1
|
Senthil Kumar J, Mehboob MZ, Lei X. Exploring CTRP6: a biomarker and therapeutic target in metabolic diseases. Am J Physiol Endocrinol Metab 2025; 328:E139-E147. [PMID: 39701154 DOI: 10.1152/ajpendo.00353.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
The rising prevalence of metabolic diseases is a significant global health concern. Beyond lifestyle management, targeting key molecules involved in metabolic regulation is essential. C1q/TNF-related protein 6 (CTRP6) is notably associated with glucose and lipid metabolism, with numerous studies highlighting its regulatory functions in metabolic diseases. This review summarizes the current knowledge on CTRP6, focusing on its gene expression profiles, protein structure, gene regulation, and role in metabolic diseases. CTRP6 is widely expressed across various tissues and features four distinct domains, with the C1q domain predicted to bind to its receptor. Notably, serum levels of CTRP6 are significantly elevated in patients with obesity and type 2 diabetes. In these conditions, adipose tissue serves as a key source of CTRP6 and its involvement in adipose tissue expansion, inflammation, and nutrient sensing has been observed in several studies. CTRP6 is also implicated in type 1 diabetes, gestational diabetes mellitus, and diabetic complications, particularly diabetic nephropathy. Although some studies have suggested that CTRP6 has protective roles in atherosclerotic cell models, myocardial infarction rat models, and ischemia/reperfusion injury mouse models, methodological issues such as unreliable antibodies and unstrict controls make it difficult to draw accurate conclusions from these studies. Patients with polycystic ovary syndrome (PCOS) exhibit elevated serum levels of CTRP6, although its direct impact on PCOS phenotypes remains unclear. In conclusion, CTRP6 emerges as a promising therapeutic target for metabolic diseases. A deeper understanding of CTRP6 will empower the scientific community to develop effective interventions to address the increasing prevalence of these diseases.
Collapse
Affiliation(s)
- Jeevotham Senthil Kumar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Muhammad Zubair Mehboob
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Xia Lei
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States
| |
Collapse
|
2
|
Zhao B, Li M, Li B, Li Y, Shen Q, Hou J, Wu Y, Gu L, Gao W. The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice. Neural Regen Res 2024; 19:2019-2026. [PMID: 38227531 DOI: 10.4103/1673-5374.390951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 07/29/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00034/figure1/v/2024-01-16T170235Z/r/image-tiff Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bingyu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yanan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Hamed SF, Hassan NA, Shouman SA, Tohamy TA, Fakhry H, Radwan E. Down regulation of C1q tumor necrosis factor-related protein 6 is associated with increased risk of breast cancer. Arch Biochem Biophys 2024; 757:110039. [PMID: 38750921 DOI: 10.1016/j.abb.2024.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 05/27/2024]
Abstract
C1q tumor necrosis factor-related protein 6 (CTRP6), a member of the C1q tumor necrosis factor-related protein (CTRP) family, is reported to be associated with the progression of different malignancies, however, its expression levels and role in breast cancer (BC) are yet unknown. In this study, we investigated the levels of circulating CTRP6 in BC patients and evaluated its role as a potential diagnostic biomarker in BC patients. Then we investigated the effect of recombinant CTRP6 on cellular viability in MCF-7 cells along with its effects on the expression of inflammatory cytokines, interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α) in addition to the expression of vascular endothelial growth factor (VEGF) as a marker of angiogenesis. Our results showed decreased expression of circulating CTRP6 in BC patients with an inverse correlation between CTRP6 and IL-6, TNF-α and VEGF levels. Besides, Receiver operating characteristic (ROC) curve showed that the assessment of CTRP6 levels could be used to predict BC. Moreover, treatment of MCF-7 cells with recombinant CTRP6 protein reduced cellular viability and decreased IL-6, TNF-α and VEGF expression. In conclusion, these results provide new insights into the role of CTRP6 in BC pathogenesis and suggest its potential use as a novel diagnostic biomarker of BC.
