1
|
Saha P, Ahmad F. Neuroprotective, Anti-Inflammatory and Antifibrillogenic Offerings by Emodin against Alzheimer's Dementia: A Systematic Review. ACS OMEGA 2024; 9:7296-7309. [PMID: 38405501 PMCID: PMC10882671 DOI: 10.1021/acsomega.3c07178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 02/27/2024]
Abstract
Background: Alzheimer's disease (AD) is among the major causes of dementia in the elderly and exerts tremendous clinical, psychological and socio-economic constraints. Currently, there are no effective disease-modifying/retarding anti-AD agents. Emodin is a bioactive phytochemical with potent multimodal anti-inflammatory, antioxidant, and antifibrillogenic properties. In particular, emodin may result in significant repression of the pathogenic mechanisms underlying AD. The purpose of this review is to accumulate and summarize all the primary research data evaluating the therapeutic actions of emodin in AD pathogenesis. Methodology: The search, selection, and retrieval of pertinent primary research articles were systematically performed using a methodically designed approach. A variety of keyword combinations were employed on online scholarly web-databases. Strict preset inclusion and exclusion criteria were used to select the retrieved studies. Data from the individual studies were summarized and compiled into different sections, based upon their findings. Results: Cellular and animal research indicates that emodin exerts robust multimodal neuroprotection in AD. While emodin effectively prevents tau and amyloid-beta (Aβ) oligomerization, it also mitigates their neurotoxicity by attenuating neuroinflammatory, oxidative, and bioenergetic defects. Evidences for emodin-mediated enhancements in memory, learning, and cognition were also found in the literature. Conclusion: Emodin is a potential anti-AD dietary supplement; however, further studies are warrantied to thoroughly understand its target players and mechanisms. Moreover, human clinical data on emodin-mediated amelioration of AD phenotype is largely lacking, and must be addressed in the future. Lastly, the safety of exogenously supplemented emodin must be thoroughly evaluated.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
2
|
Taheri M, Bahrami A, Asadi KK, Mohammadi M, Molaei P, Hashemi M, Nouri F. A review on nonviral, nonbacterial infectious agents toxicity involved in neurodegenerative diseases. Neurodegener Dis Manag 2023; 13:351-369. [PMID: 38357803 DOI: 10.2217/nmt-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Neuronal death, decreased activity or dysfunction of neurotransmitters are some of the pathophysiological reasons for neurodegenerative diseases like Alzheimer's, Parkinson's and multiple sclerosis. Also, there is evidence for the role of infections and infectious agents in neurodegenerative diseases and the effect of some metabolites in microorganisms in the pathophysiology of these diseases. In this study, we intend to evaluate the existing studies on the role of infectious agents and their metabolites on the pathophysiology of neurodegenerative diseases. PubMed, Scopus, Google Scholar and Web of Science search engines were searched. Some infectious agents have been observed in neurodegenerative diseases. Also, isolations of some fungi and microalgae have an improving effect on Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kiana Kimiaei Asadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pejman Molaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Khan T, Waseem R, Shahid M, Ansari J, Ahanger IA, Hassan I, Islam A. Recent advancement in therapeutic strategies for Alzheimer's disease: Insights from clinical trials. Ageing Res Rev 2023; 92:102113. [PMID: 37918760 DOI: 10.1016/j.arr.2023.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by the presence of plaques of amyloid beta and Tau proteins. There is currently no permanent cure for AD; the only medications approved by the FDA for mild to moderate AD are cholinesterase inhibitors, NMDA receptor antagonists, and immunotherapies against core pathophysiology, that provide temporary relief only. Researchers worldwide have made significant attempts to find new targets and develop innovative therapeutic molecules to treat AD. The FDA-approved drugs are palliative and couldn't restore the damaged neuron cells of AD. Stem cells have self-differentiation properties, making them prospective therapeutics to treat AD. The promising results in pre-clinical studies of stem cell therapy for AD seek attention worldwide. Various stem cells, mainly mesenchymal stem cells, are currently in different phases of clinical trials and need more advancements to take this therapy to the translational level. Here, we review research from the past decade that has identified several hypotheses related to AD pathology. Moreover, this article also focuses on the recent advancement in therapeutic strategies for AD treatment including immunotherapy and stem cell therapy detailing the clinical trials that are currently undergoing development.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Clinical Biochemistry, University of Kashmir,190006, India
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
4
|
Wan J, Zou Y, Sun R, Xu Z, Tang J, Gong Y, Wei G, Zhang Q. Destabilization mechanism of R3-R4 tau protofilament by purpurin: a molecular dynamics study. Phys Chem Chem Phys 2023. [PMID: 37314291 DOI: 10.1039/d3cp01039b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The accumulation of tau protein aggregates is a common feature observed in many neurodegenerative diseases. However, the structural characteristics of tau aggregates can vary among different tauopathies. It has been established that the structure of the tau protofilament in Chronic traumatic encephalopathy (CTE) is similar to that of Alzheimer's disease (AD). In addition, a previous study found that purpurin, an anthraquinone, could inhibit and disassemble the pre-formed 306VQIVYK311 isoform of AD-tau protofilament. Herein, we used all-atom molecular dynamic (MD) simulation to investigate the distinctive features between CTE-tau and AD-tau protofilament and the influence of purpurin on CTE-tau protofilament. Our findings revealed notable differences at the atomic level between CTE-tau and AD-tau protofilaments, particularly in the β6-β7 angle and the solvent-accessible surface area (SASA) of the β4-β6 region. These structural disparities contributed to the distinct characteristics observed in the two types of tau protofilaments. Our simulations substantiated that purpurin could destabilize the CTE-tau protofilament and decrease β-sheet content. Purpurin molecules could insert the β4-β6 region and weaken the hydrophobic packing between β1 and β8 through π-π stacking. Interestingly, each of the three rings in purpurin exhibited unique binding preferences with the CTE-tau protofilament. Overall, our study sheds light on the structural distinctions between CTE-tau and AD-tau protofilaments, as well as the destabilizing mechanism of purpurin on CTE-tau protofilament, which may be helpful to the development of drugs to prevent CTE.
