1
|
Seitz S, Dreyer TF, Stange C, Steiger K, Wohlleber D, Anton M, Pham TA, Sauter-Peschke D, Reuning U, Multhoff G, Weichert W, Kiechle M, Magdolen V, Bronger H. The chemokine CX3CL1 promotes intraperitoneal tumour growth despite enhanced T-cell recruitment in ovarian cancer. Neoplasia 2025; 60:101130. [PMID: 39862711 PMCID: PMC11804824 DOI: 10.1016/j.neo.2025.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
T-cell recruiting chemokines are required for a successful immune intervention in ovarian cancer, and also for the efficacy of modern anticancer agents such as PARP inhibitors. The chemokine CX3CL1 recruits tumour-suppressive T-cells into solid tumours, but also mediates cell-cell adhesions, e.g. of tumour cells, through its membrane-bound form. So far, its role in ovarian cancer has only been rudimentarily addressed. We show that high CX3CL1 expression significantly correlates with worsened survival in human high-grade serous ovarian cancer (n=219). In preclinical ovarian cancer, CX3CL1 plays a dual role, as it enhances the adaptive anti-tumour response, but overall still promotes tumour growth, the latter as a feature of the intraperitoneal environment. Moreover, PARP inhibitors are able to increase CX3CL1 release from human ovarian cancer cells. Collectively, our study shows that CX3CL1 is a driver of intraperitoneal tumour growth in ovarian cancer, a feature that may compromise the anticancer effect of CX3CL1-inducing PARP inhibitors.
Collapse
Affiliation(s)
- Stefanie Seitz
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | - Tobias F Dreyer
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | - Christoph Stange
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institute of Pathology, Technical University of Munich, 81675 Munich, Germany; Institute of Pathology, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Martina Anton
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Thuý An Pham
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | | | - Ute Reuning
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Technical University of Munich, TranslaTUM, 81675 Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marion Kiechle
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | - Viktor Magdolen
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany
| | - Holger Bronger
- Department of Gynecology and Obstetrics, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Gao Y, Pan B, Jia H, Zhang Y, Wang S, Wang Y, Zhang S, Li M, Wang A, Wang X, Zhao K, Zhang Z, Sun J, Guo D, Liang Z. PD-L1 expression in ovarian clear cell carcinoma using the 22C3 pharmDx assay. Diagn Pathol 2024; 19:82. [PMID: 38879528 PMCID: PMC11179196 DOI: 10.1186/s13000-024-01510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Ovarian clear cell carcinoma (OCCC), well known for its chemoresistance to platinum-based chemotherapy, exhibited a good response in clinical trials of anti-PD-1/PD-L1 inhibitors. By assessing PD-L1 expression, we sought to determine the potential therapeutic benefit of PD-1/PD-L1 inhibitors in OCCC. METHODS AND RESULTS The retrospective study included 152 individuals with OCCC between 2019 and 2022 at Peking Union Medical College Hospital. Paired tumors of primary versus recurrent lesions (17 pairs from 15 patients) or primary versus metastatic lesions (11 pairs from 9 patients) were also included. The 22C3 pharmDx assay and whole sections were used for PD-L1 immunohistochemical staining. Pathologists with experience in premarket clinical trials evaluated PD-L1 expression based on various diagnostic criteria (TPS 1%, CPS 1, or CPS 10). The number and percentage of positive PD-L1 cases were 34 (22.4%, TPS ≥ 1%) and 59 (38.8%, CPS ≥ 1), respectively. Thirty-three (21.7%) of the cases had high PD-L1 expression (CPS ≥ 10). Half of the platinum-resistant patients (11/22) were PD-L1 positive (CPS ≥ 1). In addition, positive PD-L1 expression (CPS ≥ 1) was related to clinicopathological characteristics that represented a worse prognosis, such as advanced stages, lymph node metastasis, and distant metastasis (p = 0.032, p < 0.001 and p = 0.003, separately). PD-L1 was expressed equally or more in the recurrent lesion compared with its matched primary lesion. CONCLUSIONS In conclusion, anti-PD-1/PD-L1 inhibitors are a promising therapeutic choice for OCCC. For evaluation of PD-L1 expression, CPS is more recommended than TPS. Evaluation of recurrent lesion was still suitable and predictive when the primary tumor tissue was not available. Distant metastatic lesions can serve as alternative samples for PD-L1 evaluation, while usage of lymphatic metastatic lesions is not recommended.