Collapse
Affiliation(s)
- Samia F Hamed
- Cancer Biology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Nivin A Hassan
- Cancer Biology Department (Pharmacology and Experimental Oncology), South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Samia A Shouman
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Hussein Fakhry
- Surgical Oncology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Eman Radwan
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Biochemistry Department, Sphinx University, New Assiut City, Assiut, Egypt.
| |
Collapse
|
4
|
Tabatabaei SA, Fadaei R, Moradi N, Farrokhi V, Vatannejad A, Afrisham R, Falahat A, malekshahi F, Mirahmad M, Abbasi A. Circulating levels of C1q/TNF-α-related protein 6 (CTRP6) in coronary artery disease and its correlation with inflammatory markers. J Diabetes Metab Disord 2024; 23:1233-1241. [PMID: 38932850 PMCID: PMC11196518 DOI: 10.1007/s40200-024-01415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/26/2024] [Indexed: 06/28/2024]
Abstract
Introduction Circulating levels of C1q/TNF-α-related protein 6 (CTRP6) is an adipokine that is involved in regulation of glucose and lipid metabolism, inflammation, and insulin sensitivity. However, the exact role of CTRP6 in metabolic processes remains unclear due to conflicting findings. To address current gap, we aimed to investigate the serum levels of CTRP6 in patients with coronary artery disease (CAD) and its association with inflammatory cytokines. Method In this case-control study, the serum levels of CTRP6, interlukin-6 (IL-6), tumor necrosis factor- α (TNF-α), adiponectin, and fasting insulin were measured using enzyme-linked immunosorbent assay (ELISA) kits in a total of 176 participants, consisting of 88 CAD patients and 88 control subjects. Additionally, various anthropometric and biochemical measurements were measured and compared between cases and controls. Results The present study found that serum levels of CTRP6 were significantly higher in the CAD group (561.3 ± 15.14) compared to the control group (429.3 ± 12.85, p < 0.001). After adjusting for age, sex, and body mass index (BMI), CTRP6 levels were found to be positively associated with the risk of CAD (p < 0.001). Correlation analysis in CAD subjects revealed a positive correlation between CTRP6 levels and BMI, systolic blood pressure (SBP), malondialdehyde (MDA), TNF-α, and IL-6, as well as a negative correlation with creatinine and total anti-oxidant capacity. Conclusion The findings of this study provide novel evidence that elevated serum levels of CTRP6 are significantly associated with an increased risk of developing CAD. Moreover, our results indicate a correlation between CTRP6 and various risk factors for atherosclerosis. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01415-5.
Collapse
Affiliation(s)
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nariman Moradi
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Falahat
- Department of Cardiology, Dr Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Frood malekshahi
- Department of Cardiology, Dr Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirahmad
- Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Abbasi
- Department of Cardiology, Dr Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Li M, Zhou S, Feng Z, Zhang C. Role of C1q/TNF-Related Protein 6 for the Evaluation of Coronary Heart Disease Associated with Type 2 Diabetes. Ther Clin Risk Manag 2024; 20:289-296. [PMID: 38799512 PMCID: PMC11127693 DOI: 10.2147/tcrm.s464007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
Objective Coronary artery disease (CAD) and type 2 diabetes (T2DM) are closely associated with increased rate of death. C1q/TNF-related protein 6 (CTRP6) is a novel adipocytokine which plays an important role in glucose and lipid metabolism. Little is known about the function of CTRP6 in CAD and T2DM patients. Herein, we aimed to study the association of CTRP6 level with CAD and T2DM. Methods This study included 51 CAD, 44 CAD+T2DM and 65 non-CAD+T2DM patients from Affiliated Aoyang Hospital of Jiangsu University. Serum CTRP6 concentrations were detected by ELISA. Multiple logistic regression was used to analyze the association of serum CTRP6 with CAD and T2DM. Results Serum CTRP6 concentrations were significantly lower in CAD patients than controls. However, there is no significant statistical difference between CAD+T2DM patients and non-CAD+T2DM patients. Serum CTRP6 was negatively correlated with low-density lipoprotein cholesterol (LDL-C) (ρ=-0.2769, p=0.028) in controls. Serum CTRP6 was positively correlated with age (ρ=0.4121, p=0.0027), systolic blood pressure (SBP) (ρ=0.4012, p=0.0035), Creatinine (ρ=0.3295, p=0.0194), uric acid (UA) (ρ=0.3386, p=0.0162), and left ventricular end diastolic diameter (LVD) (ρ=0.4277, p=0.0042) and negatively correlated with ejection fraction (EF) (ρ=-0.3237, p=0.0342) in CAD patients. Serum CTRP6 was negatively correlated with high-density lipoprotein cholesterol (HDL-C) (ρ=-0.3164, p=0.0387) in CAD+T2DM patients. Multiple logistic regression showed that the decrease of CTRP6 was significantly related to the increased prevalence of CAD. What is more, CTRP6 increased prevalence of T2DM in CAD patients. Conclusion Lower serum CTRP6 could be a risk factor of CAD. However, higher circulating CTRP6 associated with the increased prevalence of T2DM in CAD patients.