Collapse
Affiliation(s)
- Jiaqian Wan
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 886 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Ruiqing Sun
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| | - Zhengdong Xu
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| | - Jiaxing Tang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| | - Yehong Gong
- School of Sports Science and Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Qingwen Zhang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| |
Collapse
|
5
|
Ghazawi KF, Fatani SA, Mohamed SGA, Mohamed GA, Ibrahim SRM. Aspergillus nidulans—Natural Metabolites Powerhouse: Structures, Biosynthesis, Bioactivities, and Biotechnological Potential. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nowadays, finding out new natural scaffolds of microbial origin increases at a higher rate than in the past decades and represents an auspicious route for reinvigorating the pool of compounds entering pharmaceutical industries. Fungi serve as a depository of fascinating, structurally unique metabolites with considerable therapeutic significance. Aspergillus genus represents one of the most prolific genera of filamentous fungi. Aspergillus nidulans Winter G. is a well-known and plentiful source of bioactive metabolites with abundant structural diversity, including terpenoids, benzophenones, sterols, alkaloids, xanthones, and polyketides, many of which display various bioactivities, such as cytotoxicity, antioxidant, anti-inflammatory, antiviral, and antimicrobial activities. The current work is targeted to survey the reported literature on A. nidulans, particularly its metabolites, biosynthesis, and bioactivities, in addition to recent reports on its biotechnological potential. From 1953 till November 2022, relying on the stated data, 206 metabolites were listed, with more than 100 references.
Collapse
|
6
|
Khan S, Hassan MI, Shahid M, Islam A. Nature's Toolbox Against Tau Aggregation: An Updated Review of Current Research. Ageing Res Rev 2023; 87:101924. [PMID: 37004844 DOI: 10.1016/j.arr.2023.101924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Tau aggregation is a hallmark of several neurodegenerative disorders, such as Alzheimer's disease (AD), frontotemporal dementia, and progressive supranuclear palsy. Hyperphosphorylated tau is believed to contribute to the degeneration of neurons and the development of these complex diseases. Therefore, one potential treatment for these illnesses is to prevent or counteract tau aggregation. In recent years, interest has been increasing in developing nature-derived tau aggregation inhibitors as a potential treatment for neurodegenerative disorders. Researchers have become increasingly interested in natural compounds with multifunctional features, such as flavonoids, alkaloids, resveratrol, and curcumin, since these molecules can interact simultaneously with the various targets of AD. Recent studies have demonstrated that several natural compounds can inhibit tau aggregation and promote the disassembly of pre-formed tau aggregates. Nature-derived tau aggregation inhibitors hold promise as a potential treatment for neurodegenerative disorders. However, it is important to note that more research is needed to fully understand the mechanisms by which these compounds exert their effects and their safety and efficacy in preclinical and clinical studies. Nature-derived inhibitors of tau aggregation are a promising new direction in the research of neurodegenerative complexities. This review focuses on the natural products that have proven to be a rich supply for inhibitors in tau aggregation and their uses in neurodegenerative complexities, including AD.
Collapse
|
7
|
Bai X, Sheng Y, Tang Z, Pan J, Wang S, Tang B, Zhou T, Shi L, Zhang H. Polyketides as Secondary Metabolites from the Genus Aspergillus. J Fungi (Basel) 2023; 9:261. [PMID: 36836375 PMCID: PMC9962652 DOI: 10.3390/jof9020261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Polyketides are an important class of structurally diverse natural products derived from a precursor molecule consisting of a chain of alternating ketone and methylene groups. These compounds have attracted the worldwide attention of pharmaceutical researchers since they are endowed with a wide array of biological properties. As one of the most common filamentous fungi in nature, Aspergillus spp. is well known as an excellent producer of polyketide compounds with therapeutic potential. By extensive literature search and data analysis, this review comprehensively summarizes Aspergillus-derived polyketides for the first time, regarding their occurrences, chemical structures and bioactivities as well as biosynthetic logics.
