1
|
Zhang N, Yue W, Jiao B, Cheng D, Wang J, Liang F, Wang Y, Liang X, Li K, Liu J, Li Y. Unveiling prognostic value of JAK/STAT signaling pathway related genes in colorectal cancer: a study of Mendelian randomization analysis. Infect Agent Cancer 2025; 20:9. [PMID: 39920741 PMCID: PMC11806682 DOI: 10.1186/s13027-025-00640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks among the frequently occurring malignant neoplasms affecting the gastrointestinal tract. This study aimed to explore JAK-STAT signaling pathway related genes in CRC and establish a new prognostic model. METHODS The data set used in this study is from a public database. JAK-STAT-differentially expressed genes (DEGs) were identified through differential expression analysis and weighted gene co-expression network analysis (WGCNA). Prognostic genes were selected from JAK-STAT-DEGs through Mendelian randomization (MR), univariate Cox regression, and least absolute shrinkage and selection operator (LASSO) analyses. The expressions of prognostic genes were verified by RT-qPCR. Then, a risk model was built and validated by the GSE39582. Independent prognostic factors were screened underlying risk scores and different clinical indicators, resulting in the construction of a nomogram. Additionally, immune infiltration, immune scores and immune checkpoint inhibitors analyses and gene set enrichment analysis (GSEA) were carried out. RESULTS The 3,668 JAK-STAT-DEGs were obtained by intersection of 5826 CRC-DEGs and 9766 JAK-STAT key module genes. Five prognostic genes were selected (ANK3, F5, FAM50B, KLHL35, MPP2), and their expressions were significantly different between CRC and control groups. A risk model was constructed according to prognostic genes and verified by GSE39582. In addition, the nomogram exhibited superior predictive accuracy for CRC. Furthermore, immune analysis results indicated a notable positive correlation between risk score and the scores of immune (R = 0.486), stromal (R = 0.309), and ESTIMATE (R = 0.422). Immune checkpoint inhibitor ADORA2A (Cor = 0.483263) exhibited the strongest positive correlation with risk score. And MPP2 exhibited the most potent activating influence on the cell cycle pathway, whereas ANK3 demonstrated the most significant inhibitory effect within the apoptosis pathway. CONCLUSIONS A new JAK-STAT related CRC prognostic model was constructed and validated, which possessed an underlying predictive potential for CRC patients' prognosis and could potentially enhance tailored guidance for immunotherapy.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China.
| | - Wenli Yue
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Bihang Jiao
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Duo Cheng
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Jingjing Wang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Fang Liang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Yingnan Wang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Xiyue Liang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Kunkun Li
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
- Medical Key Laboratory for Diagnosis and Treatment of Colorectal Cancer in Henan Province, Zhengzhou, Henan, China
| | - Junwei Liu
- Department of Anorectal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Yadong Li
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Li C, Mao Y, Hu J, Su C, Li M, Tan H. Integrating machine learning and multi-omics analysis to develop an asparagine metabolism immunity index for improving clinical outcome and drug sensitivity in lung adenocarcinoma. Immunol Res 2024; 72:1447-1469. [PMID: 39320693 DOI: 10.1007/s12026-024-09544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Lung adenocarcinoma (LUAD) is a malignancy affecting the respiratory system. Most patients are diagnosed with advanced or metastatic lung cancer due to the fact that most of their clinical symptoms are insidious, resulting in a bleak prognosis. Given that abnormal reprogramming of asparagine metabolism (AM) has emerged as an emerging therapeutic target for anti-tumor therapy. However, the clinical significance of abnormal reprogramming of AM in LUAD patients is unclear. In this study, we collected 864 asparagine metabolism-related genes (AMGs) and used a machine-learning computational framework to develop an asparagine metabolism immunity index (AMII) for LUAD patients. Through the utilization of median AMII scores, LUAD patients were segregated into either a low-AMII group or a high-AMII group. We observed outstanding performance of AMII in predicting survival prognosis in LUAD patients in the TCGA-LUAD cohort and in three externally independently validated GEO cohorts (GSE72094, GSE37745, and GSE30219), and poorer prognosis for LUAD patients in the high-AMII group. The results of univariate and multivariate analyses showed that AMII can be used as an independent risk factor for LUAD patients. In addition, the results of C-index analysis and decision analysis showed that AMII-based nomograms had a robust performance in terms of accuracy of prognostic prediction and net clinical benefit in patients with LUAD. Excitingly, LUAD patients in the low-AMII group were more sensitive to commonly used chemotherapeutic drugs. Consequently, AMII is expected to be a novel diagnostic tool for clinical classification, providing valuable insights for clinical decision-making and personalized management of LUAD patients.