Collapse
Affiliation(s)
- Mianxian Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Shuru Zhou
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu, People’s Republic of China
| | - Zexiong Feng
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Chi Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Jiang J, Wei S, Chen M, Tan Y, Yang Z, Yang G, Feng W, Han Z, Wei X, Luo X. Characterizing the Dynamic Expression of C1q/TNF-α-Related Protein 6 (CTRP6) during Pregnancy in Humans and Mice with Gestational Diabetes Mellitus. Biomedicines 2024; 12:1128. [PMID: 38791090 PMCID: PMC11117843 DOI: 10.3390/biomedicines12051128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
AIM C1q/TNF-related protein 6 (CTRP6) is a novel adipokine involved in insulin resistance. Thus, we aim to investigate the expression profile of CTRP6 in the plasma, adipose tissue and placenta of GDM patients and mice. METHODS Chinese Han pregnant women (GDM n = 9, control n = 10) with a scheduled caesarean section delivery were recruited. A number of high-fat diet (HFD) induced-pregnancy C57BL/6 mice were chosen as an animal model of GDM. Circulating levels of CTRP6 and adiponectin were examined by ELISA. CTRP6 expression in adipose tissue and placenta were detected by real-time qPCR and WB. RESULT Plasma CTRP6 levels were decreased during the first and second trimesters in mice, as well as the second and third trimesters in patients, while they were increased at delivery in GDM patients and mice. Plasma CTRP6 levels were significantly correlated with WBC, systolic pressure, diastolic pressure and fasting blood glucose. Moreover, CTRP6 mRNA expression in the subcutaneous (sWAT) and omental white adipose tissue (oWAT), as well as in the placenta, was significantly higher in GDM human patients at cesarean delivery. Furthermore, the mRNA expression of Ctrp6 was increased in the sWAT and visceral WAT (vWAT), whilst decreased in the interscapular brown adipose tissue (iBAT), of GDM mice at cesarean delivery. CONCLUSION Dynamically expressed CTRP6 may be served as a candidate target for treatment of GDM.
Collapse
Affiliation(s)
- Jianan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (J.J.); (Y.T.); (W.F.)
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an 710061, China
| | - Shuangyu Wei
- Clinical Laboratory, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Miao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (M.C.); (Z.Y.); (G.Y.); (Z.H.)
| | - Yutian Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (J.J.); (Y.T.); (W.F.)
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an 710061, China
| | - Zhao Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (M.C.); (Z.Y.); (G.Y.); (Z.H.)
| | - Guiying Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (M.C.); (Z.Y.); (G.Y.); (Z.H.)
| | - Weijie Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (J.J.); (Y.T.); (W.F.)
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an 710061, China
| | - Zhen Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (M.C.); (Z.Y.); (G.Y.); (Z.H.)
| | - Xiaojing Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (J.J.); (Y.T.); (W.F.)
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (J.J.); (Y.T.); (W.F.)
