1
|
Pourang S, Disharoon D, Hernandez S, Ahuja SP, Neal MD, Suster MA, Sen Gupta A, Mohseni P. A surface-functionalized whole blood-based dielectric microsensor for assessment of clot firmness in a fibrinolytic environment. Biosens Bioelectron 2025; 267:116789. [PMID: 39332249 DOI: 10.1016/j.bios.2024.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Accurate assessment of fibrin clot stability can predict bleeding risk in coagulopathic conditions such as thrombocytopenia and hypofibrinogenemia. Hyperfibrinolysis - a clinical phenotype characterized by an accelerated breakdown of the fibrin clot - makes such assessments challenging by obfuscating the effect of hemostatic components including platelets or fibrinogen on clot stability. In this work, we present a biofunctionalized, microfluidic, label-free, electronic biosensor to elicit unique, specific, and differential responses from the multifactorial processes of blood coagulation and fibrinolysis ex vivo. The microsensor tracks the temporal variation in the normalized real part of the dielectric permittivity of whole blood (<10 μL) at 1 MHz as the sample coagulates within a three-dimensional, parallel-plate, capacitive sensing area. Surface biofunctionalization of the microsensor's electrodes with physisorption of tissue factor (TF) and aprotinin permits real-time assessment of the coagulation and fibrinolytic outcomes. We show that surface coating with TF and manual addition of TF result in a similar degree of acceleration of coagulation kinetics in human whole blood samples. We also show that surface coating with aprotinin and manual addition of aprotinin yield similar results in inhibiting tissue plasminogen activator (tPA)-induced upregulated fibrinolysis in human whole blood samples. Validated through a clinically relevant, complementary assay - rotational thromboelastometry for clot viscoelasticity - we finally establish that a microsensor dual-coated with both TF and aprotinin detects the hemostatic rescue in the tPA-induced hyperfibrinolytic profile of whole blood and the hemostatic dysfunction due to concurrent platelet depletion in the blood sample, thus featuring enhanced ability in evaluating complex, combinatorial coagulopathies.
Collapse
Affiliation(s)
- Sina Pourang
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Dante Disharoon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Selvin Hernandez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sanjay P Ahuja
- Division of Pediatric Hematology/Oncology, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Matthew D Neal
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Michael A Suster
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Pedram Mohseni
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Abstract
Viscoelastic testing methods examine the real-time formation of a clot in a whole blood sample, and include thromboelastography (TEG), rotational thromboelastometry (ROTEM), and several other testing platforms. They allow for concurrent assessment of multiple aspects of clotting, including plasmatic coagulation factors, platelets, fibrinogen, and the fibrinolytic pathway. This testing is rapid and may be performed at the point-of-care, allowing for prompt identification of coagulopathies to guide focused and rational administration of blood products as well as the identification of anticoagulant effect. With recent industry progression towards user-friendly, cartridge-based, portable instruments, viscoelastic testing has emerged in the 21st century as a powerful tool to guide blood transfusions in the bleeding patient, and to identify and treat both bleeding and thrombotic conditions in many operative settings, including trauma surgery, liver transplant surgery, cardiac surgery, and obstetrics. In these settings, the use of transfusion algorithms guided by viscoelastic testing data has resulted in widespread improvements in patient blood management as well as modest improvements in select patient outcomes. To address the increasingly wide adoption of viscoelastic methods and the growing number of medical and laboratory personnel tasked with implementing, performing, and interpreting these methods, this chapter provides an overview of the history, physiology, and technology behind viscoelastic testing, as well as a practical review of its clinical utility and current evidence supporting its use. Also included is a review of testing limitations and the contextual role played by viscoelastic methods among all coagulation laboratory testing.
Collapse
Affiliation(s)
- Timothy Carll
- Department of Pathology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
3
|
Chen L, Li D, Liu X, Xie Y, Shan J, Huang H, Yu X, Chen Y, Zheng W, Li Z. Point-of-Care Blood Coagulation Assay Based on Dynamic Monitoring of Blood Viscosity Using Droplet Microfluidics. ACS Sens 2022; 7:2170-2177. [PMID: 35537208 DOI: 10.1021/acssensors.1c02360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monitoring of the coagulation function has applications in many clinical settings. Routine coagulation assays in the clinic are sample-consuming and slow in turnaround. Microfluidics provides the opportunity to develop coagulation assays that are applicable in point-of-care settings, but reported works required bulky sample pumping units or costly data acquisition instruments. In this work, we developed a microfluidic coagulation assay with a simple setup and easy operation. The device continuously generated droplets of blood sample and buffer mixture and reported the temporal development of blood viscosity during coagulation based on the color appearance of the resultant droplets. We characterized the relationship between blood viscosity and color appearance of the droplets and performed experiments to validate the assay results. In addition, we developed a prototype analyzer equipped with simple fluid pumping and economical imaging module and obtained similar assay measurements. This assay showed great potential to be developed into a point-of-care coagulation test with practical impact.
