1
|
Lin J, He R, Qu Z, Dong J, Krabill AD, Wu L, Bai Y, Conroy LR, Bruntz RC, Miao Y, Jassim BA, Babalola B, Nguele Meke FGB, Sun R, Gentry MS, Zhang ZY. Discovery and Evaluation of Active Site-Directed, Potent, and Selective Sulfophenyl Acetic Amide-Based Inhibitors for the Laforin Phosphatase. J Med Chem 2025; 68:9220-9240. [PMID: 40238926 DOI: 10.1021/acs.jmedchem.4c02580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Lafora disease is a rare and fatal progressive myoclonus epilepsy characterized by the accumulation of insoluble glycogen deposits in the brain and peripheral tissues. Mutations in the gene encoding the glycogen phosphatase laforin result in Lafora disease. Currently, there are no laforin-specific chemical probes, limiting our understanding of the roles of laforin in glycogen metabolism and other cellular processes. Here, we identified sulfophenyl acetic amide (SPAA), as a novel nonhydrolyzable phosphotyrosine mimetic for laforin inhibition. Using fragment-based and scaffold-hopping strategies, we discovered several highly potent and selective active site-directed laforin inhibitors. Among them, compound 9c displayed a Ki value of 1.9 ± 0.2 nM and more than 8300-fold preference for laforin. Moreover, these inhibitors efficiently block laforin-mediated glucan dephosphorylation inside the cell and possess favorable pharmacokinetic properties in mice. These chemical probes will enable further investigation of the roles of laforin in normal physiological processes and in diseases.
Collapse
Affiliation(s)
- Jianping Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rongjun He
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zihan Qu
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aaron D Krabill
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Li Wu
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lindsey R Conroy
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Ronald C Bruntz
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brenson A Jassim
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Benjamin Babalola
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Ramon Sun
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, United States
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida 32610, United States
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, United States
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, Florida 32610, United States
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Mitra S, Chen B, Shelton JM, Nitschke S, Wu J, Covington L, Dear M, Lynn T, Verma M, Nitschke F, Fuseya Y, Iwai K, Evers BM, Minassian BA. Myofiber-type-dependent 'boulder' or 'multitudinous pebble' formations across distinct amylopectinoses. Acta Neuropathol 2024; 147:46. [PMID: 38411740 DOI: 10.1007/s00401-024-02698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
At least five enzymes including three E3 ubiquitin ligases are dedicated to glycogen's spherical structure. Absence of any reverts glycogen to a structure resembling amylopectin of the plant kingdom. This amylopectinosis (polyglucosan body formation) causes fatal neurological diseases including adult polyglucosan body disease (APBD) due to glycogen branching enzyme deficiency, Lafora disease (LD) due to deficiencies of the laforin glycogen phosphatase or the malin E3 ubiquitin ligase and type 1 polyglucosan body myopathy (PGBM1) due to RBCK1 E3 ubiquitin ligase deficiency. Little is known about these enzymes' functions in glycogen structuring. Toward understanding these functions, we undertake a comparative murine study of the amylopectinoses of APBD, LD and PGBM1. We discover that in skeletal muscle, polyglucosan bodies form as two main types, small and multitudinous ('pebbles') or giant and single ('boulders'), and that this is primarily determined by the myofiber types in which they form, 'pebbles' in glycolytic and 'boulders' in oxidative fibers. This pattern recapitulates what is known in the brain in LD, innumerable dust-like in astrocytes and single giant sized in neurons. We also show that oxidative myofibers are relatively protected against amylopectinosis, in part through highly increased glycogen branching enzyme expression. We present evidence of polyglucosan body size-dependent cell necrosis. We show that sex influences amylopectinosis in genotype, brain region and myofiber-type-specific fashion. RBCK1 is a component of the linear ubiquitin chain assembly complex (LUBAC), the only known cellular machinery for head-to-tail linear ubiquitination critical to numerous cellular pathways. We show that the amylopectinosis of RBCK1 deficiency is not due to loss of linear ubiquitination, and that another function of RBCK1 or LUBAC must exist and operate in the shaping of glycogen. This work opens multiple new avenues toward understanding the structural determinants of the mammalian carbohydrate reservoir critical to neurologic and neuromuscular function and disease.