Collapse
Affiliation(s)
- Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yue Sheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenxing Tang
- School of Culinary Arts, Tourism College of Zhejiang, Hangzhou 311231, China
| | - Jingyi Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu’e Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
8
|
Rabot C, Chen Y, Bijlani S, Chiang Y, Oakley CE, Oakley BR, Williams TJ, Wang CCC. Conversion of Polyethylenes into Fungal Secondary Metabolites. Angew Chem Int Ed Engl 2023; 62:e202214609. [PMID: 36417558 PMCID: PMC10100090 DOI: 10.1002/anie.202214609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Waste plastics represent major environmental and economic burdens due to their ubiquity, slow breakdown rates, and inadequacy of current recycling routes. Polyethylenes are particularly problematic, because they lack robust recycling approaches despite being the most abundant plastics in use today. We report a novel chemical and biological approach for the rapid conversion of polyethylenes into structurally complex and pharmacologically active compounds. We present conditions for aerobic, catalytic digestion of polyethylenes collected from post-consumer and oceanic waste streams, creating carboxylic diacids that can then be used as a carbon source by the fungus Aspergillus nidulans. As a proof of principle, we have engineered strains of A. nidulans to synthesize the fungal secondary metabolites asperbenzaldehyde, citreoviridin, and mutilin when grown on these digestion products. This hybrid approach considerably expands the range of products to which polyethylenes can be upcycled.
Collapse
Affiliation(s)
- Chris Rabot
- Department of Pharmacology & Pharmaceutical SciencesUniversity of Southern California1985 Zonal AveLos AngelesCA 90033USA
| | - Yuhao Chen
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of ChemistryUniversity of Southern California837 Bloom WalkLos AngelesCA 90089USA
- Wrigley Institute for Environmental StudiesUniversity of Southern California3454 Trousdale ParkwayLos AngelesCA 90089USA
| | - Swati Bijlani
- Department of Pharmacology & Pharmaceutical SciencesUniversity of Southern California1985 Zonal AveLos AngelesCA 90033USA
| | - Yi‐Ming Chiang
- Department of Pharmacology & Pharmaceutical SciencesUniversity of Southern California1985 Zonal AveLos AngelesCA 90033USA
| | - C. Elizabeth Oakley
- Department of Molecular BiosciencesUniversity of Kansas1200 Sunnyside AvenueLawrenceKS 66045USA
| | - Berl R. Oakley
- Department of Molecular BiosciencesUniversity of Kansas1200 Sunnyside AvenueLawrenceKS 66045USA
| | - Travis J. Williams
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of ChemistryUniversity of Southern California837 Bloom WalkLos AngelesCA 90089USA
- Wrigley Institute for Environmental StudiesUniversity of Southern California3454 Trousdale ParkwayLos AngelesCA 90089USA
| | - Clay C. C. Wang
- Department of Pharmacology & Pharmaceutical SciencesUniversity of Southern California1985 Zonal AveLos AngelesCA 90033USA
- Donald P. and Katherine B. Loker Hydrocarbon Institute and Department of ChemistryUniversity of Southern California837 Bloom WalkLos AngelesCA 90089USA
- Wrigley Institute for Environmental StudiesUniversity of Southern California3454 Trousdale ParkwayLos AngelesCA 90089USA
| |
Collapse
|
9
|
Guimarães PL, Tavares DQ, Carrião GS, Oliveira MEH, Oliveira CR. Potential of marine compounds in the treatment of neurodegenerative diseases: a review. BRAZ J BIOL 2023; 83:e266795. [PMID: 36921191 DOI: 10.1590/1519-6984.266795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023] Open
Abstract
Neurodegenerative diseases (ND) are characterized, especially, by the progressive loss of neurons, resulting in neuropsychomotor dysfunctions. Even with a high prevalence, NDs are treated with drugs that alleviate the symptoms of patients, but which develop adverse events and still do not inhibit the progression of the disease. Thus, within a new pharmacological perspective, this review aimed to verify the therapeutic potential of natural compounds of marine origin against ND. For this, an integrative review was carried out, according to the PRISMA methodology, which included steps such as: search, pre-selection and inclusion of articles. The results described revealed species such as Acaudina malpodioides, Holothuria scabra and Xylaria sp., which presented important evidence in relation to Alzheimer's, reducing the generation of ROS, presenting neuroprotective effects and reducing the concentration of Aβ peptide. Regarding Parkinson's disease (PD), another example of ND, the bioactive compounds from Holothuria scabra and Xylaria sp., showed to be able to reduce the degeneration of dopaminergic neurons, reduce the deposition of alpha synuclein and reduce the formation of Mutant Huntingtin protein (Mhtt). The other marine compounds and bioactive substances are also described in this review. In conclusion, the evaluated studies indicate that compounds of marine origin emerge as a promising source of bioactive compounds, revealing an important therapeutic potential for the treatment of ND.