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
7
|
Geng S, Chen D, Wang Y, Yu X, Zuo D, Lv X, Zhou X, Hu C, Yang X, Ma X, Hu W, Xi J, Yu S. Serum levels of Vanin-2 increase with obesity in relation to inflammation of adipose tissue and may be a predictor of bariatric surgery outcomes. Front Nutr 2023; 10:1270435. [PMID: 38156278 PMCID: PMC10753581 DOI: 10.3389/fnut.2023.1270435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023] Open
Abstract
Objective Excessive obesity can lead to dysfunction in adipose tissue, which contributes to the development of comorbidities associated with obesity, such as type 2 diabetes (T2D), cardiovascular and cerebrovascular disease, among others. Previous research has mainly focused on the Vanin family in systemic inflammatory diseases or predicting its role in tumor prognosis, while neglecting its role as a secretory protein in adipose tissue inflammation and metabolism. The objective of this study was to compare the changes in Vanin-2 levels in the circulating blood of normal and obese individuals, and to assess its correlation with inflammatory factors in vivo. Furthermore, the study aimed to systematically evaluate its effectiveness in human weight loss surgery. Methods Serum concentrations of Vanin-2 and inflammatory indicators were measured in 518 volunteers. Furthermore, the concentrations of Vanin-2 were measured both before and after weight loss through a dietetic program or laparoscopic sleeve gastrectomy (LSG). Additionally, we assessed the levels of insulin, adiponectin, and inflammation-related factors. The hormonal profile and changes in body weight were evaluated at baseline and 3 months after surgery. Results Serum levels of Vanin-2 were found to be significantly increased in individuals with overweight/obesity (OW/OB) group (controls 438.98 ± 72.44, OW/OB 530.89 ± 79.39 ug/L; p < 0.001). These increased levels were associated with IL-18, BMI, FAT%, and HOMA-IR. However, levels of Vanin-2 remained unchanged after conventional dietary treatment. On the other hand, weight loss induced by LSG resulted in a significant decrease in Vanin-2 concentrations from 586.44 ± 48.84 to 477.67 ± 30.27 ug/L (p < 0.001), and this decrease was associated with the Vanin-2 concentrations observed before the operation. Conclusion Serum Vanin-2 is a highly effective biomarker for assessing adipose tissue inflammation in obesity and has the potential to serve as a predictor of bariatric surgery outcomes.
Collapse
Affiliation(s)
- Shan Geng
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Dongmei Chen
- Department of Otorhinolaryngology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Wang
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xingrui Yu
- Institute of Information, Xiamen University, Xiamen, China
| | - Dan Zuo
- Department of Clinical Nutrition, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xinlu Lv
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xuelian Zhou
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Chengju Hu
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xuesong Yang
- Department of General Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Xujue Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Wenjing Hu
- Department of Clinical Nutrition, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazhuang Xi
- The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Shaohong Yu
- Department of General Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Yan S, Ding J, Wang Z, Zhang F, Li J, Zhang Y, Wu S, Yang L, Pang X, Zhang Y, Yang J. CTRP6 regulates M1 macrophage polarization via the PPAR-γ/NF-κB pathway and reprogramming glycolysis in recurrent spontaneous abortion. Int Immunopharmacol 2023; 124:110840. [PMID: 37696144 DOI: 10.1016/j.intimp.2023.110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023]
Abstract
Aberrant polarization and functions of decidual macrophages are closely related to recurrent spontaneous abortion (RSA). C1q/tumor necrosis factor-related protein 6 (CTRP6) is a member of the adiponectin paralog family, and plays indispensable roles in inflammation, glucose uptake and tumor metastasis. However, the regulatory effect of CTRP6 on macrophage polarization and glycolysis in RSA and the underlying mechanisms have not been fully elucidated. In the present study, we first found that CTRP6 expression was positively correlated with the M1 macrophage marker (CD86) in decidual tissues by dual immunofluorescence analysis. In vitro experiments indicated that CTRP6 could facilitate M1 macrophage activation through the PPAR-γ/NF-κB pathway and manipulate the glycolysis of macrophages. Notably, in addition to silencing CTRP6, treatment with a PPAR-γ agonist (GW1929) inhibited M1 macrophage polarization and rescued embryo absorption in vivo. Taken together, these results identify previously unrevealed functions of CTRP6 in macrophage transformation during RSA.