Collapse
Affiliation(s)
- Sharmistha Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA.
| | - Baozhi Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - John M Shelton
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9148, USA
| | - Silvia Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Lindsay Covington
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9148, USA
| | - Mathew Dear
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Tori Lynn
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Yasuhiro Fuseya
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto, 606-8501, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto, 606-8501, Japan
| | - Bret M Evers
- Departments of Pathology and Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9073, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA.
| |
Collapse
|
3
|
Gumber S, Connor-Stroud F, Howard D, Zhang X, Bradley BJ, Sherwood CC, Walker LC. Polyglucosan body disease in an aged chimpanzee (Pan troglodytes). Neuropathology 2023; 43:463-471. [PMID: 37086019 PMCID: PMC10642523 DOI: 10.1111/neup.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
A 57-year-old female chimpanzee presented with a brief history of increasing lethargy and rapidly progressive lower-limb weakness that culminated in loss of use. Postmortem examination revealed no significant gross lesions in the nervous system or other organ systems. Histological analysis revealed round, basophilic to amphophilic polyglucosan bodies (PGBs) in the white and gray matter of the cervical, thoracic, lumbar, and coccygeal regions of spinal cord. Only rare PGBs were observed in forebrain samples. The lesions in the spinal cord were polymorphic, and they were positively stained with hematoxylin, periodic acid Schiff, Alcian blue, toluidine blue, Bielschowsky silver, and Grocott-Gomori methenamine-silver methods, and they were negative for von Kossa and Congo Red stains. Immunohistochemical evaluation revealed reactivity with antibodies to ubiquitin, but they were negative for glial fibrillary acidic protein, neuron-specific enolase, neurofilaments, tau protein, and Aβ protein. Electron microscopy revealed non-membrane-bound deposits composed of densely packed filaments within axons and in the extracellular space. Intra-axonal PGBs were associated with disruption of the axonal fine structure and disintegration of the surrounding myelin sheath. These findings are the first description of PGBs linked to neurological dysfunction in a chimpanzee. Clinicopathologically, the disorder resembled adult PGB disease in humans.
Collapse
Affiliation(s)
- Sanjeev Gumber
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Fawn Connor-Stroud
- Division of Veterinary Medicine, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Dustin Howard
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, 20052, USA
| | - Xiaodong Zhang
- Emory Primate Center Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Brenda J. Bradley
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, 20052, USA
| | - Chet C. Sherwood
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, 20052, USA
| | - Lary C. Walker
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
4
|
Bernardi S, Gemignani F, Marchese M. The involvement of Purkinje cells in progressive myoclonic epilepsy: Focus on neuronal ceroid lipofuscinosis. Neurobiol Dis 2023; 185:106258. [PMID: 37573956 PMCID: PMC10480493 DOI: 10.1016/j.nbd.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
The progressive myoclonic epilepsies (PMEs) are a group of rare neurodegenerative diseases characterized by myoclonus, epileptic seizures, and progressive neurological deterioration with cerebellar involvement. They include storage diseases like Gaucher disease, Lafora disease, and forms of neuronal ceroid lipofuscinosis (NCL). To date, 13 NCLs have been reported (CLN1-CLN8, CLN10-CLN14), associated with mutations in different genes. These forms, which affect both children and adults, are characterized by seizures, cognitive and motor impairments, and in most cases visual loss. In NCLs, as in other PMEs, central nervous system (CNS) neurodegeneration is widespread and involves different subpopulations of neurons. One of the most affected regions is the cerebellar cortex, where motor and non-motor information is processed and transmitted to deep cerebellar nuclei through the axons of Purkinje cells (PCs). PCs, being GABAergic, have an inhibitory effect on their target neurons, and provide the only inhibitory output of the cerebellum. Degeneration of PCs has been linked to motor impairments and epileptic seizures. Seizures occur when some insult upsets the normal balance in the CNS between excitatory and inhibitory impulses, causing hyperexcitability. Here we review the role of PCs in epilepsy onset and progression following their PME-related loss. In particular, we focus on the involvement of PCs in seizure phenotype in NCLs, highlighting findings from case reports and studies of animal models in which epilepsy can be linked to PC loss.
