1
|
Zaki FR, Monroy GL, Shi J, Sudhir K, Boppart SA. Texture-based speciation of otitis media-related bacterial biofilms from optical coherence tomography images using supervised classification. JOURNAL OF BIOPHOTONICS 2024; 17:e202400075. [PMID: 39103198 PMCID: PMC11464188 DOI: 10.1002/jbio.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024]
Abstract
Otitis media (OM), a highly prevalent inflammatory middle-ear disease in children worldwide, is commonly caused by an infection, and can lead to antibiotic-resistant bacterial biofilms in recurrent/chronic OM cases. A biofilm related to OM typically contains one or multiple bacterial species. OCT has been used clinically to visualize the presence of bacterial biofilms in the middle ear. This study used OCT to compare microstructural image texture features from bacterial biofilms. The proposed method applied supervised machine-learning-based frameworks (SVM, random forest, and XGBoost) to classify multiple species bacterial biofilms from in vitro cultures and clinically-obtained in vivo images from human subjects. Our findings show that optimized SVM-RBF and XGBoost classifiers achieved more than 95% of AUC, detecting each biofilm class. These results demonstrate the potential for differentiating OM-causing bacterial biofilms through texture analysis of OCT images and a machine-learning framework, offering valuable insights for real-time in vivo characterization of ear infections.
Collapse
Affiliation(s)
- Farzana R Zaki
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Guillermo L Monroy
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jindou Shi
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kavya Sudhir
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Landwehr KR, Granland CM, Martinovich KM, Scott NM, Seppanen EJ, Berry L, Strickland D, Fulurija A, Richmond PC, Kirkham LAS. An infant mouse model of influenza-driven nontypeable Haemophilus influenzae colonization and acute otitis media suitable for preclinical testing of novel therapies. Infect Immun 2024; 92:e0045323. [PMID: 38602405 PMCID: PMC11075455 DOI: 10.1128/iai.00453-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a major otitis media (OM) pathogen, with colonization a prerequisite for disease development. Most acute OM is in children <5 years old, with recurrent and chronic OM impacting hearing and learning. Therapies to prevent NTHi colonization and/or disease are needed, especially for young children. Respiratory viruses are implicated in driving the development of bacterial OM in children. We have developed an infant mouse model of influenza-driven NTHi OM, as a preclinical tool for the evaluation of safety and efficacy of clinical therapies to prevent NTHi colonization and the development of OM. In this model, 100% of infant BALB/cARC mice were colonized with NTHi, and all developed NTHi OM. Influenza A virus (IAV) facilitated the establishment of dense (1 × 105 CFU/mL) and long-lasting (6 days) NTHi colonization. IAV was essential for the development of NTHi OM, with 100% of mice in the IAV/NTHi group developing NTHi OM compared with 8% of mice in the NTHi only group. Histological analysis and cytokine measurements revealed that the inflammation observed in the middle ear of the infant mice with OM reflected inflammation observed in children with OM. We have developed the first infant mouse model of NTHi colonization and OM. This ascension model uses influenza-driven establishment of OM and reflects the clinical pathology of bacterial OM developing after a respiratory virus infection. This model provides a valuable tool for testing therapies to prevent or treat NTHi colonization and disease in young children.
Collapse
Affiliation(s)
- Katherine R. Landwehr
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
- School of Population Health, Curtin University, Perth, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Australia
| | - Caitlyn M. Granland
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
| | - Kelly M. Martinovich
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Naomi M. Scott
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
| | - Elke J. Seppanen
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
| | - Luke Berry
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Australia
| | - Deborah Strickland
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Alma Fulurija
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Peter C. Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
- Department of Paediatrics, School of Medicine, University of Western Australia, Perth, Australia
- Department of Immunology, Perth Children’s Hospital, Child and Adolescent Health Service, Perth, Australia
| | - Lea-Ann S. Kirkham