Collapse
Affiliation(s)
- Sisi Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Zehao Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Feng Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Jianan Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Yi Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Shujuan Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Lian Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Xiangli Pang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, WuHan, HuBei, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China.
| |
Collapse
|
9
|
Nicolaus HF, Klonisch T, Paulsen F, Garreis F. C1q/TNF-Related Proteins 1, 6 and 8 Are Involved in Corneal Epithelial Wound Closure by Targeting Relaxin Receptor RXFP1 In Vitro. Int J Mol Sci 2023; 24:ijms24076839. [PMID: 37047812 PMCID: PMC10095411 DOI: 10.3390/ijms24076839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Inadequate wound healing of ocular surface injuries can lead to permanent visual impairment. The relaxin ligand-receptor system has been demonstrated to promote corneal wound healing through increased cell migration and modulation of extracellular matrix formation. Recently, C1q/tumor necrosis factor-related protein (CTRP) 8 was identified as a novel interaction partner of relaxin receptor RXFP1. Additional data also suggest a role for CTRP1 and CTRP6 in RXFP1-mediated cAMP signaling. However, the role of CTRP1, CTRP6 and CTRP8 at the ocular surface remains unclear. In this study, we investigated the effects of CTRP1, CTRP6, and CTRP8 on epithelial ocular surface wound closure and their dependence on the RXFP1 receptor pathway. CTRP1, CTRP6, and CTRP8 expression was analyzed by RT-PCR and immunohistochemistry in human tissues and cell lines derived from the ocular surface and lacrimal apparatus. In vitro ocular surface wound modeling was performed using scratch assays. We analyzed the effects of recombinant CTRP1, CTRP6, and CTRP8 on cell proliferation and migration in human corneal and conjunctival epithelial cell lines. Dependence on RXFP1 signaling was established by inhibiting ligand binding to RXFP1 using a specific anti-RXFP1 antibody. We detected the expression of CTRP1, CTRP6, and CTRP8 in human tissue samples of the cornea, conjunctiva, meibomian gland, efferent tear ducts, and lacrimal gland, as well as in human corneal, conjunctival, and meibomian gland epithelial cell lines. Scratch assays revealed a dose-dependent increase in the closure rate of surface defects in human corneal epithelial cells after treatment with CTRP1, CTRP6, and CTRP8, but not in conjunctival epithelial cells. Inhibition of RXFP1 fully attenuated the effect of CTRP8 on the closure rate of surface defects in human corneal epithelial cells, whereas the CTRP1 and CTRP6 effects were not completely suppressed. Conclusions: Our findings demonstrate a novel role for CTRP1, CTRP6, and CTRP8 in corneal epithelial wound closure and suggest an involvement of the relaxin receptor RXFP1 signaling pathway. This could be a first step toward new approaches for pharmacological and therapeutic intervention.