Collapse
Affiliation(s)
- Sara Bernardi
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy; Department of Biology, University of Pisa, Pisa, Italy
| | | | - Maria Marchese
- Department Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
| |
Collapse
|
5
|
Sardina F, Conte A, Paladino S, Pierantoni GM, Rinaldo C. HIPK2 in the physiology of nervous system and its implications in neurological disorders. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119465. [PMID: 36935052 DOI: 10.1016/j.bbamcr.2023.119465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/21/2023]
Abstract
HIPK2 is an evolutionary conserved serine/threonine kinase with multifunctional roles in stress response, embryonic development and pathological conditions, such as cancer and fibrosis. The heterogeneity of its interactors and targets makes HIPK2 activity strongly dependent on the cellular context, and allows it to modulate multiple signaling pathways, ultimately regulating cell fate and proliferation. HIPK2 is highly expressed in the central and peripheral nervous systems, and its genetic ablation causes neurological defects in mice. Moreover, HIPK2 is involved in processes, such as endoplasmic reticulum stress response and protein aggregate accumulation, and pathways, including TGF-β and BMP signaling, that are crucial in the pathogenesis of neurological disorders. Here, we review the data about the role of HIPK2 in neuronal development, survival, and homeostasis, highlighting the implications in the pathogenesis of neurological disorders, and pointing out HIPK2 potentiality as therapeutic target and diagnostic or prognostic marker.
Collapse
Affiliation(s)
- F Sardina
- Institute of Molecular Biology and Pathology (IBPM), Consiglio Nazionale delle Ricerche (CNR), c/o Sapienza University, Rome, Italy
| | - A Conte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - S Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - G M Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - C Rinaldo
- Institute of Molecular Biology and Pathology (IBPM), Consiglio Nazionale delle Ricerche (CNR), c/o Sapienza University, Rome, Italy.
| |
Collapse
|
6
|
Duran J. Role of Astrocytes in the Pathophysiology of Lafora Disease and Other Glycogen Storage Disorders. Cells 2023; 12:cells12050722. [PMID: 36899857 PMCID: PMC10000527 DOI: 10.3390/cells12050722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Lafora disease is a rare disorder caused by loss of function mutations in either the EPM2A or NHLRC1 gene. The initial symptoms of this condition are most commonly epileptic seizures, but the disease progresses rapidly with dementia, neuropsychiatric symptoms, and cognitive deterioration and has a fatal outcome within 5-10 years after onset. The hallmark of the disease is the accumulation of poorly branched glycogen in the form of aggregates known as Lafora bodies in the brain and other tissues. Several reports have demonstrated that the accumulation of this abnormal glycogen underlies all the pathologic traits of the disease. For decades, Lafora bodies were thought to accumulate exclusively in neurons. However, it was recently identified that most of these glycogen aggregates are present in astrocytes. Importantly, astrocytic Lafora bodies have been shown to contribute to pathology in Lafora disease. These results identify a primary role of astrocytes in the pathophysiology of Lafora disease and have important implications for other conditions in which glycogen abnormally accumulates in astrocytes, such as Adult Polyglucosan Body disease and the buildup of Corpora amylacea in aged brains.
Collapse
Affiliation(s)
- Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017 Barcelona, Spain;
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Molecular architecture of the glycogen- committed PP1/PTG holoenzyme. Nat Commun 2022; 13:6199. [PMID: 36261419 PMCID: PMC9582199 DOI: 10.1038/s41467-022-33693-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
The delicate alternation between glycogen synthesis and degradation is governed by the interplay between key regulatory enzymes altering the activity of glycogen synthase and phosphorylase. Among these, the PP1 phosphatase promotes glycogenesis while inhibiting glycogenolysis. PP1 is, however, a master regulator of a variety of cellular processes, being conveniently directed to each of them by scaffolding subunits. PTG, Protein Targeting to Glycogen, addresses PP1 action to glycogen granules. In Lafora disease, the most aggressive pediatric epilepsy, genetic alterations leading to PTG accumulation cause the deposition of insoluble polyglucosans in neurons. Here, we report the crystallographic structure of the ternary complex PP1/PTG/carbohydrate. We further refine the mechanism of the PTG-mediated PP1 recruitment to glycogen by identifying i) an unusual combination of recruitment sites, ii) their contributions to the overall binding affinity, and iii) the conformational heterogeneity of this complex by in solution SAXS analyses.