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Duff AF, Jurcisek JA, Kurbatfinski N, Chiang T, Goodman SD, Bakaletz LO, Bailey MT. Oral and middle ear delivery of otitis media standard of care antibiotics, but not biofilm-targeted antibodies, alter chinchilla nasopharyngeal and fecal microbiomes. NPJ Biofilms Microbiomes 2024; 10:10. [PMID: 38310144 PMCID: PMC10838340 DOI: 10.1038/s41522-024-00481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Otitis media (OM) is one of the most globally pervasive pediatric conditions. Translocation of nasopharynx-resident opportunistic pathogens like nontypeable Haemophilus influenzae (NTHi) assimilates into polymicrobial middle ear biofilms, which promote OM pathogenesis and substantially diminish antibiotic efficacy. Oral or tympanostomy tube (TT)-delivered antibiotics remain the standard of care (SOC) despite consequences including secondary infection, dysbiosis, and antimicrobial resistance. Monoclonal antibodies (mAb) against two biofilm-associated structural proteins, NTHi-specific type IV pilus PilA (anti-rsPilA) and protective tip-region epitopes of NTHi integration host factor (anti-tip-chimer), were previously shown to disrupt biofilms and restore antibiotic sensitivity in vitro. However, the additional criterion for clinical relevance includes the absence of consequential microbiome alterations. Here, nine chinchilla cohorts (n = 3/cohort) without disease were established to evaluate whether TT delivery of mAbs disrupted nasopharyngeal or fecal microbiomes relative to SOC-OM antibiotics. Cohort treatments included a 7d regimen of oral amoxicillin-clavulanate (AC) or 2d regimen of TT-delivered mAb, AC, Trimethoprim-sulfamethoxazole (TS), ofloxacin, or saline. Fecal and nasopharyngeal lavage (NPL) samples were collected before and several days post treatment (DPT) for 16S sequencing. While antibiotic-treated cohorts displayed beta-diversity shifts (PERMANOVA, P < 0.05) and reductions in alpha diversity (q < 0.20) relative to baseline, mAb antibodies failed to affect diversity, indicating maintenance of a eubiotic state. Taxonomic and longitudinal analyses showed blooms in opportunistic pathogens (ANCOM) and greater magnitudes of compositional change (P < 0.05) following broad-spectrum antibiotic but not mAb treatments. Collectively, results showed broad-spectrum antibiotics induced significant fecal and nasopharyngeal microbiome disruption regardless of delivery route. Excitingly, biofilm-targeting antibodies had little effect on fecal and nasopharyngeal microbiomes.
Collapse
Affiliation(s)
- Audrey F Duff
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Joseph A Jurcisek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Nikola Kurbatfinski
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tendy Chiang
- Department of Otolaryngology at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
- Oral and Gastrointestinal Microbiology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Michael T Bailey
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
- Oral and Gastrointestinal Microbiology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
4
|
Wilbanks KQ, Mokrzan EM, Kesler TM, Kurbatfinski N, Goodman SD, Bakaletz LO. Nontypeable Haemophilus influenzae released from biofilm residence by monoclonal antibody directed against a biofilm matrix component display a vulnerable phenotype. Sci Rep 2023; 13:12959. [PMID: 37563215 PMCID: PMC10415356 DOI: 10.1038/s41598-023-40284-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Bacterial biofilms contribute significantly to pathogenesis, recurrence and/or chronicity of the majority of bacterial diseases due to their notable recalcitrance to clearance. Herein, we examined kinetics of the enhanced sensitivity of nontypeable Haemophilus influenzae (NTHI) newly released (NRel) from biofilm residence by a monoclonal antibody against a bacterial DNABII protein (α-DNABII) to preferential killing by a β-lactam antibiotic. This phenotype was detected within 5 min and lasted for ~ 6 h. Relative expression of genes selected due to their known involvement in sensitivity to a β-lactam showed transient up-regulated expression of penicillin binding proteins by α-DNABII NTHI NRel, whereas there was limited expression of the β-lactamase precursor. Transient down-regulated expression of mediators of oxidative stress supported similarly timed vulnerability to NADPH-oxidase sensitive intracellular killing by activated human PMNs. Further, transient up-regulated expression of the major NTHI porin aligned well with observed increased membrane permeability of α-DNABII NTHI NRel, a characteristic also shown by NRel of three additional pathogens. These data provide mechanistic insights as to the transient, yet highly vulnerable, α-DNABII NRel phenotype. This heightened understanding supports continued validation of this novel therapeutic approach designed to leverage knowledge of the α-DNABII NRel phenotype for more effective eradication of recalcitrant biofilm-related diseases.
Collapse
Affiliation(s)
- Kathryn Q Wilbanks
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Elaine M Mokrzan
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Theresa M Kesler
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Nikola Kurbatfinski
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43205, USA.