Collapse
Affiliation(s)
- Hagen Fabian Nicolaus
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute in Oncology and Hematology (RIOH), Cancer Care Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fabian Garreis
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
10
|
Hu B, Qian X, Qian P, Xu G, Jin X, Chen D, Xu L, Tang J, Wu W, Li W, Zhang J. Advances in the functions of CTRP6 in the development and progression of the malignancy. Front Genet 2022; 13:985077. [PMID: 36313428 PMCID: PMC9596804 DOI: 10.3389/fgene.2022.985077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
CTRP6, a member of the C1q/TNF-related protein (CTRP) family, has gained increasing scientific interest because of its regulatory role in tumor progression. Previous studies have shown that CTRP6 is closely involved in regulating various pathophysiological processes, including glucose and lipid metabolism, cell proliferation, apoptosis, and inflammation. To date, CTRP6 has been identified as related to eight different malignancies, including lung cancer, oral cancer, gastric cancer, colon cancer, liver cancer, bladder cancer, renal cancer, and ovarian cancer. CTRP6 is reported to be associated with tumor progression by activating a series of related signal networks. This review article mainly discusses the biochemistry and pleiotropic pathophysiological functions of CTRP6 as a new molecular mediator in carcinogenesis, hoping that the information summarized herein could make a modest contribution to the development of novel cancer treatments in the future.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Xiaolan Qian
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Ping Qian
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Xin Jin
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Deqing Chen
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Long Xu
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Jie Tang
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Wenjing Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Wanlu Li
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
- *Correspondence: Wanlu Li, ; Jin Zhang,
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
- *Correspondence: Wanlu Li, ; Jin Zhang,
| |
Collapse
|
11
|
Zhai Y, Pang Y. Systemic and Ovarian Inflammation in Women with Polycystic Ovary Syndrome. J Reprod Immunol 2022; 151:103628. [DOI: 10.1016/j.jri.2022.103628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023]
|
12
|
Wei C, Liu Y, Xing E, Ding Z, Tian Y, Zhao Z, Fan W, Sun L. Association Between Novel Pro- and Anti- Inflammatory Adipocytokines in Patients with Acute Coronary Syndrome. Clin Appl Thromb Hemost 2022; 28:10760296221128021. [PMID: 36128744 PMCID: PMC9500265 DOI: 10.1177/10760296221128021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background and aims Novel pro- and anti-inflammatory adipocytokines affect inflammation, energy metabolism, and insulin signaling. However, their role in acute coronary syndrome (ACS) development is unclear. We evaluated the diagnostic and risk predictive value of such adipocytokines for ACS. Methods We enrolled 168 consecutive inpatients with suspected ACS and detected serum PLIN1, PLIN2, PLIN5, CTRP6, CTRP7, CTRP11, WISP1, FAM19A5, TNF-α, and adiponectin levels. Multivariate logistic regression analysis and Spearman's test were used to assess risk factors for ACS and correlations between serum adipocytokines and continuous variables, respectively. Results Serum levels of the adipocytokines differed between ACS and Non-ACS groups (p < 0.05). After adjusting for confounding factors, serum PLIN1, PLIN2, PLIN5, CTRP6, CTRP7, CTRP11, WISP1, and FAM19A5 levels were independently associated with ACS (p < 0.05). Increasing tertiles of serum PLIN1, PLIN2, CTRP7, CTRP11, and WISP1 levels increased the ACS risk, which decreased gradually with increasing PLIN5 and CTRP6 tertiles (p for trend <0.05). Serum PLIN1, PLIN5, CTRP6, CTRP7, CTRP11, WISP1, and FAM19A5 levels correlated with ACS severity. Conclusions PLIN1, PLIN2, CTRP7, CTRP11, and WISP1 were identified as independent ACS risk factors, whereas PLIN5, CTRP6, and FAM19A5 were independent protective factors for ACS. These serum adipocytokines are novel potential clinical biomarkers of ACS.
Collapse
Affiliation(s)
- Chen Wei
- Department of Cardiology, 117914Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| | - Yixiang Liu
- Department of Cardiology, 117914Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| | - Enhong Xing
- Central Laboratory of Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| | - Zhenjiang Ding
- Department of Cardiology, 117914Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| | - Yanan Tian
- Department of Cardiology, 117914Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| | - Zhuoyan Zhao
- Department of Cardiology, 117914Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| | - Wenjun Fan
- Department of Cardiology, 117914Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| | - Lixian Sun