Collapse
Affiliation(s)
- P L Guimarães
- Universidade Anhembi Morumbi, Escola de Medicina, São José dos Campos, SP, Brasil
| | - D Q Tavares
- Universidade Anhembi Morumbi, Escola de Medicina, São José dos Campos, SP, Brasil
| | - G S Carrião
- Universidade Anhembi Morumbi, Escola de Medicina, São José dos Campos, SP, Brasil
| | - M E H Oliveira
- Universidade Anhembi Morumbi, Escola de Medicina, São José dos Campos, SP, Brasil
| | - C R Oliveira
- Universidade Anhembi Morumbi, Escola de Medicina, São José dos Campos, SP, Brasil
- Universidade Federal de São Paulo - UNIFESP, Programa de Pós-graduação em Engenharia Biomédica, São José dos Campos, SP, Brasil
| |
Collapse
|
10
|
Petri L, Ábrányi-Balogh P, Vagrys D, Imre T, Varró N, Mándity I, Rácz A, Wittner L, Tóth K, Tóth EZ, Juhász T, Davis B, Keserű GM. A covalent strategy to target intrinsically disordered proteins:Discovery of novel tau aggregation inhibitors. Eur J Med Chem 2022; 231:114163. [DOI: 10.1016/j.ejmech.2022.114163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022]
|
11
|
The Health Benefits of Emodin, a Natural Anthraquinone Derived from Rhubarb-A Summary Update. Int J Mol Sci 2021; 22:ijms22179522. [PMID: 34502424 PMCID: PMC8431459 DOI: 10.3390/ijms22179522] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Emodin (6-methyl-1,3,8-trihydroxyanthraquinone) is a naturally occurring anthraquinone derivative found in roots and leaves of various plants, fungi and lichens. For a long time it has been used in traditional Chinese medicine as an active ingredient in herbs. Among other sources, it is isolated from the rhubarb Rheum palmatum or tuber fleece-flower Polygonam multiflorum. Emodin has a wide range of biological activities, including diuretic, antibacterial, antiulcer, anti-inflammatory, anticancer and antinociceptive. According to the most recent studies, emodin acts as an antimalarial and antiallergic agent, and can also reverse resistance to chemotherapy. In the present work the potential therapeutic role of emodin in treatment of inflammatory diseases, cancers and microbial infections is analysed.
Collapse
|
12
|
Ingham DJ, Blankenfeld BR, Chacko S, Perera C, Oakley BR, Gamblin TC. Fungally Derived Isoquinoline Demonstrates Inducer-Specific Tau Aggregation Inhibition. Biochemistry 2021; 60:1658-1669. [PMID: 34009955 PMCID: PMC8173610 DOI: 10.1021/acs.biochem.1c00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The microtubule-associated
protein tau promotes the stabilization
of the axonal cytoskeleton in neurons. In several neurodegenerative
diseases, such as Alzheimer’s disease, tau has been found to
dissociate from microtubules, leading to the formation of pathological
aggregates that display an amyloid fibril-like structure. Recent structural
studies have shown that the tau filaments isolated from different
neurodegenerative disorders have structurally distinct fibril cores
that are specific to the disease. These “strains” of
tau fibrils appear to propagate between neurons in a prion-like fashion
that maintains their initial template structure. In addition, the
strains isolated from diseased tissue appear to have structures that
are different from those made by the most commonly used in
vitro modeling inducer molecule, heparin. The structural
differences among strains in different diseases and in vitro-induced tau fibrils may contribute to recent failures in clinical
trials of compounds designed to target tau pathology. This study identifies
an isoquinoline compound (ANTC-15) isolated from the fungus Aspergillus nidulans that can both inhibit filaments induced
by arachidonic acid (ARA) and disassemble preformed ARA fibrils. When
compared to a tau aggregation inhibitor currently in clinical trials
(LMTX, LMTM, or TRx0237), ANTC-15 and LMTX were found to have opposing
inducer-specific activities against ARA and heparin in vitro-induced tau filaments. These findings may help explain the disappointing
results in translating potent preclinical inhibitor candidates to
successful clinical treatments.
Collapse
Affiliation(s)
- David J Ingham
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Bryce R Blankenfeld
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Shibin Chacko
- Synthetic Chemical Biology Core Facility, University of Kansas, Lawrence, Kansas 66047, United States
| | - Chamani Perera
- Synthetic Chemical Biology Core Facility, University of Kansas, Lawrence, Kansas 66047, United States
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Truman Christopher Gamblin
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States.,Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
13
|
Campora M, Francesconi V, Schenone S, Tasso B, Tonelli M. Journey on Naphthoquinone and Anthraquinone Derivatives: New Insights in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:33. [PMID: 33466332 PMCID: PMC7824805 DOI: 10.3390/ph14010033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by memory loss, cognitive impairment, and functional decline leading to dementia and death. AD imposes neuronal death by the intricate interplay of different neurochemical factors, which continue to inspire the medicinal chemist as molecular targets for the development of new agents for the treatment of AD with diverse mechanisms of action, but also depict a more complex AD scenario. Within the wide variety of reported molecules, this review summarizes and offers a global overview of recent advancements on naphthoquinone (NQ) and anthraquinone (AQ) derivatives whose more relevant chemical features and structure-activity relationship studies will be discussed with a view to providing the perspective for the design of viable drugs for the treatment of AD. In particular, cholinesterases (ChEs), β-amyloid (Aβ) and tau proteins have been identified as key targets of these classes of compounds, where the NQ or AQ scaffold may contribute to the biological effect against AD as main unit or significant substructure. The multitarget directed ligand (MTDL) strategy will be described, as a chance for these molecules to exhibit significant potential on the road to therapeutics for AD.