| |
Collapse
|
5
|
Kurbatfinski N, Kramer CN, Goodman SD, Bakaletz LO. ESKAPEE pathogens newly released from biofilm residence by a targeted monoclonal are sensitized to killing by traditional antibiotics. Front Microbiol 2023; 14:1202215. [PMID: 37564292 PMCID: PMC10410267 DOI: 10.3389/fmicb.2023.1202215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction The "silent" antimicrobial resistance (AMR) pandemic is responsible for nearly five million deaths annually, with a group of seven biofilm-forming pathogens, known as the ESKAPEE pathogens, responsible for 70% of these fatalities. Biofilm-resident bacteria, as they exist within the disease site, are canonically highly resistant to antibiotics. One strategy to counter AMR and improve disease resolution involves developing methods to disrupt biofilms. These methods aim to release bacteria from the protective biofilm matrix to facilitate their killing by antibiotics or immune effectors. Several laboratories working on such strategies have demonstrated that bacteria newly released from a biofilm display a transient phenotype of significantly increased susceptibility to antibiotics. Similarly, we developed an antibody-based approach for biofilm disruption directed against the two-membered DNABII family of bacterial DNA-binding proteins, which serve as linchpins to stabilize the biofilm matrix. The incubation of biofilms with α-DNABII antibodies rapidly collapses them to induce a population of newly released bacteria (NRel). Methods In this study, we used a humanized monoclonal antibody (HuTipMab) directed against protective epitopes of a DNABII protein to determine if we could disrupt biofilms formed by the high-priority ESKAPEE pathogens as visualized by confocal laser scanning microscopy (CLSM) and COMSTAT2 analysis. Then, we demonstrated the potentiated killing of the induced NRel by seven diverse classes of traditional antibiotics by comparative plate count. Results To this end, ESKAPEE biofilms were disrupted by 50%-79% using a single tested dose and treatment period with HuTipMab. The NRel of each biofilm were significantly more sensitive to killing than their planktonically grown counterparts (heretofore, considered to be the most sensitive to antibiotic-mediated killing), even when tested at a fraction of the MIC (1/250-1/2 MIC). Moreover, the bacteria that remained within the biofilms of two representative ESKAPEE pathogens after HuTipMab disruption were also significantly more susceptible to killing by antibiotics. Discussion New data presented in this study support our continued development of a combinatorial therapy wherein HuTipMab is delivered to a patient with recalcitrant disease due to an ESKAPEE pathogen to disrupt a pathogenic biofilm, along with a co-delivered dose of an antibiotic whose ability to rapidly kill the induced NRel has been demonstrated. This novel regimen could provide a more successful clinical outcome to those with chronic, recurrent, or recalcitrant diseases, while limiting further contribution to AMR.
Collapse
Affiliation(s)
- Nikola Kurbatfinski
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Cameron N. Kramer
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Steven D. Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Lauren O. Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
6
|
Nahar N, Tram G, Jen FEC, Phillips ZN, Weinert L, Bossé J, Jabbari J, Gouil Q, Du MM, Ritchie M, Bowden R, Langford P, Tucker A, Jennings M, Turni C, Blackall P, Atack J. Actinobacillus pleuropneumoniae encodes multiple phase-variable DNA methyltransferases that control distinct phasevarions. Nucleic Acids Res 2023; 51:3240-3260. [PMID: 36840716 PMCID: PMC10123105 DOI: 10.1093/nar/gkad091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumonia, a severe respiratory tract infection that is responsible for major economic losses to the swine industry. Many host-adapted bacterial pathogens encode systems known as phasevarions (phase-variable regulons). Phasevarions result from variable expression of cytoplasmic DNA methyltransferases. Variable expression results in genome-wide methylation differences within a bacterial population, leading to altered expression of multiple genes via epigenetic mechanisms. Our examination of a diverse population of A. pleuropneumoniae strains determined that Type I and Type III DNA methyltransferases with the hallmarks of phase variation were present in this species. We demonstrate that phase variation is occurring in these methyltransferases, and show associations between particular Type III methyltransferase alleles and serovar. Using Pacific BioSciences Single-Molecule, Real-Time (SMRT) sequencing and Oxford Nanopore sequencing, we demonstrate the presence of the first ever characterised phase-variable, cytosine-specific Type III DNA methyltransferase. Phase variation of distinct Type III DNA methyltransferase in A. pleuropneumoniae results in the regulation of distinct phasevarions, and in multiple phenotypic differences relevant to pathobiology. Our characterisation of these newly described phasevarions in A. pleuropneumoniae will aid in the selection of stably expressed antigens, and direct and inform development of a rationally designed subunit vaccine against this major veterinary pathogen.