Collapse
|
8
|
Varea O, Guinovart JJ, Duran J. Malin restoration as proof of concept for gene therapy for Lafora disease. Brain Commun 2022; 4:fcac168. [PMID: 35813879 PMCID: PMC9260307 DOI: 10.1093/braincomms/fcac168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Lafora disease is a fatal neurodegenerative childhood dementia caused by loss-of-function mutations in either the laforin or malin gene. The hallmark of the disease is the accumulation of abnormal glycogen aggregates known as Lafora bodies (LBs) in the brain and other tissues. These aggregates are responsible for the pathological features of the disease. As a monogenic disorder, Lafora disease is a good candidate for gene therapy-based approaches. However, most patients are diagnosed after the appearance of the first symptoms and thus when LBs are already present in the brain. In this context, it was not clear whether the restoration of a normal copy of the defective gene (either laforin or malin) would prove effective. Here we evaluated the effect of restoring malin in a malin-deficient mouse model of Lafora disease as a proof of concept for gene replacement therapy. To this end, we generated a malin-deficient mouse in which malin expression can be induced at a certain time. Our results reveal that malin restoration at an advanced stage of the disease arrests the accumulation of LBs in brain and muscle, induces the degradation of laforin and glycogen synthase bound to the aggregates, and ameliorates neuroinflammation. These results identify malin restoration as the first therapeutic strategy to show effectiveness when applied at advanced stages of Lafora disease.
Collapse
Affiliation(s)
- Olga Varea
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Barcelona 08028 , Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Barcelona 08028 , Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Madrid 28029 , Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona , Barcelona 08028 , Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Barcelona 08028 , Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Madrid 28029 , Spain
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) , Barcelona 08017 , Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology , Barcelona 08028 , Spain
| |
Collapse
|
9
|
Krakhmal NV, Vasilchenko DV, Vtorushin SV. [Lafora disease with a fatal outcome]. Arkh Patol 2022; 84:61-66. [PMID: 36469720 DOI: 10.17116/patol20228406161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lafora disease is a rare hereditary genetic pathology of the nervous system (a group of progressive myoclonic epilepsies). The distinctive morphological feature of this disease is the presence of specific abnormal structures - polyglucosane bodies («Lafora bodies») in the brain tissue, myocardium, liver, and epithelium of the sweat gland ducts. The article discusses the clinical data of the course of Lafora's disease in an 18-year-old patient with a fatal outcome and the results of a post-mortem examination. The diagnosis of Lafora disease was confirmed by genetic analysis data - the presence of a homozygous mutation in the 2nd exon of the EPM2A gene - laforin (chr6:146007412G>A, rs137852915). When analyzing literature, we did not find a description of Lafora's disease cases with a fatal outcome with the presentation of macroscopic examination data at autopsy, as well as the results of a pathohistological examination of altered organ tissues with the morphological manifestations specific for this pathology (Lafora bodies in the the brain, heart, sweat gland epithelium).
Collapse
Affiliation(s)
- N V Krakhmal
- Siberian State Medical University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - D V Vasilchenko
- Siberian State Medical University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - S V Vtorushin
- Siberian State Medical University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| |
Collapse
|
10
|
Haryanyan G, Ozdemir O, Tutkavul K, Dervent A, Ayta S, Ozkara C, Salman B, Yucesan E, Kesim Y, Susgun S, Ozbek U, Baykan B, Ugur Iseri SA, Bebek N. The rare rs769301934 variant in NHLRC1 is a common cause of Lafora disease in Turkey. J Hum Genet 2021; 66:1145-1151. [PMID: 34117373 DOI: 10.1038/s10038-021-00944-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Lafora disease (LD) is a severe form of progressive myoclonus epilepsy inherited in an autosomal recessive fashion. It is associated with biallelic pathogenic variations in EPM2A or NHLRC1, which encode laforin and malin, respectively. The disease usually starts with adolescent onset seizures followed by progressive dementia, refractory status epilepticus and eventually death within 10 years of onset. LD is generally accepted as having a homogenous clinical course with no considerable differences between EPM2A or NHLRC1 associated forms. Nevertheless, late-onset and slow progressing forms of the disease have also been reported. Herein, we have performed clinical and genetic analyses of 14 LD patients from 12 different families and identified 8 distinct biallelic variations in these patients. Five of these variations were novel and/or associated with the LD phenotype for the first time. Interestingly, almost half of the cases were homozygous for the rare rs769301934 (NM_198586.3(NHLRC1): c.436 G > A; p.(Asp146Asn)) allele in NHLRC1. A less severe phenotype with an onset at a later age may be the reason for the biased inflation of this variant, which is already present in the human gene pool and can hence arise in the homozygous form in populations with increased parental consanguinity.