Collapse
Affiliation(s)
- Yike Gao
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Boju Pan
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Hongbao Jia
- School of Statistics, Renmin University of China, Beijing, China
| | - Yang Zhang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shu Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Yuming Wang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Sumei Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Li
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Anqi Wang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoxi Wang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kun Zhao
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zixin Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Sun
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Dan Guo
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Casey NP, Kleinmanns K, Forcados C, Gelebart PF, Joaquina S, Lode M, Benard E, Kaveh F, Caulier B, Helgestad Gjerde C, García de Jalón E, Warren DJ, Lindemann K, Rokkones E, Davidson B, Myhre MR, Kvalheim G, Bjørge L, McCormack E, Inderberg EM, Wälchli S. Efficient CAR T cell targeting of the CA125 extracellular repeat domain of MUC16. J Immunother Cancer 2024; 12:e008179. [PMID: 38604812 PMCID: PMC11015285 DOI: 10.1136/jitc-2023-008179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the leading cause of death from gynecologic malignancies in the Western world. Contributing factors include a high frequency of late-stage diagnosis, the development of chemoresistance, and the evasion of host immune responses. Currently, debulking surgery and platinum-based chemotherapy are the treatment cornerstones, although recurrence is common. As the clinical efficacy of immune checkpoint blockade is low, new immunotherapeutic strategies are needed. Chimeric antigen receptor (CAR) T cell therapy empowers patients' own T cells to fight and eradicate cancer, and has been tested against various targets in OC. A promising candidate is the MUC16 ectodomain. This ectodomain remains on the cell surface after cleavage of cancer antigen 125 (CA125), the domain distal from the membrane, which is currently used as a serum biomarker for OC. CA125 itself has not been tested as a possible CAR target. In this study, we examined the suitability of the CA125 as a target for CAR T cell therapy. METHODS We tested a series of antibodies raised against the CA125 extracellular repeat domain of MUC16 and adapted them to the CAR format. Comparisons between these candidates, and against an existing CAR targeting the MUC16 ectodomain, identified K101 as having high potency and specificity. The K101CAR was subjected to further biochemical and functional tests, including examination of the effect of soluble CA125 on its activity. Finally, we used cell lines and advanced orthotopic patient-derived xenograft (PDX) models to validate, in vivo, the efficiency of our K101CAR construct. RESULTS We observed a high efficacy of K101CAR T cells against cell lines and patient-derived tumors, in vitro and in vivo. We also demonstrated that K101CAR functionality was not impaired by the soluble antigen. Finally, in direct comparisons, K101CAR, which targets the CA125 extracellular repeat domains, was shown to have similar efficacy to the previously validated 4H11CAR, which targets the MUC16 ectodomain. CONCLUSIONS Our in vitro and in vivo results, including PDX studies, demonstrate that the CA125 domain of MUC16 represents an excellent target for treating MUC16-positive malignancies.