Collapse
Affiliation(s)
| | | | | | | | - Michele Tonelli
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (M.C.); (V.F.); (S.S.); (B.T.)
| |
Collapse
|
14
|
Dominguez-Meijide A, Vasili E, Outeiro TF. Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sci 2020; 10:E858. [PMID: 33203009 PMCID: PMC7696562 DOI: 10.3390/brainsci10110858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates composed of abnormal tau protein in the brain. Additionally, misfolded forms of tau can propagate from cell to cell and throughout the brain. This process is thought to lead to the templated misfolding of the native forms of tau, and thereby, to the formation of newer toxic aggregates, thereby propagating the disease. Therefore, modulation of the processes that lead to tau aggregation and spreading is of utmost importance in the fight against tauopathies. In recent years, several molecules have been developed for the modulation of tau aggregation and spreading. In this review, we discuss the processes of tau aggregation and spreading and highlight selected chemicals developed for the modulation of these processes, their usefulness, and putative mechanisms of action. Ultimately, a stronger understanding of the molecular mechanisms involved, and the properties of the substances developed to modulate them, will lead to the development of safer and better strategies for the treatment of tauopathies.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
15
|
Sonawane SK, Chidambaram H, Boral D, Gorantla NV, Balmik AA, Dangi A, Ramasamy S, Marelli UK, Chinnathambi S. EGCG impedes human Tau aggregation and interacts with Tau. Sci Rep 2020; 10:12579. [PMID: 32724104 PMCID: PMC7387440 DOI: 10.1038/s41598-020-69429-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Tau aggregation and accumulation is a key event in the pathogenesis of Alzheimer’s disease. Inhibition of Tau aggregation is therefore a potential therapeutic strategy to ameliorate the disease. Phytochemicals are being highlighted as potential aggregation inhibitors. Epigallocatechin-3-gallate (EGCG) is an active phytochemical of green tea that has shown its potency against various diseases including aggregation inhibition of repeat Tau. The potency of EGCG in altering the PHF assembly of full-length human Tau has not been fully explored. By various biophysical and biochemical analyses like ThS fluorescence assay, MALDI-TOF analysis and Isothermal Titration Calorimetry, we demonstrate dual effect of EGCG on aggregation inhibition and disassembly of full-length Tau and their binding affinity. The IC50 for Tau aggregation by EGCG was found to be 64.2 μM.
Collapse
Affiliation(s)
- Shweta Kishor Sonawane
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Debjyoti Boral
- Structural Biology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Nalini Vijay Gorantla
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Abhishek Ankur Balmik
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Abha Dangi
- Central NMR Facility and Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Sureshkumar Ramasamy
- Structural Biology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Udaya Kiran Marelli
- Central NMR Facility and Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India.
| |
Collapse
|
16
|
Abdelhameed RFA, Habib ES, Goda MS, Fahim JR, Hassanean HA, Eltamany EE, Ibrahim AK, AboulMagd AM, Fayez S, El-kader AMA, Al-Warhi T, Bringmann G, Ahmed SA, Abdelmohsen UR. Thalassosterol, a New Cytotoxic Aromatase Inhibitor Ergosterol Derivative from the Red Sea Seagrass Thalassodendron ciliatum. Mar Drugs 2020; 18:md18070354. [PMID: 32650455 PMCID: PMC7401251 DOI: 10.3390/md18070354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 01/04/2023] Open
Abstract
Thalassodendron ciliatum (Forssk.) Den Hartog is a seagrass belonging to the plant family Cymodoceaceae with ubiquitous phytoconstituents and important pharmacological potential, including antioxidant, antiviral, and cytotoxic activities. In this work, a new ergosterol derivative named thalassosterol (1) was isolated from the methanolic extract of T. ciliatum growing in the Red Sea, along with two known first-reported sterols, namely ergosterol (2) and stigmasterol (3), using different chromatographic techniques. The structure of the new compound was established based on 1D and 2D NMR spectroscopy and high-resolution mass spectrometry (HR-MS) and by comparison with the literature data. The new ergosterol derivative showed significant in vitro antiproliferative potential against the human cervical cancer cell line (HeLa) and human breast cancer (MCF-7) cell lines, with IC50 values of 8.12 and 14.24 µM, respectively. In addition, docking studies on the new sterol 1 explained the possible binding interactions with an aromatase enzyme; this inhibition is beneficial in both cervical and breast cancer therapy. A metabolic analysis of the crude extract of T. ciliatum using liquid chromatography combined with high-resolution electrospray ionization mass spectrometry (LC-ESI-HR-MS) revealed the presence of an array of phenolic compounds, sterols and ceramides, as well as di- and triglycerides.
Collapse
Affiliation(s)
- Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.S.G.); (H.A.H.); (E.E.E.); (A.K.I.)
| | - Eman S. Habib
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.S.G.); (H.A.H.); (E.E.E.); (A.K.I.)
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.S.G.); (H.A.H.); (E.E.E.); (A.K.I.)
| | - John Refaat Fahim
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (J.R.F.); (U.R.A.)
| | - Hashem A. Hassanean
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.S.G.); (H.A.H.); (E.E.E.); (A.K.I.)
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.S.G.); (H.A.H.); (E.E.E.); (A.K.I.)
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.S.G.); (H.A.H.); (E.E.E.); (A.K.I.)
| | - Asmaa M. AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University, BeniSuef 62513, Egypt;
| | - Shaimaa Fayez
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Adel M. Abd El-kader
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 13414, Saudi Arabia;
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
- Correspondence: (G.B.); (S.A.A.); Tel.: +49-0931-3185323 (G.B.); +20-010-92638387 (S.A.A.)
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (M.S.G.); (H.A.H.); (E.E.E.); (A.K.I.)
- Correspondence: (G.B.); (S.A.A.); Tel.: +49-0931-3185323 (G.B.); +20-010-92638387 (S.A.A.)