Collapse
Affiliation(s)
- Garen Haryanyan
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Ozkan Ozdemir
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey.,Department of Medical Genetics, Faculty of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey.,Genome Studies Program, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Kemal Tutkavul
- Department of Neurology, Istanbul Haydarpasa Numune Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Aysin Dervent
- Department of Neurology, Pediatric Neurology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semih Ayta
- Department of Pediatrics, Child Neurology Unit, Haseki Training and Research Hospital, Istanbul, Turkey
| | - Cigdem Ozkara
- Department of Neurology and Clinical Neurophysiology, Cerrahpasa Medical Faculty, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Baris Salman
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Emrah Yucesan
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Yesim Kesim
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Seda Susgun
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey.,Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ugur Ozbek
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Department of Medical Genetics, Faculty of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey.,Genome Studies Program, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Betul Baykan
- Department of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sibel A Ugur Iseri
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Nerses Bebek
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Department of Neurology and Clinical Neurophysiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
11
|
An empirical pipeline for personalized diagnosis of Lafora disease mutations. iScience 2021; 24:103276. [PMID: 34755096 PMCID: PMC8564118 DOI: 10.1016/j.isci.2021.103276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Lafora disease (LD) is a fatal childhood dementia characterized by progressive myoclonic epilepsy manifesting in the teenage years, rapid neurological decline, and death typically within ten years of onset. Mutations in either EPM2A, encoding the glycogen phosphatase laforin, or EPM2B, encoding the E3 ligase malin, cause LD. Whole exome sequencing has revealed many EPM2A variants associated with late-onset or slower disease progression. We established an empirical pipeline for characterizing the functional consequences of laforin missense mutations in vitro using complementary biochemical approaches. Analysis of 26 mutations revealed distinct functional classes associated with different outcomes that were supported by clinical cases. For example, F321C and G279C mutations have attenuated functional defects and are associated with slow progression. This pipeline enabled rapid characterization and classification of newly identified EPM2A mutations, providing clinicians and researchers genetic information to guide treatment of LD patients. Lafora disease (LD) patients present with varying clinical progression LD missense mutations differentially affect laforin function An empirical in vitro pipeline is used to classify laforin missense mutations Patient progression can be predicted based on mutation class
Collapse
|
12
|
Pondrelli F, Muccioli L, Licchetta L, Mostacci B, Zenesini C, Tinuper P, Vignatelli L, Bisulli F. Natural history of Lafora disease: a prognostic systematic review and individual participant data meta-analysis. Orphanet J Rare Dis 2021; 16:362. [PMID: 34399803 PMCID: PMC8365996 DOI: 10.1186/s13023-021-01989-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
Background Lafora disease (LD) is a rare fatal autosomal recessive form of progressive myoclonus epilepsy. It affects previously healthy children or adolescents, causing pharmacoresistant epilepsy, myoclonus and severe psychomotor deterioration. This work aims to describe the clinical course of LD and identify predictors of outcome by means of a prognostic systematic review with individual participant data meta-analysis. Methods A search was conducted on MEDLINE and Embase with no restrictions on publication date. Only studies reporting genetically confirmed LD cases were included. Kaplan–Meier estimate was used to assess probability of death and loss of autonomy. Univariable and multivariable Cox regression models with mixed effects (clustered survival data) were performed to evaluate prognostic factors. Results Seventy-three papers describing 298 genetically confirmed LD cases were selected. Mean age at disease onset was 13.4 years (SD 3.7), with 9.1% aged ≥ 18 years. Overall survival rates in 272 cases were 93% [95% CI 89–96] at 5 years, 62% [95% CI 54–69] at 10 years and 57% [95% CI 49–65] at 15 years. Median survival time was 11 years. The probability of loss of autonomy in 110 cases was 45% [95% CI 36–55] at 5 years, 75% [95% CI 66–84] at 10 years, and 83% [95% CI 74–90] at 15 years. Median loss of autonomy time was 6 years. Asian origin and age at onset < 18 years emerged as negative prognostic factors, while type of mutated gene and symptoms at onset were not related to survival or disability. Conclusions This study documented that half of patients survived at least 11 years. The notion of actual survival rate and prognostic factors is crucial to design studies on the effectiveness of upcoming new disease-modifying therapies.
