cell death. Furthermore, memantine did not influence the Dox-evoked increase in cytoplasmic Ca2+ level. The obtained data suggest developmental regulation of both, the Dox-mediated neurotoxicity and efficacy of memantine in alleviating the Dox-induced cell damage in neuronal cell cultures. Moreover, this neuroprotective effect of memantine seems not to be dependent on caspase-3 activity and on the antagonistic action on NMDA receptor.
Collapse
Affiliation(s)
- D Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland,
| | | |
Collapse
|
41
|
Daigeler A, Klein-Hitpass L, Chromik MA, Müller O, Hauser J, Homann HH, Steinau HU, Lehnhardt M. Heterogeneous in vitro effects of doxorubicin on gene expression in primary human liposarcoma cultures. BMC Cancer 2008; 8:313. [PMID: 18959781 PMCID: PMC2585096 DOI: 10.1186/1471-2407-8-313] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 10/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Doxorubicin is considered one of the most potent established chemotherapeutics in the treatment of liposarcoma; however, the response rates usually below 30%, are still disappointing. This study was performed to identify gene expression changes in liposarcoma after doxorubicin treatment. METHODS Cells of 19 primary human liposarcoma were harvested intraoperatively and brought into cell culture. Cells were incubated with doxorubicin for 24 h, RNA was isolated and differential gene expression was analysed by the microarray technique. RESULTS A variety of genes involved in apoptosis were up and down regulated in different samples revealing a heterogeneous expression pattern of the 19 primary tumor cell cultures in response to doxorubicin treatment. However, more than 50% of the samples showed up-regulation of pro-apoptotic genes such as TRAIL Receptor2, CDKN1A, GADD45A, FAS, CD40, PAWR, NFKBIA, IER3, PSEN1, RIPK2, and CD44. The anti-apoptotic genes TNFAIP3, PEA15, Bcl2A1, NGFB, and BIRC3 were also up-regulated. The pro-apoptotic CD14, TIA1, and ITGB2 were down-regulated in more than 50% of the tumor cultures after treatment with doxorubicin, as was the antiapoptotic YWHAH. CONCLUSION Despite a correlation of the number of differentially regulated genes to the tumor grading and to a lesser extent histological subtype, the expression patterns varied strongly; however, especially among high grade tumors the responses of selected apoptosis genes were similar. The predescribed low clinical response rates of low grade liposarcoma to doxorubicin correspond to our results with only little changes on gene expression level and also divergent findings concerning the up- and down-regulation of single genes in the different sarcoma samples.
Collapse
Affiliation(s)
- Adrien Daigeler
- Department of Plastic Surgery, Burn Center, Hand surgery, Sarcoma Reference Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hopkins J, Cescon DW, Tse D, Bradbury P, Xu W, Ma C, Wheatley-Price P, Waldron J, Goldstein D, Meyer F, Bairati I, Liu G. Genetic polymorphisms and head and neck cancer outcomes: a review. Cancer Epidemiol Biomarkers Prev 2008; 17:490-9. [PMID: 18349267 DOI: 10.1158/1055-9965.epi-07-2714] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Head and neck cancer (HNC) patients have variable prognoses even within the same clinical stage and while receiving similar treatments. The number of studies of genetic polymorphisms as prognostic factors of HNC outcomes is growing. Candidate polymorphisms have been evaluated in DNA repair, cell cycle, xenobiotic metabolism, and growth factor pathways. Polymorphisms of XRCC1, FGFR, and CCND1 have been consistently associated with HNC survival in at least two studies, whereas most of the other polymorphisms have either conflicting data or were from single studies. Heterogeneity and lack of description of patient populations and lack of accounting for multiple comparisons were common problems in a significant proportion of studies. Despite a large number of exploratory studies, large replication studies in well-characterized HNC populations are warranted.