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (J.R.F.); (U.R.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt;
| |
Collapse
|
17
|
Monteiro KL, Alcântara MGDS, de Aquino TM, da Silva-Júnior EF. Tau Protein Aggregation in Alzheimer's Disease: Recent Advances in the Development of Novel Therapeutic Agents. Curr Pharm Des 2020; 26:1682-1692. [DOI: 10.2174/1381612826666200414164038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
:
Major research in Alzheimer’s disease (AD) related to disease-modifying agents is concentrated on
pharmacological approaches related to diagnostic markers, neurofibrillary tangles and amyloid plaques. Although
most studies focus on anti-amyloid strategies, investigations on tau protein have produced significant advances in
the modulation of the pathophysiology of several neurodegenerative diseases. Since the discovery of phenothiazines
as tau protein aggregation inhibitors (TAGIs), many additional small molecule inhibitors have been discovered
and characterized in biological model systems, which exert their interaction effects by covalent and noncovalent
means. In this paper, we summarize the latest advances in the discovery and development of tau aggregation
inhibitors using a specialized approach in their chemical classes. The design of new TAGIs and their encouraging
use in in vivo and clinical trials support their potential therapeutic use in AD.
Collapse
Affiliation(s)
- Kadja L.C. Monteiro
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Marcone G. dos S. Alcântara
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Thiago M. de Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, Brazil
| | | |
Collapse
|
18
|
Gorantla N, Landge VG, Nagaraju PG, Priyadarshini CG P, Balaraman E, Chinnathambi S. Molecular Cobalt(II) Complexes for Tau Polymerization in Alzheimer's Disease. ACS OMEGA 2019; 4:16702-16714. [PMID: 31646215 PMCID: PMC6796896 DOI: 10.1021/acsomega.9b00692] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/01/2019] [Indexed: 05/15/2023]
Abstract
Tau is an axonal protein known to form abnormal aggregates and is the biomarker of Alzheimer's disease. Metal-based therapeutics for inhibition of Tau aggregation is limited and rarely reported in contemporary science. Here, we report the first example of rationally designed molecular cobalt(II)-complexes for effective inhibition of Tau and disaggregation of preformed Tau fibrils. The mechanistic studies reveal that prevention of Tau aggregation by cobalt-based metal complexes (CBMCs) is concentration-dependent and Tau seldom exhibits conformational changes. Interestingly, CBMCs play dual role in causing disassembly of preformed aggregates as well as inhibition of complete Tau aggregation. Furthermore, CBMCs were nontoxic and maintained the tubulin network intact. CBMCs also prevented okadaic acid-induced toxicity in SH-SY5Y cells thus, preventing hyperphosphorylation of Tau. We believe that this unprecedented finding by the newly developed molecular complexes has a potential toward metal-based therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- Nalini
Vijay Gorantla
- Neurobiology
Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
- Academy
of Scientific and Innovative
Research (AcSIR), 411008 Pune, India
| | - Vinod G. Landge
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Tirupati, 517507 Tirupati, India
| | - Pramod Gudigenahally Nagaraju
- Academy
of Scientific and Innovative
Research (AcSIR), 411008 Pune, India
- Department
of Molecular Nutrition, CSIR-CFTRI, 570020 Mysore, India
| | - Poornima Priyadarshini CG
- Academy
of Scientific and Innovative
Research (AcSIR), 411008 Pune, India
- Department
of Molecular Nutrition, CSIR-CFTRI, 570020 Mysore, India
| | - Ekambaram Balaraman
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Tirupati, 517507 Tirupati, India
| | - Subashchandrabose Chinnathambi
- Neurobiology
Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
- Academy
of Scientific and Innovative
Research (AcSIR), 411008 Pune, India
| |
Collapse
|
19
|
Baicalein suppresses Repeat Tau fibrillization by sequestering oligomers. Arch Biochem Biophys 2019; 675:108119. [DOI: 10.1016/j.abb.2019.108119] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/05/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022]
|
20
|
Gorantla NV, Das R, Mulani FA, Thulasiram HV, Chinnathambi S. Neem Derivatives Inhibits Tau Aggregation. J Alzheimers Dis Rep 2019; 3:169-178. [PMID: 31259310 PMCID: PMC6597962 DOI: 10.3233/adr-190118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tau is a phosphoprotein with natively unfolded conformation that functions to stabilize microtubules in axons. Alzheimer’s disease pathology triggers several modifications in tau, which causes it to lose its affinity towards microtubule, thus, leading to microtubule disassembly and loss of axonal integrity. This elicit accumulation of tau as paired helical filaments is followed by stable neurofibrillary tangles formation. A large number of small molecules have been isolated from Azadirachta indica with varied medicinal applications. The intermediate and final limonoids, nimbin and salannin respectively, isolated from Azadirachta indica, were screened against tau aggregation. ThS and ANS fluorescence assay showed the role of intermediate and final limonoids in preventing heparin induced cross-β sheet formation and also decreased hydrophobicity, which are characteristic nature of tau aggregation. Transmission electron microscopy studies revealed that limonoids restricted the aggregation of tau to fibrils; in turn, limonoids led to the formation of short and fragile aggregates. Both the limonoids were non-toxic to HEK293T cells thus, substantiating limonoids as a potential lead in overcoming Alzheimer’s disease.