Collapse
Affiliation(s)
- Chunhong Li
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin , 541199, Guangxi, China.
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China.
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China.
| | - Yuhua Mao
- Department of Obstetrics, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Jiahua Hu
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin , 541199, Guangxi, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Chunchun Su
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Mengqin Li
- College of Pharmacy, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Haiyin Tan
- School of Medical Laboratory Medicine, Guilin Medical University, Guilin, 541004, Guangxi, China
| |
Collapse
|
3
|
Tian Y, Liu X, Wang J, Zhang C, Yang W. Antitumor Effects and the Potential Mechanism of 10-HDA against SU-DHL-2 Cells. Pharmaceuticals (Basel) 2024; 17:1088. [PMID: 39204193 PMCID: PMC11357620 DOI: 10.3390/ph17081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
10-hydroxy-2-decenoic acid (10-HDA), which is a unique bioactive fatty acid of royal jelly synthesized by nurse bees for larvae and adult queen bees, is recognized for its dual utility in medicinal and nutritional applications. Previous research has indicated that 10-HDA exerts antitumor effects on numerous tumor cell lines, including colon cancer cells, A549 human lung cancer cells, and human hepatoma cells. The present study extends this inquiry to lymphoma, specifically evaluating the impact of 10-HDA on the SU-DHL-2 cell line. Our findings revealed dose-dependent suppression of SU-DHL-2 cell survival, with an IC50 of 496.8 μg/mL at a density of 3 × 106 cells/well after 24 h. For normal liver LO2 cells and human fibroblasts (HSFs), the IC50 values were approximately 1000 μg/mL and over 1000 μg/mL, respectively. The results of label-free proteomics revealed 147 upregulated and 347 downregulated differentially expressed proteins that were significantly enriched in the complement and coagulation cascades pathway (adjusted p-value = 0.012), including the differentially expressed proteins prothrombin, plasminogen, plasminogen, carboxypeptidase B2, fibrinogen beta chain, fibrinogen gamma chain, and coagulation factor V. The top three hub proteins, ribosomal protein L5, tumor protein p53, and ribosomal protein L24, were identified via protein-protein interaction (PPI) analysis. This result showed that the complement and coagulation cascade pathways might play a key role in the antitumor process of 10-HDA, suggesting a potential therapeutic avenue for lymphoma treatment. However, the specificity of the effect of 10-HDA on SU-DHL-2 cells warrants further investigation.