Collapse
Affiliation(s)
- Linzhe Chen
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Donghao Li
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Xinyu Liu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.,Faculty of Information Technology, Collaborative Laboratory for Intelligent Science and Systems and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao 999078, China
| | - Yihan Xie
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Jieying Shan
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Haofan Huang
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Xiaxia Yu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Yudan Chen
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Weidong Zheng
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Zida Li
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Li D, Liu X, Chai Y, Shan J, Xie Y, Liang Y, Huang S, Zheng W, Li Z. Point-of-care blood coagulation assay enabled by printed circuit board-based digital microfluidics. LAB ON A CHIP 2022; 22:709-716. [PMID: 35050293 DOI: 10.1039/d1lc00981h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The monitoring of coagulation function has great implications in many clinical settings. However, existing coagulation assays are simplex, sample-consuming, and slow in turnaround, making them less suitable for point-of-care testing. In this work, we developed a novel blood coagulation assay that simultaneously assesses both the tendency of clotting and the stiffness of the resultant clot using printed circuit board (PCB)-based digital microfluidics. A drop of blood was actuated to move back and forth on the PCB electrode array, until the motion winded down as the blood coagulated and became thicker. The velocity tracing and the deformation of the clot were calculated via image analysis to reflect the coagulation progression and the clot stiffness, respectively. We investigated the effect of different hardware and biochemical settings on the assay results. To validate the assay, we performed assays on blood samples with hypo- and hyper-coagulability, and the results confirmed the assay's capability in distinguishing different blood samples. We then examined the correlation between the measured metrics in our assays and standard coagulation assays, namely prothrombin time and fibrinogen level, and the high correlation supported the clinical relevance of our assay. We envision that this method would serve as a powerful point-of-care coagulation testing method.
Collapse
Affiliation(s)
- Donghao Li
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Xinyu Liu
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
- Faculty of Information Technology, Collaborative Laboratory for Intelligent Science and Systems and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao 999078, China
| | - Yujuan Chai
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Jieying Shan
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Yihan Xie
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Yong Liang
- Faculty of Information Technology, Collaborative Laboratory for Intelligent Science and Systems and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao 999078, China
| | - Susu Huang
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Weidong Zheng
- Department of Laboratory Medicine, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Zida Li
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Viscoelastic Hemostatic Assays: A Primer on Legacy and New Generation Devices. J Clin Med 2022; 11:jcm11030860. [PMID: 35160311 PMCID: PMC8836477 DOI: 10.3390/jcm11030860] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
Viscoelastic hemostatic assay (VHAs) are whole blood point-of-care tests that have become an essential method for assaying hemostatic competence in liver transplantation, cardiac surgery, and most recently, trauma surgery involving hemorrhagic shock. It has taken more than three-quarters of a century of research and clinical application for this technology to become mainstream in these three clinical areas. Within the last decade, the cup and pin legacy devices, such as thromboelastography (TEG® 5000) and rotational thromboelastometry (ROTEM® delta), have been supplanted not only by cartridge systems (TEG® 6S and ROTEM® sigma), but also by more portable point-of-care bedside testing iterations of these legacy devices (e.g., Sonoclot®, Quantra®, and ClotPro®). Here, the legacy and new generation VHAs are compared on the basis of their unique hemostatic parameters that define contributions of coagulation factors, fibrinogen/fibrin, platelets, and clot lysis as related to the lifespan of a clot. In conclusion, we offer a brief discussion on the meteoric adoption of VHAs across the medical and surgical specialties to address COVID-19-associated coagulopathy.
