1
|
Revealing the macromolecular targets of complex natural products. Nat Chem 2014; 6:1072-8. [DOI: 10.1038/nchem.2095] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/23/2014] [Indexed: 01/01/2023]
|
2
|
Evans J, Ko Y, Mata W, Saquib M, Eldridge J, Cohen-Gadol A, Leaver HA, Wang S, Rizzo MT. Arachidonic acid induces brain endothelial cell apoptosis via p38-MAPK and intracellular calcium signaling. Microvasc Res 2014; 98:145-58. [PMID: 24802256 DOI: 10.1016/j.mvr.2014.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 01/19/2023]
Abstract
Arachidonic acid (AA), a bioactive fatty acid whose levels increase during neuroinflammation, contributes to cerebral vascular damage and dysfunction. However, the mode of injury and underlying signaling mechanisms remain unknown. Challenge of primary human brain endothelial cells (HBECs) with AA activated a stress response resulting in caspase-3 activation, poly(ADP-ribose) polymerase cleavage, and disruption of monolayer integrity. AA also induced loss of mitochondrial membrane potential and cytochrome c release consistent with activation of intrinsic apoptosis. HBEC stimulation with AA resulted in sustained p38-MAPK activation and subsequent phosphorylation of mitogen-activated protein kinase activated protein-2 (MAPKAP-2) kinase and heat shock protein-27 (Hsp27). Conversely, other unsaturated and saturated fatty acids had no effect. Pharmacological and RNA interference-mediated p38α or p38β suppression abrogated AA signaling to caspase-3 and Hsp27, suggesting involvement of both p38 isoforms in AA-induced HBEC apoptosis. Hsp27 silencing also blocked caspase-3 activation. AA stimulated intracellular calcium release, which was attenuated by inositol 1,4,5-trisphosphate (IP3) receptor antagonists. Blockade of intracellular calcium release decreased caspase-3 activation, but had no effect on AA-induced p38-MAPK activation. However, inhibition of p38-MAPK or blockade of intracellular calcium mobilization abrogated AA-induced cytochrome c release. AA-induced caspase-3 activation was abrogated by pharmacological inhibition of lipooxygenases. These findings support a previously unrecognized signaling cooperation between p38-MAPK/MAPKAP-2/Hsp27 and intracellular calcium release in AA-induced HBEC apoptosis and suggest its relevance to neurological disorders associated with vascular inflammation.
Collapse
Affiliation(s)
- Justin Evans
- Signal Transduction Laboratory, Methodist Research Institute, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - YooSeung Ko
- Signal Transduction Laboratory, Methodist Research Institute, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wilmer Mata
- Signal Transduction Laboratory, Methodist Research Institute, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Muhammad Saquib
- Signal Transduction Laboratory, Methodist Research Institute, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joel Eldridge
- Signal Transduction Laboratory, Methodist Research Institute, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aaron Cohen-Gadol
- Goodman Campbell Brain and Spine, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - H Anne Leaver
- Division of Clinical Neuroscience, Edinburgh University, Edinburgh, UK
| | - Shukun Wang
- Signal Transduction Laboratory, Methodist Research Institute, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maria Teresa Rizzo
- Signal Transduction Laboratory, Methodist Research Institute, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Li Q, Wang H, Ye S, Xiao S, Xie Y, Liu X, Wang J. Induction of apoptosis and inhibition of invasion in choriocarcinoma JEG-3 cells by α-calendic acid and β-calendic acid. Prostaglandins Leukot Essent Fatty Acids 2013; 89:367-76. [PMID: 24035100 DOI: 10.1016/j.plefa.2013.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/20/2013] [Accepted: 06/23/2013] [Indexed: 01/22/2023]
Abstract
Alfa-calendic acid and β-calendic acid, geometric and positional isomers of linolenic acid were previously shown to possess potent anticancer properties. In this study, we found that α-calendic acid and β-calendic acid could induce apoptosis and suppress invasion of human choriocarcinoma JEG-3 cells in vitro. Treatment with α-calendic acid and β-calendic acid significantly increased oxidative stress in human choriocarcinoma JEG-3 cells detected by the level of reactive oxygen species (ROS), lipid peroxidation production malondialdehyde (MDA), glutathione (GSH) and the effects of antioxidants NAC and α-tocopherol. Furthermore, oxidative stress activated the phosphorylation of p38MAPK. SB203580, a selective p38MAPK inhibitor, blocked the apoptosis induced by α-calendic acid and β-calendic acid by upregulating Bcl-2/Bax ratio and inhibition of the activation of Caspase-3 and Caspase-9. SB20350 also partially abrogated the cell invasion effects of α-calendic acid and β-calendic acid. These results suggested that α-calendic acid and β-calendic acid induced apoptosis and inhibited invasion in JEG-3 cells by activation of oxidative stress pathways and subsequent activation of P38MAPK.