Collapse
Affiliation(s)
- Jessica Hopkins
- Community Medicine Residency Program and Department of Family Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Alla V, Kashyap A, Gregor S, Theobald M, Heid H, Galle PR, Strand D, Strand S. Human leukocyte elastase counteracts matrix metalloproteinase-7 induced apoptosis resistance of tumor cells. Cancer Lett 2008; 268:331-9. [PMID: 18485588 DOI: 10.1016/j.canlet.2008.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 04/07/2008] [Accepted: 04/07/2008] [Indexed: 01/20/2023]
Abstract
Matrix metalloproteinase-7 (MMP-7/Matrilysin) is a component of the tumor microenvironment associated with malignant progression. Its expression in tumors protects tumor cells from CD95-mediated apoptosis and the cytotoxic activity of tumor specific CD8(+) T cells. In the present study, we show that human leukocyte elastase (HLE) secreted by polymorphonuclear leukocytes cleaves MMP-7 resulting in loss of enzymatic activity. The anti-apoptotic effect of MMP-7 is reduced in the presence of HLE for CD95-, doxorubicin- and CTL-mediated apoptosis. Our data indicates that HLE may be a natural inactivator of MMP-7 which can counteract MMP-7-induced apoptosis resistance.
Collapse
Affiliation(s)
- Vijay Alla
- First Department of Internal Medicine, Obere Zahlbacher Str 63, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Jantas D, Pytel M, Mozrzymas JW, Leskiewicz M, Regulska M, Antkiewicz-Michaluk L, Lason W. The attenuating effect of memantine on staurosporine-, salsolinol- and doxorubicin-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurochem Int 2007; 52:864-77. [PMID: 17996985 DOI: 10.1016/j.neuint.2007.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/01/2007] [Accepted: 10/02/2007] [Indexed: 12/31/2022]
Abstract
Memantine, a clinically used N-methyl-D-aspartate (NMDA)-receptor antagonist, has been shown to prevent apoptotic neuronal damage connected with the over-activity of NMDA receptors. In the present study, we examined the effect of memantine on staurosporine-, salsolinol- and doxorubicin-induced apoptosis in the SH-SY5Y cell line which does not possess functional NMDA receptors. Electrophysiological recordings and toxicity studies showed no response to NMDA-evoked currents in this cell line, irrespective of the stage of its neuronal differentiation. Memantine (0.1-2 microM) attenuated staurosporine-induced apoptosis as evidenced by reversal of the changes in mitochondrial membrane potential (DeltaPsi(m)) and decreased caspase-3 activity, lactate dehydrogenase (LDH) release and DNA fragmentation. Wortmannin (10 nM) and LY 294002 (10 microM) (inhibitors of phosphatidylinositol-3-kinase, PI3-K) reversed the inhibitory effect of memantine on the staurosporine-induced LDH release, suggesting that the PI3-K/Akt prosurvival pathway is a possible target for antiapoptotic action of memantine. Memantine at low micromolar concentrations also attenuated salsolinol- and doxorubicin-induced LDH release and DNA fragmentation, but only in the case of salsolinol was this effect accompanied by a decrease in caspase-3 activity. The present data indicate that memantine attenuates the toxic effects of various proapoptotic agents and the cytoprotective effect of memantine does not seem to be connected with its action on NMDA receptor but rather with its influence on intracellular pathways engaged in cellular survival/apoptotic processes.
Collapse
Affiliation(s)
- D Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
45
|
Cauwe B, Van den Steen PE, Opdenakker G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 2007; 42:113-85. [PMID: 17562450 DOI: 10.1080/10409230701340019] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinases (MMPs) constitute a family of more than 20 endopeptidases. Identification of specific matrix and non-matrix components as MMP substrates showed that, aside from their initial role as extracellular matrix modifiers, MMPs play significant roles in highly complex processes such as the regulation of cell behavior, cell-cell communication, and tumor progression. Thanks to the comprehensive examination of the expanded MMP action radius, the initial view of proteases acting in the soluble phase has evolved into a kaleidoscope of proteolytic reactions connected to the cell surface. Important classes of cell surface molecules include adhesion molecules, mediators of apoptosis, receptors, chemokines, cytokines, growth factors, proteases, intercellular junction proteins, and structural molecules. Proteolysis of cell surface proteins by MMPs may have extremely diverse biological implications, ranging from maturation and activation, to inactivation or degradation of substrates. In this way, modification of membrane-associated proteins by MMPs is crucial for communication between cells and the extracellular milieu, and determines cell fate and the integrity of tissues. Hence, insights into the processing of cell surface proteins by MMPs and the concomitant effects on physiological processes as well as on disease onset and evolution, leads the way to innovative therapeutic approaches for cancer, as well as degenerative and inflammatory diseases.