Collapse
Affiliation(s)
- Nusrat Nahar
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Zachary N Phillips
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Janine T Bossé
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Jafar S Jabbari
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Quentin Gouil
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Mei R M Du
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Rory Bowden
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
7
|
Nakahashi-Ouchida R, Mori H, Yuki Y, Umemoto S, Hirano T, Uchida Y, Machita T, Yamanoue T, Sawada SI, Suzuki M, Fujihashi K, Akiyoshi K, Kurono Y, Kiyono H. Induction of Mucosal IgA-Mediated Protective Immunity Against Nontypeable Haemophilus influenzae Infection by a Cationic Nanogel-Based P6 Nasal Vaccine. Front Immunol 2022; 13:819859. [PMID: 35874779 PMCID: PMC9299436 DOI: 10.3389/fimmu.2022.819859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) strains form a major group of pathogenic bacteria that colonizes the nasopharynx and causes otitis media in young children. At present, there is no licensed vaccine for NTHi. Because NTHi colonizes the upper respiratory tract and forms biofilms that cause subsequent infectious events, a nasal vaccine that induces NTHi-specific secretory IgA capable of preventing biofilm formation in the respiratory tract is desirable. Here, we developed a cationic cholesteryl pullulan-based (cCHP nanogel) nasal vaccine containing the NTHi surface antigen P6 (cCHP-P6) as a universal vaccine antigen, because P6 expression is conserved among 90% of NTHi strains. Nasal immunization of mice with cCHP-P6 effectively induced P6-specific IgA in mucosal fluids, including nasal and middle ear washes. The vaccine-induced P6-specific IgA showed direct binding to the NTHi via the surface P6 proteins, resulting in the inhibition of NTHi biofilm formation. cCHP-P6 nasal vaccine thus protected mice from intranasal NTHi challenge by reducing NTHi colonization of nasal tissues and eventually eliminated the bacteria. In addition, the vaccine-induced IgA bound to different NTHi clinical isolates from patients with otitis media and inhibited NTHi attachment in a three-dimensional in vitro model of the human nasal epithelial surface. Therefore, the cCHP-P6 nanogel nasal vaccine induced effective protection in the airway mucosa, making it a strong vaccine candidate for preventing NTHi-induced infectious diseases, such as otitis media, sinusitis, and pneumonia.
Collapse
Affiliation(s)
- Rika Nakahashi-Ouchida
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Hiromi Mori
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- HanaVax Inc., Tokyo, Japan
| | - Shingo Umemoto
- Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Oita University, Oita, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Takashi Hirano
- Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Oita University, Oita, Japan
| | - Yohei Uchida
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomonori Machita
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Tomoyuki Yamanoue
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan
| | - Masashi Suzuki
- Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Oita University, Oita, Japan
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan
| | - Yuichi Kurono
- Department of Otolaryngology, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- HanaVax Inc., Tokyo, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
- Future Medicine Education and Research Organization, Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
| |
Collapse
|
8
|
Monroy GL, Fitzgerald ST, Locke A, Won J, Spillman DR, Ho A, Zaki FR, Choi H, Chaney EJ, Werkhaven JA, Mason KM, Mahadevan-Jansen A, Boppart SA. Multimodal Handheld Probe for Characterizing Otitis Media - Integrating Raman Spectroscopy and Optical Coherence Tomography. FRONTIERS IN PHOTONICS 2022; 3:929574. [PMID: 36479543 PMCID: PMC9720905 DOI: 10.3389/fphot.2022.929574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Otitis media (OM) is a common disease of the middle ear, affecting 80% of children before the age of three. The otoscope, a simple illuminated magnifier, is the standard clinical diagnostic tool to observe the middle ear. However, it has limited contrast to detect signs of infection, such as clearly identifying and characterizing middle ear fluid or biofilms that accumulate within the middle ear. Likewise, invasive sampling of every subject is not clinically indicated nor practical. Thus, collecting accurate noninvasive diagnostic factors is vital for clinicians to deliver a precise diagnosis and effective treatment regimen. To address this need, a combined benchtop Raman spectroscopy (RS) and optical coherence tomography (OCT) system was developed. Together, RS-OCT can non-invasively interrogate the structural and biochemical signatures of the middle ear under normal and infected conditions.In this paper, in vivo RS scans from pediatric clinical human subjects presenting with OM were evaluated in parallel with RS-OCT data of physiologically relevant in vitro ear models. Component-level characterization of a healthy tympanic membrane and malleus bone, as well as OM-related middle ear fluid, identified the optimal position within the ear for RS-OCT data collection. To address the design challenges in developing a system specific to clinical use, a prototype non-contact multimodal handheld probe was built and successfully tested in vitro. Design criteria have been developed to successfully address imaging constraints imposed by physiological characteristics of the ear and optical safety limits. Here, we present the pathway for translation of RS-OCT for non-invasive detection of OM.