Collapse
Affiliation(s)
- Yuanyuan Tian
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqing Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Jie Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Chuang Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Wenchao Yang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| |
Collapse
|
4
|
Lind SM, Sletten M, Hellenes M, Mathelier A, Tekpli X, Tinholt M, Iversen N. Coagulation factor V in breast cancer: a p53-regulated tumor suppressor and predictive marker for treatment response to chemotherapy. J Thromb Haemost 2024; 22:1569-1582. [PMID: 38382738 DOI: 10.1016/j.jtha.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Patients with cancer are at an increased risk of developing coagulation complications, and chemotherapy treatment increases the risk. Tumor progression is closely linked to the hemostatic system. Breast cancer tumors express coagulation factor V (FV), an essential factor in blood coagulation. The functional role of FV during treatment with chemotherapy is poorly understood and was explored in this study. OBJECTIVES We aimed to investigate the role of FV in breast cancer progression by exploring associations with treatment response, gene regulation, and the functional effects of FV. METHODS The receiver operating characteristic plotter was used to explore the predictive value of FV mRNA (F5) expression for treatment with FEC (5-fluorouracil, anthracycline, and cyclophosphamide). Breast cancer cohorts were analyzed to study treatment response to FEC. The effect of chemotherapy on F5 expression, the regulation of F5, and the functional effects of FV dependent and independent of chemotherapy were studied in breast cancer cell lines. RESULTS F5 tumor expression was significantly higher in responders to FEC than in nonresponders. In vitro experiments revealed that anthracycline treatment increased the expression of F5. Inhibition and knockdown of p53 reduced the anthracycline-induced F5 expression. Mutation of a p53 half-site (c.158+1541/158+1564) in a luciferase plasmid reduced luciferase activity, suggesting that p53 plays a role in regulating F5. FV overexpression increased apoptosis and reduced proliferation slightly during anthracycline treatment. CONCLUSION Our study identified F5 as a p53-regulated tumor suppressor candidate and a promising marker for response to chemotherapy. FV may have functional effects that are therapeutically relevant in breast cancer.
Collapse
Affiliation(s)
- Sara Marie Lind
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marit Sletten
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mona Hellenes
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Anthony Mathelier
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mari Tinholt
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Tinholt M, Tekpli X, Torland LA, Tahiri A, Geisler J, Kristensen V, Sandset PM, Iversen N. The breast cancer coagulome in the tumor microenvironment and its role in prognosis and treatment response to chemotherapy. J Thromb Haemost 2024; 22:1319-1335. [PMID: 38237862 DOI: 10.1016/j.jtha.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND The procoagulant phenotype in cancer is linked to thrombosis, cancer progression, and immune response. A novel treatment that reduces the risk of both thrombosis and cancer progression without excess bleeding risk remains to be identified. OBJECTIVES Here, we aimed to broadly investigate the breast tumor coagulome and its relation to prognosis, treatment response to chemotherapy, and the tumor microenvironment. METHODS Key coagulation-related genes (n = 35) were studied in a Norwegian cohort with tumor (n = 134) and normal (n = 189) tissue and in the Cancer Genome Atlas (n = 1052) data set. We performed gene set variation analysis in the Norwegian cohort, and in the Cancer Genome Atlas cohort, associations with the tumor microenvironment and prognosis were evaluated. Analyses were performed with cBioPortal, Estimation of Stromal and Immune cells in Malignant Tumors Using Expression Data, Tumor Immune Estimation Resource, the integrated repository portal for tumor-immune system interactions, Tumor Immune Single-cell Hub 2, and the receiver operating characteristic plotter. Six independent breast cancer cohorts were used to study the tumor coagulome and treatment response to chemotherapy. RESULTS Twenty-two differentially expressed coagulation-related genes were identified in breast tumors. Several coagulome factors were correlated with tumor microenvironment characteristics and were expressed by nonmalignant cells in the tumor microenvironment. PLAT and F8 were independent predictors of better overall survival and progression-free survival, respectively. F12 and PLAU were predictors of worse progression-free survival. The PROCR-THBD-PLAT signature showed a promising predictive value (area under the curve, 0.75; 95% CI, 0.69-0.81; P = 3.6 × 10-17) for combination chemotherapy with fluorouracil, epirubicin, and cyclophosphamide. CONCLUSION The breast tumor coagulome showed potential in prediction of prognosis and chemotherapy response. Cells within the tumor microenvironment are sources of coagulome factors and may serve as therapeutic targets of coagulation factors.
Collapse
Affiliation(s)
- Mari Tinholt
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Department of Haematology, Oslo University Hospital, Oslo, Norway.