Collapse
Affiliation(s)
- Bénédicte Cauwe
- Rega Institute for Medical Research, Laboratory of Immunobiology, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
46
|
Chhipa RR, Bhat MK. Bystander killing of breast cancer MCF-7 cells by MDA-MB-231 cells exposed to 5-fluorouracil is mediated via Fas. J Cell Biochem 2007; 101:68-79. [PMID: 17340621 DOI: 10.1002/jcb.21153] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The major drawback with cancer therapy is the development of resistant cells within tumors due to their heterogeneous nature and due to inadequate drug delivery during chemotherapy. Therefore, the propagation of injury ("bystander effect" (BE)) from directly damaged cells to other cells may have great implications in cancer chemotherapy. The general advantage of the bystander cell killing phenomenon is the large therapeutic index that can be achieved. Experiments suggest that this phenomenon is detected in radiation therapy as well as in gene therapy in conjunction with chemotherapy. In the present study, we developed an original in vitro model dedicated to the exploration of bystander cytotoxicity induced during breast carcinoma chemotherapy. In brief, we investigated this perpetuation of injury on untreated bystander MCF-7 breast cancer cells which were coplated with 5-fluorouracil (5-FU)-treated MDA-MB-231 breast cancer cells. To achieve this goal, a specific in vitro coculture model which involved mixing of aggressive MDA-MB-231 breast cancer cells with enhanced green fluorescent protein (EGFP) expressing stable clone of non-metastatic MCF-7 breast cancer cells (MCF-EGFP), was used. A bystander killing effect was observed in MCF-EGFP cells cocultured with MDA-MB-231 cells pretreated with 5-FU. The striking decrease in MCF-EGFP cells, as detected by assaying for total GFP intensity, is mediated by activation of Fas/FasL system. The implication of Fas in MCF-EGFP cell death was confirmed by using antagonistic anti-FasL antibody that reverses bystander cell death by blocking FasL on MDA-MB-231 cells. In addition, inhibition of CD95/Fas receptor on the cell surface of MCF-EGFP cells by treatment with Pifithrin-alpha, a p53 specific transactivation inhibitor, partially abrogated the sensitivity of bystander MCF-EGFP cells. Our data, therefore, demonstrates that the Fas/FasL system could be considered as a new determinant for chemotherapy-induced bystander cell death in breast cancers.