Collapse
Affiliation(s)
- Nicholas P Casey
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Katrin Kleinmanns
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Christopher Forcados
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Pascal F Gelebart
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sandy Joaquina
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Martine Lode
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Emmanuelle Benard
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Fatemeh Kaveh
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Benjamin Caulier
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christiane Helgestad Gjerde
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Elvira García de Jalón
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - David J Warren
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kristina Lindemann
- Department of Gynecologic Oncology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Erik Rokkones
- Department of Gynecologic Oncology, Oslo University Hospital, Oslo, Norway
| | - Ben Davidson
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Pathology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Marit Renee Myhre
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Line Bjørge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Emmet McCormack
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section of Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Zhang L, Cascio S, Mellors JW, Buckanovich RJ, Osmanbeyoglu HU. Single-cell analysis reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of ovarian cancer. Commun Biol 2024; 7:20. [PMID: 38182756 PMCID: PMC10770164 DOI: 10.1038/s42003-023-05733-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is a heterogeneous disease, and a highstromal/desmoplastic tumor microenvironment (TME) is associated with a poor outcome. Stromal cell subtypes, including fibroblasts, myofibroblasts, and cancer-associated mesenchymal stem cells, establish a complex network of paracrine signaling pathways with tumor-infiltrating immune cells that drive effector cell tumor immune exclusion and inhibit the antitumor immune response. In this work, we integrate single-cell transcriptomics of the HGSOC TME from public and in-house datasets (n = 20) and stratify tumors based upon high vs. low stromal cell content. Although our cohort size is small, our analyses suggest a distinct transcriptomic landscape for immune and non-immune cells in high-stromal vs. low-stromal tumors. High-stromal tumors have a lower fraction of certain T cells, natural killer (NK) cells, and macrophages, and increased expression of CXCL12 in epithelial cancer cells and cancer-associated mesenchymal stem cells (CA-MSCs). Analysis of cell-cell communication indicate that epithelial cancer cells and CA-MSCs secrete CXCL12 that interacte with the CXCR4 receptor, which is overexpressed on NK and CD8+ T cells. Dual IHC staining show that tumor infiltrating CD8 T cells localize in proximity of CXCL12+ tumor area. Moreover, CXCL12 and/or CXCR4 antibodies confirm the immunosuppressive role of CXCL12-CXCR4 in high-stromal tumors.
Collapse
Affiliation(s)
- Linan Zhang
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15206, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Applied Mathematics, School of Mathematics and Statistics, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Sandra Cascio
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ronald J Buckanovich
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA
| | - Hatice Ulku Osmanbeyoglu
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15206, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA.
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, 15219, USA.
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
5
|
Topalov NE, Mayr D, Kuhn C, Leutbecher A, Scherer C, Kraus FBT, Tauber CV, Beyer S, Meister S, Hester A, Kolben T, Burges A, Mahner S, Trillsch F, Kessler M, Jeschke U, Czogalla B. Characterization and prognostic impact of ACTBL2-positive tumor-infiltrating leukocytes in epithelial ovarian cancer. Sci Rep 2023; 13:22620. [PMID: 38114558 PMCID: PMC10730610 DOI: 10.1038/s41598-023-49286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Actin beta-like 2 (ACTBL2) was recently identified as a new mediator of migration in ovarian cancer cells. Yet, its impact on tumor-infiltrating and thus migrating leukocytes (TILs) remains to date unknown. This study characterizes the subset of ACTBL2-expressing TILs in epithelial ovarian cancer (EOC) and elucidates their prognostic influence on the overall survival of EOC patients with special regard to different histological subtypes. Comprehensive immunohistochemical analyses of Tissue-Microarrays of 156 ovarian cancer patients revealed, that a tumor infiltration by ACTBL2-positive leukocytes was significantly associated with an improved overall survival (OS) (61.2 vs. 34.4 months; p = 0.006) and was identified as an independent prognostic factor (HR = 0.556; p = 0.038). This significant survival benefit was particularly evident in patients with low-grade serous carcinoma (OS: median not reached vs. 15.6 months, p < 0.001; HR = 0.058, p = 0.018). In the present cohort, ACTBL2-positive TILs were mainly composed of CD44-positive cytotoxic T-cells (CD8+) and macrophages (CD68+), as depicted by double-immunofluorescence and various immunohistochemical serial staining. Our results provide significant evidence of the prognostic impact and cellular composition of ACTBL2-expressing TILs in EOC. Complementary studies are required to analyze the underlying molecular mechanisms of ACTBL2 as a marker for activated migrating leukocytes and to further characterize its immunological impact on ovarian carcinogenesis.