Collapse
Affiliation(s)
- Nalini V Gorantla
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, India
| | - Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, India
| | - Fayaj A Mulani
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, India
| | - Hirekodathakallu V Thulasiram
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, India
| |
Collapse
|
21
|
Kuo YC, Rajesh R. Challenges in the treatment of Alzheimer’s disease: recent progress and treatment strategies of pharmaceuticals targeting notable pathological factors. Expert Rev Neurother 2019; 19:623-652. [DOI: 10.1080/14737175.2019.1621750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
22
|
Lv P, Xia CL, Wang N, Liu ZQ, Huang ZS, Huang SL. Synthesis and evaluation of 1,2,3,4-tetrahydro-1-acridone analogues as potential dual inhibitors for amyloid-beta and tau aggregation. Bioorg Med Chem 2018; 26:4693-4705. [PMID: 30107970 DOI: 10.1016/j.bmc.2018.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/27/2018] [Accepted: 08/04/2018] [Indexed: 01/10/2023]
Abstract
Amyloid-β (Aβ) and tau protein are two crucial hallmarks in Alzheimer's disease (AD). Their aggregation forms are thought to be toxic to the neurons in the brain. A series of new 1,2,3,4-tetrahydro-1-acridone analogues were designed, synthesized, and evaluated as potential dual inhibitors for Aβ and tau aggregation. In vitro studies showed that compounds 25-30 (20 μM) with N-methylation of the quinolone ring effectively inhibited Aβ1-42 aggregation by 84.7%-99.5% and tau aggregation by 71.2%-101.8%. Their structure-activity relationships are discussed. In particular, 30 could permeate the blood-brain barrier, bind to Aβ1-42 and tau, inhibit Aβ1-42 β-sheets formation, and prevent tau aggregation in living cells.
Collapse
Affiliation(s)
- Peng Lv
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Chun-Li Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China; Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, People's Republic of China
| | - Ning Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhen-Quan Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
23
|
Nizynski B, Dzwolak W, Nieznanski K. Amyloidogenesis of Tau protein. Protein Sci 2017; 26:2126-2150. [PMID: 28833749 DOI: 10.1002/pro.3275] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022]
Abstract
The role of microtubule-associated protein Tau in neurodegeneration has been extensively investigated since the discovery of Tau amyloid aggregates in the brains of patients with Alzheimer's disease (AD). The process of formation of amyloid fibrils is known as amyloidogenesis and attracts much attention as a potential target in the prevention and treatment of neurodegenerative conditions linked to protein aggregation. Cerebral deposition of amyloid aggregates of Tau is observed not only in AD but also in numerous other tauopathies and prion diseases. Amyloidogenesis of intrinsically unstructured monomers of Tau can be triggered by mutations in the Tau gene, post-translational modifications, or interactions with polyanionic molecules and aggregation-prone proteins/peptides. The self-assembly of amyloid fibrils of Tau shares a number of characteristic features with amyloidogenesis of other proteins involved in neurodegenerative diseases. For example, in vitro experiments have demonstrated that the nucleation phase, which is the rate-limiting stage of Tau amyloidogenesis, is shortened in the presence of fragmented preformed Tau fibrils acting as aggregation templates ("seeds"). Accordingly, Tau aggregates released by tauopathy-affected neurons can spread the neurodegenerative process in the brain through a prion-like mechanism, originally described for the pathogenic form of prion protein. Moreover, Tau has been shown to form amyloid strains-structurally diverse self-propagating aggregates of potentially various pathological effects, resembling in this respect prion strains. Here, we review the current literature on Tau aggregation and discuss mechanisms of propagation of Tau amyloid in the light of the prion-like paradigm.
Collapse
Affiliation(s)
- Bartosz Nizynski
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 2C Banacha Str, Warsaw, 02-097, Poland.,Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Krzysztof Nieznanski
- Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| |
Collapse
|
24
|
Seripa D, Solfrizzi V, Imbimbo BP, Daniele A, Santamato A, Lozupone M, Zuliani G, Greco A, Logroscino G, Panza F. Tau-directed approaches for the treatment of Alzheimer's disease: focus on leuco-methylthioninium. Expert Rev Neurother 2016; 16:259-77. [PMID: 26822031 DOI: 10.1586/14737175.2016.1140039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small molecular weight compounds able to inhibit formation of tau oligomers and fibrils have already been tested for Alzheimer's disease (AD) treatment. The most advanced tau aggregation inhibitor (TAI) is methylthioninium (MT), a drug existing in equilibrium between a reduced (leuco-methylthioninium) and oxidized form (MT(+)). MT chloride (also known as methylene blue) was investigated in a 24-week Phase II study in 321 mild-to-moderate AD patients at the doses of 69, 138, and 228 mg/day. This trial failed to show significant positive effects of MT in the overall patient population. The dose of 138 mg/day showed potential benefits on cognitive performance of moderately affected patients and cerebral blood flow in mildly affected patients. A follow-up compound (TRx0237) claimed to be more bioavailable and less toxic than MT, is now being developed. Phase III clinical trials on this novel TAI in AD and in the behavioral variant of frontotemporal dementia are underway.