Collapse
Affiliation(s)
- Rishi Raj Chhipa
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | | |
Collapse
|
47
|
Mitsiades CS, Poulaki V, Fanourakis G, Sozopoulos E, McMillin D, Wen Z, Voutsinas G, Tseleni-Balafouta S, Mitsiades N. Fas signaling in thyroid carcinomas is diverted from apoptosis to proliferation. Clin Cancer Res 2006; 12:3705-12. [PMID: 16778096 DOI: 10.1158/1078-0432.ccr-05-2493] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The death receptor Fas is present in thyroid carcinomas, yet fails to trigger apoptosis. Interestingly, Fas has been reported to be actually overexpressed in papillary thyroid carcinomas, suggesting that it may confer a survival advantage. EXPERIMENTAL DESIGN We investigated the expression and activation status of Fas pathway mediators in thyroid carcinoma cell lines and tumor specimens. RESULTS All cell lines tested express Fas-associated death domain, procaspase-8, procaspase-9, and procaspase-3; resistance to Fas-mediated apoptosis could not be attributed to lack of any of these apoptosis mediators. Moreover, Fas death domain mutations were not found in our study. The proteasome inhibitors MG132 and PS-341 (bortezomib, Velcade), which lead to accumulation of the nuclear factor kappaB (NF-kappaB) inhibitor IkappaB, did not sensitize SW579 cells to Fas-mediated apoptosis, suggesting that resistance to Fas-mediated apoptosis is not due to proteasome or NF-kappaB activity. Cross-linking of Fas in vitro induced recruitment of Fas-associated death domain-like interleukin-1beta-converting enzyme inhibitory protein (FLIP) instead of procaspase-8. Inhibition of FLIP expression with a FLIP antisense oligonucleotide resulted in significant sensitization to Fas-mediated apoptosis. Fas cross-linking promoted BrdUrd incorporation; activated the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase, NF-kappaB, and activator protein-1 pathways in thyroid carcinoma cells in vitro; and protected cells from tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. We also found that good prognosis papillary thyroid carcinoma specimens exhibited higher immunoreactivity for cleaved (activated) caspase-8 than poor prognosis tumors. CONCLUSIONS In thyroid carcinomas, the proteolytic cleavage and activation of caspase-8 depends on the balance between expression levels for procaspase-8 and FLIP and correlates with favorable clinical prognosis. Fas may actually stimulate proliferation and confer a survival advantage to thyroid cancer cells.
Collapse
Affiliation(s)
- Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Room M555, Mayer Building, 44 Binney Street, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Castellano R, Vire B, Pion M, Quivy V, Olive D, Hirsch I, Van Lint C, Collette Y. Active transcription of the human FASL/CD95L/TNFSF6 promoter region in T lymphocytes involves chromatin remodeling: role of DNA methylation and protein acetylation suggest distinct mechanisms of transcriptional repression. J Biol Chem 2006; 281:14719-28. [PMID: 16595663 DOI: 10.1074/jbc.m602373200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fas ligand (FasL/CD95L/TNFSF6), a member of the tumor necrosis factor family, initiates apoptosis in lymphoid and nonlymphoid tissues by binding to its receptor Fas (CD95/TNFRSF6). Although the transcriptional control of TNFSF6 gene expression is subjected to intense study, the role of its chromatin organization and accessibility to the transcriptional machinery is not known. Here, we determined the chromatin organization of TNFSF6 gene 5' regulatory regions. Using the indirect end-labeling technique, a unique region named HSS1 and encompassing nucleotides -189 to +185 according to the transcriptional start site, was identified throughout a 20-kilobase nucleosomal DNA domain surrounding the promoter. The HSS1 region displayed hypersensitivity to in vivo DNase I digestion in TNFSF6-expressing cells only, including upon T cell activation. Hypersensitivity to micrococcal nuclease digestion and to specific restriction enzyme digestion suggested the precise positioning of two nucleosomes across the transcription start site and minimal promoter region, likely interfering with TNFSF6 active transcription in T lymphocytes. Indeed, HSS1 hypersensitivity to nuclease digestion strictly correlated with TNFSF6 transcription, including in primary and leukemia T cells. HSS1 chromatin remodeling preceded detectable TNFSF6 mRNA accumulation and was blocked by cycloheximide that also prevented TNFSF6 transcription. However, DNA methylation levels of the TNFSF6 HSS1 region did not correlate with transcriptional activation. Induction of global protein acetylation by treatment with histone deacetylase inhibitors was not accompanied by HSS1 chromatin remodeling and/or TNFSF6 transcription. We conclude that chromatin remodeling is a primary event in the activation of TNFSF6 expression in primary and leukemia T cells and that mechanisms independent of protein deacetylation and of DNA methylation of the TNFSF6 promoter region are involved in the repression of TNFSF6 gene expression.