Collapse
Affiliation(s)
- Federica Pondrelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Lorenzo Muccioli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full Member of the ERN EpiCARE, Bologna, Italy
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full Member of the ERN EpiCARE, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full Member of the ERN EpiCARE, Bologna, Italy
| | - Paolo Tinuper
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Full Member of the ERN EpiCARE, Bologna, Italy
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full Member of the ERN EpiCARE, Bologna, Italy
| | - Francesca Bisulli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy. .,IRCCS Istituto delle Scienze Neurologiche di Bologna, Full Member of the ERN EpiCARE, Bologna, Italy.
| |
Collapse
|
13
|
Mitra S, Gumusgoz E, Minassian BA. Lafora disease: Current biology and therapeutic approaches. Rev Neurol (Paris) 2021; 178:315-325. [PMID: 34301405 DOI: 10.1016/j.neurol.2021.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
The ubiquitin system impacts most cellular processes and is altered in numerous neurodegenerative diseases. However, little is known about its role in neurodegenerative diseases due to disturbances of glycogen metabolism such as Lafora disease (LD). In LD, insufficiently branched and long-chained glycogen forms and precipitates into insoluble polyglucosan bodies (Lafora bodies), which drive neuroinflammation, neurodegeneration and epilepsy. LD is caused by mutations in the gene encoding the glycogen phosphatase laforin or the gene coding for the laforin interacting partner ubiquitin E3 ligase malin. The role of the malin-laforin complex in regulating glycogen structure remains with full of gaps. In this review we bring together the disparate body of data on these two proteins and propose a mechanistic hypothesis of the disease in which malin-laforin's role to monitor and prevent over-elongation of glycogen branch chains, which drive glycogen molecules to precipitate and accumulate into Lafora bodies. We also review proposed connections between Lafora bodies and the ensuing neuroinflammation, neurodegeneration and intractable epilepsy. Finally, we review the exciting activities in developing therapies for Lafora disease based on replacing the missing genes, slowing the enzyme - glycogen synthase - that over-elongates glycogen branches, and introducing enzymes that can digest Lafora bodies. Much more work is needed to fill the gaps in glycogen metabolism in which laforin and malin operate. However, knowledge appears already adequate to advance disease course altering therapies for this catastrophic fatal disease.
Collapse
Affiliation(s)
- S Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - E Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - B A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Suppression of glycogen synthesis as a treatment for Lafora disease: Establishing the window of opportunity. Neurobiol Dis 2020; 147:105173. [PMID: 33171226 DOI: 10.1016/j.nbd.2020.105173] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022] Open
Abstract
Lafora disease (LD) is a fatal adolescence-onset neurodegenerative condition. The hallmark of LD is the accumulation of aberrant glycogen aggregates called Lafora bodies (LBs) in the brain and other tissues. Impeding glycogen synthesis from early embryonic stages by genetic suppression of glycogen synthase (MGS) in an animal model of LD prevents LB formation and ultimately the pathological manifestations of LD thereby indicating that LBs are responsible for the pathophysiology of the disease. However, it is not clear whether eliminating glycogen synthesis in an adult animal after LBs have already formed would halt or reverse the progression of LD. Herein we generated a mouse model of LD with inducible MGS suppression. We evaluated the effect of MGS suppression at different time points on LB accumulation as well as on the appearance of neuroinflammation, a pathologic trait of LD models. In the skeletal muscle, MGS suppression in adult LD mice blocked the formation of new LBs and reduced the number of glycogen aggregates. In the brain, early but not late MGS suppression halted the accumulation of LBs. However, the neuroinflammatory response was still present, as shown by the levels of reactive astrocytes, microglia and inflammatory cytokines. Our results confirm that MGS as a promising therapeutic target for LD and highlight the importance of an early diagnosis for effective treatment of the disease.