Collapse
Affiliation(s)
- N E Topalov
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany.
| | - D Mayr
- Institute of Pathology, Faculty of Medicine, University Hospital, LMU Munich, Munich, Germany
| | - C Kuhn
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - A Leutbecher
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - C Scherer
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - F B T Kraus
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - C V Tauber
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - S Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - S Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - A Hester
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - T Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - A Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - S Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - F Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - M Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - U Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - B Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Zhao S, Ye B, Chi H, Cheng C, Liu J. Identification of peripheral blood immune infiltration signatures and construction of monocyte-associated signatures in ovarian cancer and Alzheimer's disease using single-cell sequencing. Heliyon 2023; 9:e17454. [PMID: 37449151 PMCID: PMC10336450 DOI: 10.1016/j.heliyon.2023.e17454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a common tumor of the female reproductive system, while Alzheimer's disease (AD) is a prevalent neurodegenerative disease that primarily affects cognitive function in the elderly. Monocytes are immune cells in the blood that can enter tissues and transform into macrophages, thus participating in immune and inflammatory responses. Overall, monocytes may play an important role in Alzheimer's disease and ovarian cancer. METHODS The CIBERSORT algorithm results indicate a potential crucial role of monocytes/macrophages in OC and AD. To identify monocyte marker genes, single-cell RNA-seq data of peripheral blood mononuclear cells (PBMCs) from OC and AD patients were analyzed. Enrichment analysis of various cell subpopulations was performed using the "irGSEA" R package. The estimation of cell cycle was conducted with the "tricycle" R package, and intercellular communication networks were analyzed using "CellChat". For 134 monocyte-associated genes (MRGs), bulk RNA-seq data from two diseased tissues were obtained. Cox regression analysis was employed to develop risk models, categorizing patients into high-risk (HR) and low-risk (LR) groups. The model's accuracy was validated using an external GEO cohort. The different risk groups were evaluated in terms of immune cell infiltration, mutational status, signaling pathways, immune checkpoint expression, and immunotherapy. To identify characteristic MRGs in AD, two machine learning algorithms, namely random forest and support vector machine (SVM), were utilized. RESULTS Based on Cox regression analysis, a risk model consisting of seven genes was developed in OC, indicating a better prognosis for patients in the LR group. The LR group had a higher tumor mutation burden, immune cell infiltration abundance, and immune checkpoint expression. The results of the TIDE algorithm and the IMvigor210 cohort showed that the LR group was more likely to benefit from immunotherapy. Finally, ZFP36L1 and AP1S2 were identified as characteristic MRGs affecting OC and AD progression. CONCLUSION The risk profile containing seven genes identified in this study may help further guide clinical management and targeted therapy for OC. ZFP36L1 and AP1S2 may serve as biomarkers and new therapeutic targets for patients with OC and AD.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214000, China
| | - Bicheng Ye
- School of Clinical Medicine, Yangzhou Polytechnic College, Yangzhou, 225000, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214000, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| |
Collapse
|
7
|
Pawłowska A, Rekowska A, Kuryło W, Pańczyszyn A, Kotarski J, Wertel I. Current Understanding on Why Ovarian Cancer Is Resistant to Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:10859. [PMID: 37446039 DOI: 10.3390/ijms241310859] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The standard treatment of ovarian cancer (OC) patients, including debulking surgery and first-line chemotherapy, is unsatisfactory because of recurrent episodes in the majority (~70%) of patients with advanced OC. Clinical trials have shown only a modest (10-15%) response of OC individuals to treatment based on immune checkpoint inhibitors (ICIs). The resistance of OC to therapy is caused by various factors, including OC heterogeneity, low density of tumor-infiltrating lymphocytes (TILs), non-cellular and cellular interactions in the tumor microenvironment (TME), as well as a network of microRNA regulating immune checkpoint pathways. Moreover, ICIs are the most efficient in tumors that are marked by high microsatellite instability and high tumor mutation burden, which is rare among OC patients. The great challenge in ICI implementation is connected with distinguishing hyper-, pseudo-, and real progression of the disease. The understanding of the immunological, molecular, and genetic mechanisms of OC resistance is crucial to selecting the group of OC individuals in whom personalized treatment would be beneficial. In this review, we summarize current knowledge about the selected factors inducing OC resistance and discuss the future directions of ICI-based immunotherapy development for OC patients.