Collapse
Affiliation(s)
- Davide Seripa
- a Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo , Foggia , Italy
| | - Vincenzo Solfrizzi
- b Geriatric Medicine-Memory Unit and Rare Disease Centre , University of Bari Aldo Moro , Bari , Italy
| | - Bruno P Imbimbo
- c Research & Development Department , Chiesi Farmaceutici , Parma , Italy
| | - Antonio Daniele
- d Institute of Neurology , Catholic University of Sacred Heart , Rome , Italy
| | - Andrea Santamato
- e Physical Medicine and Rehabilitation Section, 'OORR' Hospital , University of Foggia , Foggia , Italy
| | - Madia Lozupone
- f Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy
| | - Giovanni Zuliani
- g Department of Medical Science, Section of Internal and Cardiopulmonary Medicine , University of Ferrara
| | - Antonio Greco
- a Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo , Foggia , Italy
| | - Giancarlo Logroscino
- f Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy.,h Department of Clinical Research in Neurology , University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico' , Tricase , Lecce , Italy
| | - Francesco Panza
- a Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo , Foggia , Italy.,f Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy.,h Department of Clinical Research in Neurology , University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico' , Tricase , Lecce , Italy
| |
Collapse
|
25
|
Asadollahi K, Rafiee S, Riazi GH, Pooyan S, Afrasiabi A. Trichloroacetic acid treatment as a tricky way for rapid purification of 1N/4R tau protein. Protein Expr Purif 2016; 118:98-104. [DOI: 10.1016/j.pep.2015.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 11/28/2022]
|
26
|
Chambergo FS, Valencia EY. Fungal biodiversity to biotechnology. Appl Microbiol Biotechnol 2016; 100:2567-77. [DOI: 10.1007/s00253-016-7305-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023]
|
27
|
Paranjape SR, Riley AP, Somoza AD, Oakley CE, Wang CCC, Prisinzano TE, Oakley BR, Gamblin TC. Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro. ACS Chem Neurosci 2015; 6:751-60. [PMID: 25822288 DOI: 10.1021/acschemneuro.5b00013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aggregation of the microtubule-associated protein tau is a seminal event in many neurodegenerative diseases, including Alzheimer's disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activities. We have previously screened Aspergillus nidulans secondary metabolites for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol. One aggregation inhibitor identified was asperbenzaldehyde, an intermediate in azaphilone biosynthesis. We therefore tested 11 azaphilone derivatives to determine their tau assembly inhibition properties in vitro. All compounds tested inhibited tau filament assembly to some extent, and four of the 11 compounds had the advantageous property of disassembling preformed tau aggregates in a dose-dependent fashion. The addition of these compounds to the tau aggregates reduced both the total length and number of tau polymers. The most potent compounds were tested in in vitro reactions to determine whether they interfere with tau's normal function of stabilizing microtubules (MTs). We found that they did not completely inhibit MT assembly in the presence of tau. These derivatives are very promising lead compounds for tau aggregation inhibitors and, more excitingly, for compounds that can disassemble pre-existing tau filaments. They also represent a new class of anti-tau aggregation compounds with a novel structural scaffold.
Collapse
Affiliation(s)
- Smita R. Paranjape
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Andrew P. Riley
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Amber D. Somoza
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - C. Elizabeth Oakley
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Clay C. C. Wang
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Thomas E. Prisinzano
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Berl R. Oakley
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - T. Chris Gamblin
- Department of Molecular Biosciences, ‡Department of Chemistry, ⊥Department of Medicinal
Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemistry, ∥Department of Pharmacology and Pharmaceutical Sciences,
School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
28
|
Karakani AM, Riazi G, Mahmood Ghaffari S, Ahmadian S, Mokhtari F, Jalili Firuzi M, Zahra Bathaie S. Inhibitory effect of corcin on aggregation of 1N/4R human tau protein in vitro. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:485-92. [PMID: 26124935 PMCID: PMC4475657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/02/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. One of the hallmarks of AD is an abnormal accumulation of fibril forms of tau protein which is known as a microtubule associated protein. In this regard, inhibition of tau aggregation has been documented to be a potent therapeutic approach in AD and tauopathies. Unfortunately, the available synthetic drugs have modest beneficial efficacy with several side effects. Therefore, pipeline drugs from natural sources with anti-aggregation properties can be useful in the prevention and treatment of AD. Among medicinal plants, saffron (Crocus sativus, L.), as a traditional herbal medicine has different pharmacological properties and can be used as treatment for several nervous system impairment including depression and dementia. Crocin as a major constituent of saffron is the glycosylated form of crocetin. MATERIALS AND METHODS In this study, we investigated the inhibitory effect of crocin on aggregation of recombinant human tau protein 1N/4R isoform using biochemical methods and cell culture. RESULTS Results revealed that tau protein under the fibrillation condition and in the presence of crocin had enough stability with low tendency for aggregation. Crocin inhibited tau aggregation with IC50 of 100 µg/ml. Furthermore, transmission electron microscopy images confirmed that crocin could suppress the formation of tau protein filaments. CONCLUSION Inhibitory effect of crocin could be related to its interference with nucleation phase that led to increases in monomer species of tau protein. Based on our results, crocin is recommended as a proper candidate to be used in AD treatment.
Collapse
Affiliation(s)
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran,*Corresponding author: Gholam Hossein Riazi. Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran. Tel: +98-21-61112473; Fax: +98-21-66404680;
| | | | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Farzad Mokhtari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|