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Lilly Anne Torland
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andliena Tahiri
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway; Department of Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital, Lørenskog, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital, Lørenskog, Norway
| | - Vessela Kristensen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Morten Sandset
- Department of Haematology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Norway
| | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Chu M, He S, Zhao H, Yin S, Liu Z, Zhang W, Liu X, Bao H. Increasing expression of STING by ERα antagonizes LCN2 downregulation during chronic endometritis. J Reprod Immunol 2023; 160:104167. [PMID: 37952294 DOI: 10.1016/j.jri.2023.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Chronic endometritis has a high incidence in infertile women, which is caused by endometrial microbiome infection. In response to microbial infection, the role of defensins during chronic endometritis need explored. Besides, the expression of estrogen and its receptors vary in different menstrual cycles, but their roles in chronic endometritis are still unclear. In this study, we used the human endometrial tissues to examine the expression of antimicrobial peptides (AMPs) α-defensin hNP-1 and β-defensins hBD-1, hBD-2, hBD-3, hBD-4 and LCN2. We found the expression of hBD-1 and LCN2 were downregulated in endometritis tissues, while the expressions of hBD-2, hBD-3, hBD-4, hNP-1, and estrogen and ERα were upregulated in chronic endometritis tissues compared to normal tissues. The expression and phosphorylation of STING, which is a crucial mediator of mammalian innate immunity in response to pathogens, was regulated with the treatment of ERα inhibitor raloxifene (Rx). Furthermore, using with the estrogen receptor inhibitor Rx and STING inhibitor H-151 significantly decreases the LCN2 expression. Taken together, these results suggested ERα was upregulated to modulate STING expression inducing LCN2 antimicrobial peptide expression to modulate the mucosal immunity during chronic endometritis.
Collapse
Affiliation(s)
- Min Chu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Shunzhi He
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Huishan Zhao
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Shuyuan Yin
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Zhenteng Liu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Wei Zhang
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China
| | - Xuemei Liu
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China.
| | - Hongchu Bao
- Reproductive Medicine Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding Estern Road, Yantai 264000, People's Republic of China.
| |
Collapse
|
7
|
Dutta P, Keung MY, Wu Y, Vadgama JV. Genetic variants in African-American and Hispanic patients with breast cancer. Oncol Lett 2023; 25:51. [PMID: 36644153 PMCID: PMC9811638 DOI: 10.3892/ol.2022.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is a disease with significant health disparity affecting mortality in minority women. The present study examined the genetic makeup of breast cancers in African-American and Hispanic/Latinx patients to determine specific genetic mutations associated with breast cancer in the minority population from South Los Angeles, United States. Whole-exome sequencing was performed on DNA extracted from breast cancer tumor biopsies collected from 13 African-American and 15 Hispanic women and 8 matched-normal samples for each ethnic category. The results were analyzed using Ensemble Variant Effect Predictor and Mutation Significance. Additionally, a comparative analysis with The Cancer Genome Atlas data was provided. Our data revealed somatic mutations in genes such as SET domain containing (lysine methyltransferase) 8, serine protease 1 and AT-rich interaction domain 1B (ARID1B) and known breast cancer genes, such as BRCA1/2, TP53 and the DNA damage response genes across all ethnicities. Additionally, Hispanic patients had BRCA1 associated RING domain 1B (BARD1) variants, while African-American patients had higher numbers of nonsynonymous variants in the RAD51 paralog B (RAD51B), ARID1B and X-ray repair cross complementing 3 (XRCC3) genes. In addition, our patients exhibited mutational signature enrichment that indicated DNA homologous recombination repair deficiencies. Therefore, African-American and Hispanic breast cancer samples showed considerable overlap in breast cancer genetic mutations. However, there are differences in specific genetic variants in TP53, BRCA1/2, BARD1 or ARID1B, which will require further study of their role in tumorigenesis.
Collapse
Affiliation(s)
- Pranabananda Dutta
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Man Y. Keung
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- David Geffen UCLA School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- David Geffen UCLA School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|