Collapse
|
6
|
Costa-Júnior JFS, Parcero GC, Machado JC. Shear Elastic Coefficient of Normal and Fibrinogen-Deficient Clotting Plasma Obtained with a Sphere-Motion-Based Acoustic-Radiation-Force Approach. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:111-123. [PMID: 34674885 DOI: 10.1016/j.ultrasmedbio.2021.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Blood coagulation is a process involving several chemical reactions governed by coagulation factors, during which the shear elastic coefficient, μ, varies as the medium transitions from liquid to gel phase. This work used ultrasound to measure μ during the clotting of human plasma samples by tracking the motion of a glass sphere located inside a cuvette filled with the plasma. A 2.03 MHz ultrasonic system generated an impulsive acoustic radiation force acting on the sphere, and a 4.89 MHz pulse-echo ultrasonic system tracked the sphere displacement induced by that force. Measurements of μ were determined by fitting a μ-dependent theoretical model to the motion waveform of the sphere immersed in clotting normal plasma and plasma samples with fibrinogen (FI) concentrations of 1.2 (FI-deficiency) and 3.6 (FI-normal) g/L. For normal plasma, μ started at 14.22 Pa and increased rapidly until 2 min, then slowly until it reached 210.23 Pa at 35 min after the clotting process started. A similar trend was exhibited in plasma samples with FI concentrations of 1.2 and 3.6 g/L, with μ reaching 120.55 and 679.42 Pa, respectively. A theoretical model, related to the kinetics of clot-structure formation, describes the time changes of μ for the clotting plasma samples. The sphere-motion-based acoustic-radiation-force approach allowed us to measure the shear elastic coefficient during the coagulation process of plasma samples with normal and deficient FI concentrations. Our results suggest that the method used in this study is capable of being used to detect bleeding disorders.
Collapse
Affiliation(s)
- José Francisco Silva Costa-Júnior
- Brazilian Air Force Academy, Pirassununga, Brazil; Biomedical Engineering Program-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - João Carlos Machado
- Biomedical Engineering Program-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Post-Graduation Program on Surgical Sciences, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Saha A, Bajpai A, Krishna V, Bhattacharya S. Evolving Paradigm of Prothrombin Time Diagnostics with Its Growing Clinical Relevance towards Cardio-Compromised and COVID-19 Affected Population. SENSORS (BASEL, SWITZERLAND) 2021; 21:2636. [PMID: 33918646 PMCID: PMC8068903 DOI: 10.3390/s21082636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/30/2023]
Abstract
Prothrombin time (PT) is a significant coagulation (hemostasis) biomarker used to diagnose several thromboembolic and hemorrhagic complications based on its direct correlation with the physiological blood clotting time. Among the entire set of PT dependents, candidates with cardiovascular ailments are the major set of the population requiring lifelong anticoagulation therapy and supervised PT administration. Additionally, the increasing incidence of COVID affected by complications in coagulation dynamics has been strikingly evident. Prolonged PT along with sepsis-induced coagulopathy (SIC score > 3) has been found to be very common in critical COVID or CAC-affected cases. Considering the growing significance of an efficient point-of-care PT assaying platform to counter the increasing fatalities associated with cardio-compromised and coagulation aberrations propping up from CAC cases, the following review discusses the evolution of lab-based PT to point of care (PoC) PT assays. Recent advances in the field of PoC PT devices utilizing optics, acoustics, and mechanical and electrochemical methods in microsensors to detect blood coagulation are further elaborated. Thus, the following review holistically aims to motivate the future PT assay designers/researchers by detailing the relevance of PT and associated protocols for cardio compromised and COVID affected along with the intricacies of previously engineered PoC PT diagnostics.
Collapse
Affiliation(s)
- Anubhuti Saha
- Design Program, Indian Institute of Technology, Kanpur 208016, India;
- Microsystems Fabrication Laboratory, Indian Institute of Technology, Kanpur 208016, India
| | - Ashutosh Bajpai
- LPS Institute of Cardiology, GSVM Medical College, Kanpur 208002, India; (A.B.); (V.K.)
| | - Vinay Krishna
- LPS Institute of Cardiology, GSVM Medical College, Kanpur 208002, India; (A.B.); (V.K.)