Collapse
Affiliation(s)
- Guillermo L. Monroy
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Sean T. Fitzgerald
- Vanderbilt Biophotonics Center, Nashville, TN, United States
- Dept. Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Andrea Locke
- Vanderbilt Biophotonics Center, Nashville, TN, United States
- Dept. Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Jungeun Won
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Dept. Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Alexander Ho
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Dept. Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Farzana R. Zaki
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Honggu Choi
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jay A. Werkhaven
- Dept. Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kevin M. Mason
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute Nationwide Children’s Hospital, Columbus, OH, United States
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Nashville, TN, United States
- Dept. Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Dept. Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Dept. Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Dept. Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
9
|
Characterization of the Phase-Variable Autotransporter Lav Reveals a Role in Host Cell Adherence and Biofilm Formation in Nontypeable Haemophilus influenzae. Infect Immun 2022; 90:e0056521. [PMID: 35258316 PMCID: PMC9022572 DOI: 10.1128/iai.00565-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lav is an autotransporter protein found in pathogenic Haemophilus and Neisseria species. Lav in nontypeable Haemophilus influenzae (NTHi) is phase-variable: the gene reversibly switches ON-OFF via changes in length of a locus-located GCAA(n) simple DNA sequence repeat tract. The expression status of lav was examined in carriage and invasive collections of NTHi, where it was predominantly not expressed (OFF). Phenotypic study showed lav expression (ON) results in increased adherence to human lung cells and denser biofilm formation. A survey of Haemophilus species genome sequences showed lav is present in ∼60% of NTHi strains, but lav is not present in most typeable H. influenzae strains. Sequence analysis revealed a total of five distinct variants of the Lav passenger domain present in Haemophilus spp., with these five variants showing a distinct lineage distribution. Determining the role of Lav in NTHi will help understand the role of this protein during distinct pathologies.
Collapse
|
10
|
A Humanized Monoclonal Antibody Potentiates Killing by Antibiotics of Diverse Biofilm-Forming Respiratory Tract Pathogens. Antimicrob Agents Chemother 2022; 66:e0187721. [DOI: 10.1128/aac.01877-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New strategies to treat diseases wherein biofilms contribute significantly to pathogenesis are needed as biofilm-resident bacteria are highly recalcitrant to antibiotics due to physical biofilm architecture and a canonically quiescent metabolism, among many additional attributes. We, and others, have shown that when biofilms are dispersed or disrupted, bacteria released from biofilm residence are in a distinct physiologic state that, in part, renders these bacteria highly sensitive to killing by specific antibiotics. We sought to demonstrate the breadth of ability of a recently humanized monoclonal antibody against an essential biofilm structural element (DNABII protein) to disrupt biofilms formed by respiratory tract pathogens and potentiate antibiotic-mediated killing of bacteria released from biofilm residence.
Biofilms formed by six respiratory tract pathogens were significantly disrupted by the humanized monoclonal antibody in a dose- and time-dependent manner, as corroborated by CLSM imaging. Bacteria newly released from the biofilms of 3 of 6 species were significantly more sensitive than their planktonic counterparts to killing by 2 of 3 antibiotics currently used clinically and were now also equally as sensitive to killing by the 3
rd
antibiotic. The remaining 3 pathogens were significantly more susceptible to killing by all 3 antibiotics.
A humanized monoclonal antibody directed against protective epitopes of a DNABII protein effectively released six diverse respiratory tract pathogens from biofilm residence in a phenotypic state that was now as, or significantly more, sensitive to killing by three antibiotics currently indicated for use clinically. These data support this targeted, combinatorial, species-agnostic therapy to mitigate chronic bacterial diseases.
Collapse
|
11
|
Abstract
Introduction: As a result of progress in medical care, a huge number of medical devices are used in the treatment of human diseases. In turn, biofilm-related infection has become a growing threat due to the tolerance of biofilms to antimicrobials, a problem magnified by the development of antimicrobial resistance worldwide. As a result, successful treatment of biofilm-disease using only antimicrobials is problematic.Areas covered: We summarize some alternative approaches to classic antimicrobials for the treatment of biofilm disease. This review is not intended to be exhaustive but to give a clinical picture of alternatives to antimicrobial agents to manage biofilm disease. We highlight those strategies that may be closer to application in clinical practice.Expert opinion: There are a number of outstanding challenges in the development of novel antibiofilm therapies. Screening for effective antibiofilm compounds requires models relevant to all clinical scenarios. Although in vitro research of anti-biofilm strategies has progressed significantly over the past decade, there is a lack of in vivo research. In addition, the complexity of biofilm biology makes it difficult to develop a compound that is likely to provide the single 'magic bullet'. The multifaceted nature of biofilms imposes the need for multi-targeted or combinatorial therapies.