Collapse
Affiliation(s)
- Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Anna Rekowska
- Students' Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Weronika Kuryło
- Students' Scientific Association, Independent Laboratory of Cancer Diagnostics and Immunology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Anna Pańczyszyn
- Institute of Medical Sciences, Department of Biology and Genetics, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Jan Kotarski
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
8
|
Zhang L, Cascio S, Mellors JW, Buckanovich RJ, Osmanbeyoglu HU. Single-cell analysis reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544095. [PMID: 37333262 PMCID: PMC10274812 DOI: 10.1101/2023.06.07.544095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is a heterogeneous disease, and a high stromal/desmoplastic tumor microenvironment (TME) is associated with a poor outcome. Stromal cell subtypes, including fibroblasts, myofibroblasts, and cancer-associated mesenchymal stem cells, establish a complex network of paracrine signaling pathways with tumor-infiltrating immune cells that drive effector cell tumor immune exclusion and inhibit the antitumor immune response. Single-cell transcriptomics of the HGSOC TME from public and in-house datasets revealed a distinct transcriptomic landscape for immune and non-immune cells in high-stromal vs. low-stromal tumors. High-stromal tumors had a lower fraction of certain T cells, natural killer (NK) cells, and macrophages and increased expression of CXCL12 in epithelial cancer cells and cancer-associated mesenchymal stem cells (CA-MSCs). Analysis of cell-cell communication indicated that epithelial cancer cells and CA-MSCs secreted CXCL12 that interacted with the CXCR4 receptor, which was overexpressed on NK and CD8 + T cells. CXCL12 and/or CXCR4 antibodies confirmed the immunosuppressive role of CXCL12-CXCR4 in high-stromal tumors.
Collapse
|
9
|
Ma L, Zhang H, Liu C, Liu M, Shangguan F, Liu Y, Yang S, Li H, An J, Song S, Cao Q, Qu G. A novel mechanism of cannabidiol in suppressing ovarian cancer through LAIR-1 mediated mitochondrial dysfunction and apoptosis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1118-1132. [PMID: 36810933 DOI: 10.1002/tox.23752] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Cannabidiol (CBD) is a nonpsychoactive cannabinoid compound. It has been shown that CBD can inhibit the proliferation of ovarian cancer cells, but the underlying specific mechanism is unclear. We previously presented the first evidence for the expression of leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), a member of the immunosuppressive receptor family, in ovarian cancer cells. In the present study, we investigated the mechanism by which CBD inhibits the growth of SKOV3 and CAOV3 ovarian cancer cells, and we sought to understand the concurrent role of LAIR-1. In addition to inducing ovarian cancer cell cycle arrest and promoting cell apoptosis, CBD treatment significantly affected the expression of LAIR-1 and inhibited the PI3K/AKT/mTOR signaling axis and mitochondrial respiration in ovarian cancer cells. These changes were accompanied by an increase in ROS, loss of mitochondrial membrane potential, and suppression of mitochondrial respiration and aerobic glycolysis, thereby inducing abnormal or disturbed metabolism and reducing ATP production. A combined treatment with N-acetyl-l-cysteine and CBD indicated that a reduction in ROS production would restore PI3K/AKT/mTOR pathway signaling and ovarian cancer cell proliferation. We subsequently confirmed that the inhibitory effect of CBD on the PI3K/AKT/mTOR signal axis and mitochondrial bioenergy metabolism was attenuated by knockdown of LAIR-1. Our animal studies further support the in vivo anti-tumor activity of CBD and suggest its mechanism of action. In summary, the present findings confirm that CBD inhibits ovarian cancer cell growth by disrupting the LAIR-1-mediated interference with mitochondrial bioenergy metabolism and the PI3K/AKT/mTOR pathway. These results provide a new experimental basis for research into ovarian cancer treatment based on targeting LAIR-1 with CBD.