Collapse
|
15
|
Li C, Hu Z. Is liver glycogen fragility a possible drug target for diabetes? FASEB J 2019; 34:3-15. [PMID: 31914592 DOI: 10.1096/fj.201901463rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
Liver glycogen α particles are molecularly fragile in diabetic mice, and readily form smaller β particles, which degrade more rapidly to glucose. This effect is well associated with the loss of blood-glucose homeostasis in diabetes. The biological mechanism of such fragility is still unknown; therefore, there are perceived opportunities that could eventually lead to new means to manage type 2 diabetes. The hierarchical structures of glycogen particles are controlled by the underlying biosynthesis/degradation process that involves various enzymes, including, for example, glycogen synthase (GS) and glycogen-branching enzyme (GBE). Recent studies have shown that fragile glycogen α particles in diabetic mice have longer chains and a higher molecular density compared to wild-type mice, indicating an enhanced enzymatic activity ratio of GS to GBE in diabetes. Furthermore, it has been shown that with an improved blood glucose homeostasis, the glycogen fragility in diabetic mice can be restored by treatment with active ingredients from traditional Chinese medicine, yet the underlying mechanism is unknown. In this review, we summarize recent advances in understandings glycogen fragility from the perspectives of glycogen biosynthesis/degradation, glycogen hierarchical structures, and its relation to diabetes. Importantly, we for the first time set GS/GBE activity ratio as the therapeutic target for diabetes.
Collapse
Affiliation(s)
- Cheng Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China.,School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zhenxia Hu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Sun RC, Dukhande VV, Zhou Z, Young LEA, Emanuelle S, Brainson CF, Gentry MS. Nuclear Glycogenolysis Modulates Histone Acetylation in Human Non-Small Cell Lung Cancers. Cell Metab 2019; 30:903-916.e7. [PMID: 31523006 PMCID: PMC6834909 DOI: 10.1016/j.cmet.2019.08.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/20/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022]
Abstract
Nuclear glycogen was first documented in the early 1940s, but its role in cellular physiology remained elusive. In this study, we utilized pure nuclei preparations and stable isotope tracers to define the origin and metabolic fate of nuclear glycogen. Herein, we describe a key function for nuclear glycogen in epigenetic regulation through compartmentalized pyruvate production and histone acetylation. This pathway is altered in human non-small cell lung cancers, as surgical specimens accumulate glycogen in the nucleus. We demonstrate that the decreased abundance of malin, an E3 ubiquitin ligase, impaired nuclear glycogenolysis by preventing the nuclear translocation of glycogen phosphorylase and causing nuclear glycogen accumulation. Re-introduction of malin in lung cancer cells restored nuclear glycogenolysis, increased histone acetylation, and decreased growth of cancer cells transplanted into mice. This study uncovers a previously unknown role for glycogen metabolism in the nucleus and elucidates another mechanism by which cellular metabolites control epigenetic regulation.
Collapse
Affiliation(s)
- Ramon C Sun
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | - Vikas V Dukhande
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St John's University, Jamaica, NY, USA
| | - Zhengqiu Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Shane Emanuelle
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Christine Fillmore Brainson
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
17
|
Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update. II. Hyperkinetic disorders. J Neural Transm (Vienna) 2019; 126:997-1027. [DOI: 10.1007/s00702-019-02030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
|
18
|
Kehl A, Cizinauskas S, Langbein-Detsch I, Mueller E. NHLRC1 dodecamer expansion in a Welsh Corgi (Pembroke) with Lafora disease. Anim Genet 2019; 50:413-414. [PMID: 31172540 DOI: 10.1111/age.12795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2019] [Indexed: 11/29/2022]
|