Collapse
Affiliation(s)
- Jose L Del Pozo
- Infectious Diseases Division, Clínica Universidad De Navarra, Pamplona, Spain.,Department of Microbiology, Clínica Universidad De Navarra, Pamplona, Spain.,Laboratory of Microbial Biofilms, Clínica Universidad De Navarra, Pamplona, Spain
| |
Collapse
|
12
|
Loera-Muro A, Guerrero-Barrera A, Tremblay D N Y, Hathroubi S, Angulo C. Bacterial biofilm-derived antigens: a new strategy for vaccine development against infectious diseases. Expert Rev Vaccines 2021; 20:385-396. [PMID: 33606569 DOI: 10.1080/14760584.2021.1892492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Microorganisms can develop into a social organization known as biofilms and these communities can be found in virtually all types of environment on earth. In biofilms, cells grow as multicellular communities held together by a self-produced extracellular matrix. Living within a biofilm allows for the emergence of specific properties for these cells that their planktonic counterparts do not have. Furthermore, biofilms are the cause of several infectious diseases and are frequently inhabited by multi-species. These interactions between microbial species are often critical for the biofilm process. Despite the importance of biofilms in disease, vaccine antigens are typically prepared from bacteria grown as planktonic cells under laboratory conditions. Vaccines based on planktonic bacteria may not provide optimal protection against biofilm-driven infections. AREAS COVERED In this review, we will present an overview of biofilm formation, what controls this mode of growth, and recent vaccine development targeting biofilms. EXPERT OPINION Previous and ongoing research provides evidence that vaccine formulation with antigens derived from biofilms is a promising approach to prevent infectious diseases and can enhance the protective efficacy of existing vaccines. Therefore, research focusing on the identification of biofilm-derived antigens merits further investigations.
Collapse
Affiliation(s)
- Abraham Loera-Muro
- CONACYT-CIBNOR, Centro de Investigaciones Biológicas del Noroeste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS, México
| | - Alma Guerrero-Barrera
- Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Colonia Ciudad Universitaria, Aguascalientes, AGS, México
| | - Yannick Tremblay D N
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Skander Hathroubi
- Cluster of Excellence "Matters of Activity.Image Space Material", Humboldt-Universität zu Berlin, Unter den Liden 6, 10099, Berlin, Germany.,Institüt Für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS, México
| |
Collapse
|
13
|
Respiratory pathogens – Some altered antibiotic susceptibility after implementation of pneumococcus vaccine and antibiotic control strategies. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:682-689. [DOI: 10.1016/j.jmii.2019.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
|
14
|
Santos-Cortez RLP, Bhutta MF, Earl JP, Hafrén L, Jennings M, Mell JC, Pichichero ME, Ryan AF, Tateossian H, Ehrlich GD. Panel 3: Genomics, precision medicine and targeted therapies. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109835. [PMID: 32007292 PMCID: PMC7155947 DOI: 10.1016/j.ijporl.2019.109835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To review the most recent advances in human and bacterial genomics as applied to pathogenesis and clinical management of otitis media. DATA SOURCES PubMed articles published since the last meeting in June 2015 up to June 2019. REVIEW METHODS A panel of experts in human and bacterial genomics of otitis media was formed. Each panel member reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The panel met at the 20th International Symposium on Recent Advances in Otitis Media in June 2019, discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members. CONCLUSION Trans-disciplinary approaches applying pan-omic technologies to identify human susceptibility to otitis media and to understand microbial population dynamics, patho-adaptation and virulence mechanisms are crucial to the development of novel, personalized therapeutics and prevention strategies for otitis media. IMPLICATIONS FOR PRACTICE In the future otitis media prevention strategies may be augmented by mucosal immunization, combination vaccines targeting multiple pathogens, and modulation of the middle ear microbiome. Both treatment and vaccination may be tailored to an individual's otitis media phenotype as defined by molecular profiles obtained by using rapidly developing techniques in microbial and host genomics.