Collapse
Affiliation(s)
- Li Ma
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
- Fungal Laboratory, Jining First People's Hospital, Jining, Shandong Province, China
| | - Huachang Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Chuntong Liu
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Mengke Liu
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Liu
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
- Yantai Key Laboratory of Sports Injury and Rehabilitation, Health Commission of Shandong Province of Medicine and Health Key Laboratory of Sports Injury and Rehabilitation, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province, China
| | - Shude Yang
- Department of Edible Mushrooms, School of Agriculture, Ludong University, Yantai, Shandong Province, China
| | - Hua Li
- Department of Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Shuling Song
- School of Gerontology, Binzhou Medical University, Shandong Province, China
| | - Qizhi Cao
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Guiwu Qu
- School of Gerontology, Binzhou Medical University, Shandong Province, China
| |
Collapse
|
10
|
Exosome-Associated Gene Signature for Predicting the Prognosis of Ovarian Cancer Patients. J Immunol Res 2023; 2023:8727884. [PMID: 36726489 PMCID: PMC9886487 DOI: 10.1155/2023/8727884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023] Open
Abstract
Background The exosome is of vital importance throughout the entire progression of cancer. Because of the lack of effective biomarkers in ovarian cancer (OV), we intend to investigate the connection between exosomes and tumor immune microenvironment to verify that exosome-related genes (ERGs) can precisely forecast the prognosis of OV patients. Methods First, 117 ERGs in The Cancer Genome Atlas (TCGA) dataset were recognized. Afterwards, the risk signature consisting of four ERGs with prognostic significance was built by univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis. We also validated the risk signature by Kaplan-Meier analysis, receiver operating characteristic curve analysis and principal component analysis. Furthermore, gene set enrichment analysis was performed to compare the enrichment patterns between the two risk subgroups. The connections between the exosome-related gene risk score (ERGRS) and clinical features, immune infiltration, immune checkpoint-related genes, copy number variation, and drug sensitivity were explored. We also assessed the function of the ERGRS to forecast immunotherapeutic efficacy by immunophenoscore (IPS). Results The high-risk group had a worse prognosis than the group with low risk. We verified that the established model possessed a relatively good prognostic value. Pathway enrichment analysis indicated that the genome-wide group with low risk was enriched in immune-related pathways. We discovered that resting dendritic cells and stromal scores were upregulated in patients with high risk in the TCGA and Gene Expression Omnibus (GEO) cohorts. Moreover, the expression of six common immune checkpoint inhibitor targets was assessed, which revealed that the expression levels of CD274 (PD-L1), PDCD1 (PD-1), and IDO1 in patients with high risk were lower than those in patients with low risk. Afterwards, the low-risk group had higher IPS across the four immunotherapies, implying that it had better effects of immunotherapies. Conclusion Our study demonstrates that the exosome-related gene risk model is closely associated with immune infiltration. It can well forecast the prognosis of OV patients and guide the selection of immunotherapeutic strategies.
Collapse
|
11
|
Li S, Wang T, Fei X, Zhang M. ATR Inhibitors in Platinum-Resistant Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14235902. [PMID: 36497387 PMCID: PMC9740197 DOI: 10.3390/cancers14235902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Platinum-resistant ovarian cancer (PROC) is one of the deadliest types of epithelial ovarian cancer, and it is associated with a poor prognosis as the median overall survival (OS) is less than 12 months. Targeted therapy is a popular emerging treatment method. Several targeted therapies, including those using bevacizumab and poly (ADP-ribose) polymerase inhibitor (PARPi), have been used to treat PROC. Ataxia telangiectasia and RAD3-Related Protein Kinase inhibitors (ATRi) have attracted attention as a promising class of targeted drugs that can regulate the cell cycle and influence homologous recombination (HR) repair. In recent years, many preclinical and clinical studies have demonstrated the efficacy of ATRis in PROC. This review focuses on the anticancer mechanism of ATRis and the progress of research on ATRis for PROC.