Collapse
Affiliation(s)
- Rémy Castellano
- INSERM UMR599, Centre de Recherche en Cancérologie de Marseille, Université de la Méditerranée, 27 Boulevard Lei Roure, 13009 Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Li Y, Jin X, Kang S, Wang Y, Du H, Zhang J, Guo W, Wang N, Fang S. Polymorphisms in the promoter regions of the matrix metalloproteinases-1, -3, -7, and -9 and the risk of epithelial ovarian cancer in China. Gynecol Oncol 2006; 101:92-6. [PMID: 16278009 DOI: 10.1016/j.ygyno.2005.09.058] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 09/01/2005] [Accepted: 09/27/2005] [Indexed: 11/22/2022]
Abstract
PURPOSE To investigate the association of single nucleotide polymorphisms (SNP) in the promoter region of the matrix metalloproteinases-1 -1607bp1G/2G, matrix metalloproteinases-3 -1171bp5A/6A, matrix metalloproteinases-7 A-181G and matrix metalloproteinases-9 C-1562T with susceptibility to ovarian cancer in a population of North China. EXPERIMENTAL DESIGN We analyzed four different functional promoter polymorphisms in the respective genes by polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) in a sample of patients with epithelium ovarian cancer and control women, all from North China. RESULTS No significant difference was detected between the patient and control groups in genotype and allelotype distribution of MMP-1, MMP-3, MMP-9 of the polymorphisms studied. However, the genotype and allelotype of the MMP-7 distribution in ovarian cancer patients were significantly different from that in healthy controls. The frequency of the -181G allele of MMP-7 in patients was significantly higher than that in healthy controls women (8.2% vs. 2.8%, P = 0.002). Compared to the A/A genotype, the genotypes with the -181G allele (A/G + G/G) significantly increased susceptibility to ovarian cancer, with adjusted odds ratio [OR] = 3.53 95% confidence interval [CI] [1.58 to 7.89]. CONCLUSIONS The study suggested that a possible association between the MMP-7 A/G polymorphism with susceptibility to epithelium ovarian cancer, but there is no support for an association of the selected MMP-1 1G/2G, MMP-3 5A/6A, and MMP-9 C/T polymorphisms with the risk for ovarian cancer.
Collapse
Affiliation(s)
- Yan Li
- Hebei Cancer Institute, Hebei Medical University, Jiankanglu 12, Shijiazhuang 050011, Hebei Province, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu P, Mao H, Hou P. Synergistic antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand combined with cisplatin in ovarian carcinoma cell lines in vitro and in vivo. Int J Gynecol Cancer 2006; 16:538-48. [PMID: 16681723 DOI: 10.1111/j.1525-1438.2006.00507.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to exert selectively cytotoxic activity against many tumor cells but not normal cells. In this study, we evaluated the antitumor activity of TRAIL and cisplatin (CDDP) both separately and combined in the human ovarian cancer cell lines. In vitro study showed that TRAIL elicited significant cell apoptosis of cell lines 3AO, SKOV3, and OVCAR3 in a dose- and time-dependent manner (P < 0.05), while normal ovarian epithelial cells were resistant; this toxicity-free effect may be the result of upregulation of TRAIL receptors DcR1 and DcR2. Combined TRAIL and CDDP therapy produced more profound cell killing in 3AO cells than each alone (P < 0.05), and CDDP could upregulate the expression of both death and decoy TRAIL receptors. To further evaluate the apoptosis-inducing effects of TRAIL and the combination therapy, the abdominally and subcutaneously spread tumors in nude mice via inoculation of 3AO cells were established, and treatment of TRAIL resulted in a dose- and time-dependent inhibition of tumor growth while slight damage was observed in normal tissues. Furthermore, combined TRAIL and CDDP therapy had a synergistic effect in the regression of established ovarian cancer xenografts than TRAIL treatment alone (P < 0.05). We also examined the apoptosis-related gene expression in the transplantation tumors after TRAIL treatment, and the data suggested that the intracellular mechanism of TRAIL may be associated with downregulation of Bcl-2 and upregulation of CD95 and Apo2.7.
Collapse
Affiliation(s)
- P Liu
- Department of Obstetrics and Gynecology, QiLu Hospital of ShanDong University, Jinan, ShanDong, China
| | | | | |
Collapse
|