Collapse
Affiliation(s)
- Regie Lyn P. Santos-Cortez
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19 Ave., Aurora, CO 80045, USA
| | - Mahmood F. Bhutta
- Department of ENT, Royal Sussex County Hospital, Eastern Road, Brighton BN2 5BE, UK
| | - Joshua P. Earl
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Tukholmankatu 8A, 00290 Helsinki, Finland
| | - Michael Jennings
- Institute for Glycomics, Gold Coast campus, Griffith University, QLD 4222, Australia
| | - Joshua C. Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Michael E. Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, 1425 Portland Ave., Rochester, NY 14621, USA
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Hilda Tateossian
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxford, Didcot OX11 0RD, UK
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| |
Collapse
|
15
|
Alderson MR, Murphy T, Pelton SI, Novotny LA, Hammitt LL, Kurabi A, Li JD, Thornton RB, Kirkham LAS. Panel 8: Vaccines and immunology. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109839. [PMID: 31948716 PMCID: PMC7153269 DOI: 10.1016/j.ijporl.2019.109839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To review and highlight significant advances made towards vaccine development and understanding of the immunology of otitis media (OM) since the 19th International Symposium on Recent Advances in Otitis Media (ISOM) in 2015, as well as identify future research directions and knowledge gaps. DATA SOURCES PubMed database, National Library of Medicine. REVIEW METHODS Key topics were assigned to each panel member for detailed review. Draft reviews were collated, circulated, and thoroughly discussed when the panel met at the 20th ISOM in June 2019. The final manuscript was prepared with input from all panel members. CONCLUSIONS Since 2015 there have been a number of studies assessing the impact of licensed pneumococcal vaccines on OM. While these studies have confirmed that these vaccines are effective in preventing carriage and/or disease caused by vaccine serotypes, OM caused by non-vaccine serotype pneumococci and other otopathogens remains a significant health care burden globally. Development of multi-species vaccines is challenging but essential to reducing the global burden of OM. Influenza vaccination has been shown to prevent acute OM, and with novel vaccines against nontypeable Haemophilus influenzae (NTHi), Moraxella catarrhalis and Respiratory Syncytial Virus (RSV) in clinical trials, the potential to significantly prevent OM is within reach. Research into alternative vaccine delivery strategies has demonstrated the power of maternal and mucosal vaccination for OM prevention. Future OM vaccine trials must include molecular diagnostics of middle ear effusion, for detection of viruses and bacteria that are persisting in biofilms and to enable accurate assessment of vaccine impact on OM etiology. Understanding population differences in natural and vaccine-induced immune responses to otopathogens is also important for development of the most effective OM vaccines. Improved understanding of the interaction between otopathogens will also advance development of effective therapies and encourage the assessment of the indirect benefits of vaccination. IMPLICATIONS FOR PRACTICE While NTHi and M. catarrhalis are the predominant otopathogens, funding opportunities to drive vaccine development for these species are limited due to a focus on prevention of childhood mortality rather than morbidity. Delivery of a comprehensive report on the high financial and social costs of OM, including the potential for OM vaccines to reduce antibiotic use and subsequent development of antimicrobial resistance (AMR), would likely assist in engaging stakeholders to recognize the value of prevention of OM and increase support for efforts on OM vaccine development. Vaccine trials with OM prevention as a clinical end-point are challenging, however a focus on developing assays that measure functional correlates of protection would facilitate OM vaccine development.
Collapse
Affiliation(s)
| | - Tim Murphy
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Stephen I Pelton
- Boston University School of Public Health, Boston University, Boston, MA, USA
| | - Laura A Novotny
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura L Hammitt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Arwa Kurabi
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, CA, USA
| | - Jian-Dong Li
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, GA, USA
| | - Ruth B Thornton
- School of Biomedical Sciences, University of Western Australia, Australia and Wesfarmers Centre for Vaccines and Infectious Diseases Research, Telethon Kids Institute, Perth, Australia
| | - Lea-Ann S Kirkham
- Wesfarmers Centre for Vaccines and Infectious Diseases Research, Telethon Kids Institute, Australia and Centre for Child Health Research, University of Western Australia, Perth, Australia
| |
Collapse
|
16
|
Expression of the Nontypeable Haemophilus influenzae Type IV Pilus Is Stimulated by Coculture with Host Respiratory Tract Epithelial Cells. Infect Immun 2019; 87:IAI.00704-19. [PMID: 31548326 DOI: 10.1128/iai.00704-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022] Open
Abstract
The type IV pilus (Tfp) of nontypeable Haemophilus influenzae (NTHI) mediates adherence, colonization, motility, and biofilm formation, and the major protein subunit, PilA, is a promising vaccine candidate. Thus, it is crucial to understand how Tfp expression is regulated within the microenvironments of the human nasopharynx, which NTHI colonizes asymptomatically, and the more distal regions of the respiratory tract where NTHI-induced diseases occur. Here, we examined the effects of coculture of NTHI with human airway epithelial cells and heme availability on Tfp expression at temperatures typical of the human nasopharynx (34°C) or warmer anatomical sites during infection (37°C). Tfp expression was estimated by pilA promoter activity, pilA gene expression, and relative abundances of PilA and pilin protein. The results revealed that at both temperatures, NTHI cocultured with airway epithelial cells demonstrated significantly greater expression of pilA, PilA/pilin protein, and likely, fully assembled Tfp than NTHI cultured on an abiotic surface. Because NTHI is a heme auxotroph, we hypothesized that availability of heme from host cells might be a signal for Tfp expression. Thereby, we cultured NTHI in iron-limited medium, and we observed that supplementation with heme significantly increased pilA promoter activity. Collectively, our data suggested that NTHI Tfp expression was stimulated by soluble factor(s) released by epithelial cells, which are present in all microenvironments of the respiratory tract. The expression of this target antigen under conditions that mimic the human airway strongly supports the rationale for the use of PilA as a vaccine immunogen to prevent NTHI-induced diseases of the respiratory tract.