Collapse
Affiliation(s)
- Qian Li
- Liaoning Key Laboratory of Food Biological Technology, School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Gan District, Dalian 116034, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Parente R, Trifirò E, Cuozzo F, Valia S, Cirone M, Di Renzo L. Cyclooxygenase-2 is induced by p38 MAPK and promotes cell survival. Oncol Rep 2013; 29:1999-2004. [PMID: 23446663 DOI: 10.3892/or.2013.2308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/16/2013] [Indexed: 11/06/2022] Open
Abstract
The Na+ ionophore monensin affects cellular pH and, depending on its concentration, causes the survival or death of tumor cells. In the present study, we elucidated the survival pathway activated in U937 cells, a human lymphoma-derived cell line. These cells treated with monensin at a concentration of 5 µM were growth-arrested in G1, activated p38 mitogen-activated protein kinase (MAPK) and showed an increased expression of cyclooxygenase-2 (COX-2). The latter two molecular events were linked, as pharmacological inhibition of the MAPK did not allow COX-2 increased expression. Furthermore, we showed that p38 and COX-2 keep monensin-stressed U937 cells alive, as pharmacological inhibition of each enzyme caused cell death.
Collapse
Affiliation(s)
- Rosanna Parente
- Department of Experimental Medicine, University of Rome La Sapienza, I-00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Davidson J, Rotondo D, Rizzo MT, Leaver HA. Therapeutic implications of disorders of cell death signalling: membranes, micro-environment, and eicosanoid and docosanoid metabolism. Br J Pharmacol 2012; 166:1193-210. [PMID: 22364602 DOI: 10.1111/j.1476-5381.2012.01900.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disruptions of cell death signalling occur in pathological processes, such as cancer and degenerative disease. Increased knowledge of cell death signalling has opened new areas of therapeutic research, and identifying key mediators of cell death has become increasingly important. Early triggering events in cell death may provide potential therapeutic targets, whereas agents affecting later signals may be more palliative in nature. A group of primary mediators are derivatives of the highly unsaturated fatty acids (HUFAs), particularly oxygenated metabolites such as prostaglandins. HUFAs, esterified in cell membranes, act as critical signalling molecules in many pathological processes. Currently, agents affecting HUFA metabolism are widely prescribed in diseases involving disordered cell death signalling. However, partly due to rapid metabolism, their role in cell death signalling pathways is poorly characterized. Recently, HUFA-derived mediators, the resolvins/protectins and endocannabinoids, have added opportunities to target selective signals and pathways. This review will focus on the control of cell death by HUFA, eicosanoid (C20 fatty acid metabolites) and docosanoid (C22 metabolites), HUFA-derived lipid mediators, signalling elements in the micro-environment and their potential therapeutic applications. Further therapeutic approaches will involve cell and molecular biology, the multiple hit theory of disease progression and analysis of system plasticity. Advances in the cell biology of eicosanoid and docosanoid metabolism, together with structure/function analysis of HUFA-derived mediators, will be useful in developing therapeutic agents in pathologies characterized by alterations in cell death signalling.
Collapse
Affiliation(s)
- J Davidson
- SIPBS, Strathclyde University, Glasgow, UK
| | | | | | | |
Collapse
|
6
|
Glioma cell death: cell-cell interactions and signalling networks. Mol Neurobiol 2010; 42:89-96. [PMID: 20443079 DOI: 10.1007/s12035-010-8135-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/05/2010] [Indexed: 01/03/2023]
Abstract
The prognosis for patients with malignant gliomas is poor, but improvements may emerge from a better understanding of the pathophysiology of glioma signalling. Recent therapeutic developments have implicated lipid signalling in glioma cell death. Stress signalling in glioma cell death involves mitochondria and endoplasmic reticulum. Lipid mediators also signal via extrinsic pathways in glioma cell proliferation, migration and interaction with endothelial and microglial cells. Glioma cell death and tumour regression have been reported using polyunsaturated fatty acids in animal models, human ex vivo explants, glioma cell preparations and in clinical case reports involving intratumoral infusion. Cell death signalling was associated with generation of reactive oxygen intermediates and mitochondrial and other signalling pathways. In this review, evidence for mitochondrial responses to stress signals, including polyunsaturated fatty acids, peroxidizing agents and calcium is presented. Additionally, evidence for interaction of glioma cells with primary brain endothelial cells is described, modulating human glioma peroxidative signalling. Glioma responses to potential therapeutic agents should be analysed in systems reflecting tumour connectivity and CNS structural and functional integrity. Future insights may also be derived from studies of signalling in glioma-derived tumour stem cells.