Collapse
Affiliation(s)
- Siyu Li
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Tao Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Xichang Fei
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
| | - Mingjun Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230031, China
- Department of Oncology, Anhui Medical University, Hefei 230031, China
- Correspondence:
| |
Collapse
|
12
|
Khatoon E, Parama D, Kumar A, Alqahtani MS, Abbas M, Girisa S, Sethi G, Kunnumakkara AB. Targeting PD-1/PD-L1 axis as new horizon for ovarian cancer therapy. Life Sci 2022; 306:120827. [PMID: 35907493 DOI: 10.1016/j.lfs.2022.120827] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 02/08/2023]
Abstract
Ovarian cancer is among the deadliest gynecological cancers and the 7th most commonly occurring cancer in women globally. The 5 year survival rate is estimated to be less than 25 %, as in most cases, diagnosis occurs at an advanced stage. Despite recent advancements in treatment, clinical outcomes still remain poor, thus implicating the need for urgent identification of novel therapeutics for the treatment of this cancer. Ovarian cancer is considered a low immune reactive cancer as the tumor cells express insufficient neoantigens to be recognized by the immune cells and thus tend to escape from immune surveillance. Thus, in the recent decade, immunotherapy has gained significant attention and has rejuvenated the understanding of immune regulation in tumor biology. One of the critical immune checkpoints is programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis. Engagement of PD-1 to PD-L1 promotes immunologic tolerance and suppresses the effector T cells and maintains tumor Tregs, thus playing a crucial role in enhancing tumor survival. Recent studies are targeted to develop inhibitors that block this signal to augment the anti-tumor activity of immune cells. Also, compared to monotherapy, the combinatorial treatment of immune checkpoint inhibitors with small molecule inhibitors have shown promising results with improved efficacy and acceptable adverse events. The present review provides an overview of the PD-1/PD-L1 axis and role of non-coding RNAs in regulating this axis. Moreover, we have highlighted the various preclinical and clinical investigations on PD-1/PD-L1 immune checkpoint inhibitors and have discussed the limitations of immunotherapies in ovarian cancer.
Collapse
Affiliation(s)
- Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781 039, Assam, India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781 039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781 039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; Computers and communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781 039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
13
|
CXCL9 inhibits tumour growth and drives anti-PD-L1 therapy in ovarian cancer. Br J Cancer 2022; 126:1470-1480. [PMID: 35314795 PMCID: PMC9090786 DOI: 10.1038/s41416-022-01763-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
Background Response to immune checkpoint blockade (ICB) in ovarian cancer remains disappointing. Several studies have identified the chemokine CXCL9 as a robust prognosticator of improved survival in ovarian cancer and a characteristic of the immunoreactive subtype, which predicts ICB response. However, the function of CXCL9 in ovarian cancer has been poorly studied. Methods Impact of Cxcl9 overexpression in the murine ID8-Trp53−/− and ID8-Trp53−/–Brca2−/− ovarian cancer models on survival, cellular immune composition, PD-L1 expression and anti-PD-L1 therapy. CXCL9 expression analysis in ovarian cancer subtypes and correlation to reported ICB response. Results CXCL9 overexpression resulted in T-cell accumulation, delayed ascites formation and improved survival, which was dependent on adaptive immune function. In the ICB-resistant mouse model, the chemokine was sufficient to enable a successful anti-PD-L1 therapy. In contrast, these effects were abrogated in Brca2-deficient tumours, most likely due to an already high intrinsic chemokine expression. Finally, in ovarian cancer patients, the clear-cell subtype, known to respond best to ICB, displayed a significantly higher proportion of CXCL9high tumours than the other subtypes. Conclusions CXCL9 is a driver of successful ICB in preclinical ovarian cancer. Besides being a feasible predictive biomarker, CXCL9-inducing agents thus represent attractive combination partners to improve ICB in this cancer entity.
Collapse
|