Collapse
|
17
|
Harrison A, Hardison RL, Wallace RM, Fitch J, Heimlich DR, Bryan MO, Dubois L, John-Williams LS, Sebra RP, White P, Moseley MA, Thompson JW, Justice SS, Mason KM. Reprioritization of biofilm metabolism is associated with nutrient adaptation and long-term survival of Haemophilus influenzae. NPJ Biofilms Microbiomes 2019; 5:33. [PMID: 31700653 PMCID: PMC6831627 DOI: 10.1038/s41522-019-0105-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/03/2019] [Indexed: 01/14/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is a human-restricted pathogen with an essential requirement for heme-iron acquisition. We previously demonstrated that microevolution of NTHI promotes stationary phase survival in response to transient heme-iron restriction. In this study, we examine the metabolic contributions to biofilm formation using this evolved NTHI strain, RM33. Quantitative analyses identified 29 proteins, 55 transcripts, and 31 metabolites that significantly changed within in vitro biofilms formed by RM33. The synthesis of all enzymes within the tryptophan and glycogen pathways was significantly increased in biofilms formed by RM33 compared with the parental strain. In addition, increases were observed in metabolite transport, adhesin production, and DNA metabolism. Furthermore, we observed pyruvate as a pivotal point in the metabolic pathways associated with changes in cAMP phosphodiesterase activity during biofilm formation. Taken together, changes in central metabolism combined with increased stores of nutrients may serve to counterbalance nutrient sequestration.
Collapse
Affiliation(s)
- Alistair Harrison
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Rachael L. Hardison
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Rachel M. Wallace
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - James Fitch
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Steve and Cindy Rasmussen Institute for Genomic Medicine, 575 Children’s Crossroad, Columbus, OH 43215 USA
| | - Derek R. Heimlich
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Meghan O’ Bryan
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Laura Dubois
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Lisa St. John-Williams
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Robert P. Sebra
- Icahn School of Medicine at Mount Sinai, Icahn Institute and Department of Genetics & Genomic Sciences, 1 Gustave L. Levy Place, New York, NY 10029 USA
| | - Peter White
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Steve and Cindy Rasmussen Institute for Genomic Medicine, 575 Children’s Crossroad, Columbus, OH 43215 USA
| | - M. Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - J. Will Thompson
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Sheryl S. Justice
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
- Infectious Diseases Institute, The Ohio State University College of Medicine, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Kevin M. Mason
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
- Infectious Diseases Institute, The Ohio State University College of Medicine, 700 Children’s Drive, Columbus, OH 43205 USA
| |
Collapse
|
18
|
van den Broek MFL, De Boeck I, Kiekens F, Boudewyns A, Vanderveken OM, Lebeer S. Translating Recent Microbiome Insights in Otitis Media into Probiotic Strategies. Clin Microbiol Rev 2019; 32:e00010-18. [PMID: 31270125 PMCID: PMC6750133 DOI: 10.1128/cmr.00010-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microbiota of the upper respiratory tract (URT) protects the host from bacterial pathogenic colonization by competing for adherence to epithelial cells and by immune response regulation that includes the activation of antimicrobial and (anti-)inflammatory components. However, environmental or host factors can modify the microbiota to an unstable community that predisposes the host to infection or inflammation. One of the URT diseases most often encountered in children is otitis media (OM). The role of pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the pathogenesis of OM is well documented. Results from next-generation-sequencing (NGS) studies reveal other bacterial taxa involved in OM, such as Turicella and Alloiococcus Such studies can also identify bacterial taxa that are potentially protective against URT infections, whose beneficial action needs to be substantiated in relevant experimental models and clinical trials. Of note, lactic acid bacteria (LAB) are members of the URT microbiota and associated with a URT ecosystem that is deemed healthy, based on NGS and some experimental and clinical studies. These observations have formed the basis of this review, in which we describe the current knowledge of the molecular and clinical potential of LAB in the URT, which is currently underexplored in microbiome and probiotic research.
Collapse
Affiliation(s)
- Marianne F L van den Broek
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|