| | - Shantanu Bhattacharya
- Design Program, Indian Institute of Technology, Kanpur 208016, India;
- Microsystems Fabrication Laboratory, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
8
|
Hajjarian Z, Toussaint JD, Guerrero JL, Nadkarni SK. In-vivo mechanical characterization of coronary atherosclerotic plaques in living swine using intravascular laser speckle imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:2064-2078. [PMID: 33996217 PMCID: PMC8086462 DOI: 10.1364/boe.418939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 05/13/2023]
Abstract
The ability to evaluate the viscoelastic properties of coronary arteries is crucial for identifying mechanically unstable atherosclerotic plaques. Here, we demonstrate for the first time in living swine, the capability of intravascular laser speckle imaging (ILSI) to measure an index of coronary plaque viscoelasticity, τ, using a human coronary to swine xenograft model. Cardiac motion effects are evaluated by comparing the EKG-non-gated τ ¯ N G , and EKG-gated τ ¯ G among different plaque types. Results show that both τ ¯ N G and τ ¯ G are significantly lower in necrotic-core plaques compared with stable lesions. Discrete-point pullback measurements demonstrate the capability of ILSI for rapid mechanical characterization of coronary segments under physiological conditions, in-vivo.
Collapse
Affiliation(s)
- Zeinab Hajjarian
- Wellman Center for Photomedicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Authors contributed equally to the manuscript
| | - Jimmy D. Toussaint
- Wellman Center for Photomedicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
- Authors contributed equally to the manuscript
| | - J. Luis Guerrero
- Surgical Cardiovascular Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Seemantini K. Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
9
|
Hajjarian Z, Nadkarni SK. Tutorial on laser speckle rheology: technology, applications, and opportunities. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-19. [PMID: 32358928 PMCID: PMC7195443 DOI: 10.1117/1.jbo.25.5.050801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/10/2020] [Indexed: 05/27/2023]
Abstract
SIGNIFICANCE The onset of several diseases is frequently marked with anomalous mechanical alteration of the affected tissue at the intersection of cells and their microenvironment. Therefore, mapping the micromechanical attributes of the tissues could enhance our understanding of the etiology of human disease, improve the diagnosis, and help stratify therapies that target these mechanical aberrations. AIM We review the tremendous opportunities offered through using optics for imaging the micromechanical properties, at length scales inaccessible to other modalities, in both basic research and clinical medicine. We specifically focus on laser speckle rheology (LSR), a technology that quantifies the mechanical properties of tissues in a rapid, noncontact manner. APPROACH In LSR, the shear viscoelastic modulus is measured from the time-variant speckle intensity fluctuations reflected off the tissue. The LSR technology is engineered and configured into several embodiments, including bench-top optical systems, endoscopes for minimally invasive procedures, portable point-of-care devices, and microscopes. RESULTS These technological nuances have primed the LSR for widespread applications in diagnosis and therapeutic monitoring, as demonstrated here, in cardiovascular disease, coagulation disorders, and tumor malignancies. CONCLUSION The fast-paced technological advancements, elaborated here, position the LSR as a competent candidate for many more exciting opportunities in basic research and medicine.
Collapse
Affiliation(s)
- Zeinab Hajjarian
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Seemantini K. Nadkarni
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| |
Collapse
|
10
|
Hartmann J, Murphy M, Dias JD. Viscoelastic Hemostatic Assays: Moving from the Laboratory to the Site of Care-A Review of Established and Emerging Technologies. Diagnostics (Basel) 2020; 10:diagnostics10020118. [PMID: 32098161 PMCID: PMC7167835 DOI: 10.3390/diagnostics10020118] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 11/16/2022] Open
Abstract
Viscoelastic-based techniques to evaluate whole blood hemostasis have advanced substantially since they were first developed over 70 years ago but are still based upon the techniques first described by Dr. Hellmut Hartert in 1948. Today, the use of thromboelastography, the method of testing viscoelastic properties of blood coagulation, has moved out of the research laboratory and is now more widespread, used commonly during surgery, in emergency departments, intensive care units, and in labor wards. Thromboelastography is currently a rapidly growing field of technological advancement and is attracting significant investment. This review will first describe the history of the viscoelastic testing and the established first-generation devices, which were developed for use within the laboratory. This review will then describe the next-generation hemostasis monitoring devices, which were developed for use at the site of care for an expanding range of clinical applications. This review will then move on to experimental technologies, which promise to make viscoelastic testing more readily available in a wider range of clinical environments in the endeavor to improve patient care.
Collapse
Affiliation(s)
- Jan Hartmann
- Haemonetics Corporation, Boston, MA 02110, USA;
- Correspondence: ; Tel.: +1-781-348-7396
| | | | - Joao D. Dias
- Haemonetics SA, Signy CH, 1274 Signy-Centre, Switzerland;
| |
Collapse
|