Collapse
|
7
|
Cardoso BA, Gírio A, Henriques C, Martins LR, Santos C, Silva A, Barata JT. Aberrant signaling in T-cell acute lymphoblastic leukemia: biological and therapeutic implications. ACTA ACUST UNITED AC 2008; 41:344-50. [PMID: 18488097 DOI: 10.1590/s0100-879x2008005000016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/31/2008] [Indexed: 02/14/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous disease with respect to phenotype, gene expression profile and activation of particular intracellular signaling pathways. Despite very significant improvements, current therapeutic regimens still fail to cure a portion of the patients and frequently implicate the use of aggressive protocols with long-term side effects. In this review, we focused on how deregulation of critical signaling pathways, in particular Notch, PI3K/Akt, MAPK, Jak/STAT and TGF-beta, may contribute to T-ALL. Identifying the alterations that affect intracellular pathways that regulate cell cycle and apoptosis is essential to understanding the biology of this malignancy, to define more effective markers for the correct stratification of patients into appropriate therapeutic regimens and to identify novel targets for the development of specific, less detrimental therapies for T-ALL.
Collapse
Affiliation(s)
- B A Cardoso
- Unidade de Biologia do Cancro, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
8
|
Payner T, Leaver HA, Knapp B, Whittle IR, Trifan OC, Miller S, Rizzo MT. Microsomal prostaglandin E synthase-1 regulates human glioma cell growth via prostaglandin E2–dependent activation of type II protein kinase A. Mol Cancer Ther 2006; 5:1817-26. [PMID: 16891468 DOI: 10.1158/1535-7163.mct-05-0548] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dysregulation of enzymes involved in prostaglandin biosynthesis plays a critical role in influencing the biological behavior and clinical outcome of several tumors. In human gliomas, overexpression of cyclooxygenase-2 has been linked to increased aggressiveness and poor prognosis. In contrast, the role of prostaglandin E synthase in influencing the biological behavior of human gliomas has not been established. We report that constitutive expression of the microsomal prostaglandin E synthase-1 (mPGES-1) is associated with increased prostaglandin E(2) (PGE(2)) production and stimulation of growth in the human astroglioma cell line U87-MG compared with human primary astrocytes. Consistently, pharmacologic and genetic inhibition of mPGES-1 activity and expression blocked the release of PGE(2) from U87-MG cells and decreased their proliferation. Conversely, exogenous PGE(2) partially overcame the antiproliferative effects of mPGES-1 inhibition and stimulated U87-MG cell proliferation in the absence of mPGES-1 inhibitors. The EP2/EP4 subtype PGE(2) receptors, which are linked to stimulation of adenylate cyclase, were expressed in U87-MG cells to a greater extent than in human astrocytes. PGE(2) increased cyclic AMP levels and stimulated protein kinase A (PKA) activity in U87-MG cells. Treatment with a selective type II PKA inhibitor decreased PGE(2)-induced U87-MG cell proliferation, whereas a selective type I PKA inhibitor had no effect. Taken together, these results are consistent with the hypothesis that mPGES-1 plays a critical role in promoting astroglioma cell growth via PGE(2)-dependent activation of type II PKA.
Collapse
Affiliation(s)
- Troy Payner
- Indianapolis Neurosurgical Group, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Stika J, Vondrácek J, Hofmanová J, Simek V, Kozubík A. MK-886 enhances tumour necrosis factor-alpha-induced differentiation and apoptosis. Cancer Lett 2005; 237:263-71. [PMID: 16039040 DOI: 10.1016/j.canlet.2005.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 06/03/2005] [Accepted: 06/06/2005] [Indexed: 01/24/2023]
Abstract
We investigated the role of the 5-lipoxygenase (5-LOX) pathway of arachidonic acid metabolism in tumour necrosis factor-alpha (TNF-alpha)-induced differentiation of human leukemic HL-60 cells using MK-886, an inhibitor of 5-LOX activating protein. MK-886 augmented cell cycle arrest and differentiation induced by TNF-alpha; however, both effects were probably 5-LOX-independent, because a general LOX inhibitor, NDGA, had no effect. Apoptosis was significantly elevated after combined TNF-alpha and MK-886 treatment, which could be partially associated with changes of Mcl-1 protein expression. NF-kappaB signalling or activation of JNKs were not modulated by MK-886. Thus, in addition to apoptosis, MK-886 can enhance TNF-alpha-induced differentiation.