- Department of Cardiology, 117914Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| |
Collapse
|
13
|
Zhang J, Bai WP. C1q/tumor necrosis factor related protein 6 (CTRP6) regulates the phenotypes of high glucose-induced gestational trophoblast cells via peroxisome proliferator-activated receptor gamma (PPARγ) signaling. Bioengineered 2021; 13:206-216. [PMID: 34964705 PMCID: PMC8805812 DOI: 10.1080/21655979.2021.2012906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Multiple studies have confirmed that adipokines are compactly relevant to insulin resistance and participate in the pathogenesis of gestational diabetes mellitus (GDM). This paper aimed to study the effects of C1q/tumor necrosis factor related protein (CTRP)6 on the phenotypes of trophoblast cells, covering cell proliferation, invasion and migration, and initially explore the mechanism. High glucose was used to induce trophoblast cells to establish an in vitro model. The expression levels of CTRP6 were firstly determined, and then the effects of CTRP6 knockdown on cell viability, apoptosis, migration and invasion were assessed using CCK8, TUNEL, wound healing, Transwell assays. Moreover, the role of peroxisome proliferator-activated receptor gamma (PPARγ), probable target of CTRP6, was evaluated through co-transfection with PPARγ overexpression vector. The results of the present study revealed that CTRP6 and PPARγ were both upregulated in high glucose-induced cells. And CTRP6 knockdown could significantly elevate the abilities of cell viability, migration and invasion, and avoid cell apoptosis. In addition, PPARγ overexpression was found to restrain the protective effects of CTRP6 knockdown on the above aspects, indicating CTRP6 played a role in trophoblast cells via inhibiting PPARγ expression. In conclusion, CTRP6 regulated the viability, migration and invasion of high glucose-induced gestational trophoblast cells through PPARγ signaling.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynaecology, Beijing Shijitan Hospital, Capital Medical University, Beijing, P.R. China
| | - Wen-Pei Bai
- Department of Obstetrics and Gynaecology, Beijing Shijitan Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
14
|
Liu S, Hu W, He Y, Li L, Liu H, Gao L, Yang G, Liao X. Serum Fetuin-A levels are increased and associated with insulin resistance in women with polycystic ovary syndrome. BMC Endocr Disord 2020; 20:67. [PMID: 32429902 PMCID: PMC7236448 DOI: 10.1186/s12902-020-0538-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Insulin resistance (IR) is a common characteristic of women with polycystic ovary syndrome (PCOS). It has been reported that circulating Fetuin-A levels were associated with IR and type 2 diabetes mellitus (T2DM). However, previous reports were inconsistent. METHODS Two hundred seven subjects were screened for PCOS according to the diagnostic guideline of the Rotterdam consensus criterion. Serum Fetuin-A levels were measured using an ELISA kit. An independent t-test or Nonparametric test was used to detect differences between PCOS and control groups. Spearman's correlation analysis was used to examine the association of the serum Fetuin-A with other parameters. RESULTS Our findings showed that circulating Fetuin-A concentration ranged from 196.6 to 418.2 μg/L for most women without PCOS (95%). Women with PCOS had higher circulating Fetuin-A levels than healthy women (437.9 ± 119.3 vs. 313.8 ± 60.5 μg/L; p < 0.01). Serum Fetuin-A was positively correlated with BMI, WHR, TG, TC, LDL-C, HOMA-IR, LH, T, and DHEA-S. Multivariate regression analysis showed that WHR, TG, HOMA-IR, and DHEA-S were independent predictors of the levels of circulating Fetuin-A. Binary logistic regression revealed that serum Fetuin-A was associated with the occurrence of PCOS. In addition, our ROC curve analysis found that the cutoff values for Fetuin-A to predict PCOS and IR were 366.3 and 412.6 μg/L. CONCLUSION Blood Fetuin-A may be a useful biomarker for screening women for PCOS and IR.
Collapse
Affiliation(s)
- Sha Liu
- Department of Endocrinology, the Affiliated Hospital, Zunyi Medical University, Zunyi, 563003 Guizhou China
| | - Wenjing Hu
- Chongqing Prevention and Treatment Hospital for Occupational Diseases, Chongqing, China
| | - Yirui He
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ling Li
- Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016 China
| | - Hua Liu
- Department of Pediatrics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS USA
| | - Lin Gao
- Department of Endocrinology, the Affiliated Hospital, Zunyi Medical University, Zunyi, 563003 Guizhou China
| | - Gangyi Yang
- Department of Endocrinology, the Affiliated Hospital, Zunyi Medical University, Zunyi, 563003 Guizhou China
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xin Liao
- Department of Endocrinology, the Affiliated Hospital, Zunyi Medical University, Zunyi, 563003 Guizhou China
| |
Collapse
|