Collapse
Affiliation(s)
- Jirí Stika
- Department of Comparative Animal Physiology and General Zoology, Faculty of Science, Masaryk University, CZ-611 37 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
10
|
Kale VP, Vaidya AA. Molecular Mechanisms Behind the Dose-Dependent Differential Activation of MAPK Pathways Induced by Transforming Growth Factor-β1 in Hematopoietic Cells. Stem Cells Dev 2004; 13:536-47. [PMID: 15588511 DOI: 10.1089/scd.2004.13.536] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) controls a wide range of cellular responses, including cell proliferation, lineage determination, differentiation, and apoptosis, and figures prominently in animal development. It is considered as a pleiotropic factor because it can exert a positive or negative effect on various cellular processes depending on developmental stage of the target cell, its microenvironment, and also its biochemical make up. It has been shown to have a strong inhibitory effect on hematopoietic stem cell proliferation and differentiation. We have earlier shown that TGF-beta1 exerts a bidirectional effect on hematopoietic cell proliferation as a function of its concentration. Although it acted as an inhibitor at high concentrations, at low concentrations it stimulated the stem/progenitor cells. We also provided evidence that the differential activation of mitogen-activated protein kinase pathways was responsible for the observed bidirectional effect. In the present study, we examined the molecular mechanism behind this phenomenon. We observed that the high inhibitory concentrations of TGF-beta1 induced a strong phosphorylation of SMAD 3 and also activated stress kinase-related transcription factors, namely c-Jun and ATF-2. On the other hand, low stimulatory concentrations acted in a SMAD 3-independent pathway and activated STAT proteins. Our results clearly show that differential activation of signal transduction pathways by TGF-beta1 as a function of its concentration underlies its bidirectional effect on hematopoietic cells.
Collapse
Affiliation(s)
- V P Kale
- National Center for Cell Science, Ganeshkhind, Pune 411 007, India
| | | |
Collapse
|
11
|
Bryja V, Sedlácek J, Zahradnícková E, Sevcíková S, Pacherník J, Soucek K, Hofmanová J, Kozubík A, Smarda J. Lipoxygenase inhibitors enhance tumor suppressive effects of Jun proteins on v-myb-transformed monoblasts BM2. Prostaglandins Other Lipid Mediat 2003; 72:131-45. [PMID: 14674625 DOI: 10.1016/s1098-8823(03)00052-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Inhibitors of arachidonic acid (AA) conversion were described as suppressors of proliferation and inducers of differentiation of various leukemic cells. Certain AA metabolites have been shown to cooperate with Jun proteins that are important factors controlling cell proliferation, differentiation and apoptosis. Using lipoxygenase (LOX) inhibitors of various specifity we studied possible participation of lipoxygenase pathway in regulation of proliferation and apoptosis of v-myb-transformed chicken monoblasts BM2 and its functional interaction with Jun proteins. We found that nordihydroguaiaretic acid (NDGA) and esculetin (Esc) negatively regulate proliferation of BM2 cells causing accumulation in either G0/G1-phase (nordihydroguaiaretic acid) or S-phase (esculetin) of the cell cycle. BM2 cells can be also induced to undergo growth arrest and partial differentiation by ectopic expression of Jun proteins. We demonstrated that lipoxygenase inhibitors further enforce tumor suppressive capabilities of Jun proteins by inducing either more efficient cell cycle block and/or apoptosis in BM2 cells. This suggests that there is a cross-talk between the lipoxygenase- and Jun-directed pathways in regulation of differentiation and proliferation of monoblastic cells. Thus pharmacologic agents that specifically block lipoxygenase-catalyzed activity and enforce the effects of differentiation-inducers may be important components in anti-tumor therapies.
Collapse
Affiliation(s)
- Vítezslav Bryja
- Department of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno CZ-611 37, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 (CYP2E1) and in HepG2 E47 cells, which express CYP2E1. The possible role of mitogen-activated protein kinase (MAPK) members in this process was evaluated. SB203580, a p38 MAPK inhibitor, and PD98059, an ERK inhibitor, but not wortmannin a phosphatidylinositol 3-kinase (PI3K) inhibitor, prevented AA toxicity in pyrazole hepatocytes and E47 cells. SB203580 prevented the enhancement of AA toxicity by salicylate. SB203580 neither lowered the levels of CYP2E1 nor affected CYP2E1-dependent oxidative stress. The decrease in mitochondrial membrane potential produced by AA was prevented by SB203580. Treating CYP2E1-induced cells with AA activated p38 MAPK but not ERK or AKT. This activation was blocked by antioxidants. AA increased the translocation of NF-kappaB to the nucleus. Salicylate blocked this translocation, which may contribute to the enhancement of AA toxicity by salicylate. SB203580 restored AA-induced NF-kappaB translocation, which may contribute to protection against toxicity. In conclusion, AA toxicity was related to lipid peroxidation and oxidative stress, and to the activation of p38 MAPK, as a consequence of CYP2E1-dependent production of reactive oxygen species. Activation of p38 MAPK by AA coupled to AA-induced oxidative stress may synergize to cause cell toxicity by affecting mitochondrial membrane potential and by modulation of NF-kappaB activation.
Collapse
Affiliation(s)
- Defeng Wu
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York University, New York 10029, USA
| | | |
Collapse
|