1
|
de Oliveira THC, Gonçalves GKN. Liver ischemia reperfusion injury: Mechanisms, cellular pathways, and therapeutic approaches. Int Immunopharmacol 2025; 150:114299. [PMID: 39961215 DOI: 10.1016/j.intimp.2025.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/28/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Liver ischemia-reperfusion injury (LIRI) is a critical challenge in liver transplantation, resection, and trauma surgeries, leading to significant hepatic damage due to oxidative stress, inflammation, and mitochondrial dysfunction. This review explores the cellular and molecular mechanisms underlying LIRI, focusing on ATP depletion, mitochondrial dysfunction, and the involvement of reactive oxygen species (ROS). Inflammatory pathways, including the activation of nuclear factor-kappa B (NF-κB) and the NLRP3 inflammasome, as well as pro-inflammatory cytokines such as TNF-α and IL-1β, play a crucial role in exacerbating tissue damage. Various types of cell death, including necrosis, apoptosis, necroptosis, pyroptosis, ferroptosis and cuproptosis are also discussed. Therapeutic interventions targeting these mechanisms, such as antioxidants, anti-inflammatories, mitochondrial protectors, and signaling modulators, have shown promise in pre-clinical studies. However, translating these findings into clinical practice faces challenges due to the limitations of animal models and the complexity of human responses. Emerging therapies, such as RNA-based treatments, genetic editing, and stem cell therapies, offer potential breakthroughs in LIRI management. This review highlights the need for further research and the development of innovative therapeutic approaches to improve clinical outcomes.
Collapse
|
2
|
McGettigan B, Hernandez-Tejero M, Malhi H, Shah V. Immune Dysfunction and Infection Risk in Advanced Liver Disease. Gastroenterology 2025:S0016-5085(24)05694-4. [PMID: 39927926 DOI: 10.1053/j.gastro.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 02/11/2025]
Abstract
The risk of microbial infections is increased in cirrhosis and other forms of advanced liver disease such as alcohol-associated hepatitis. Such infections may precipitate new or further decompensation and death, especially in patients with clinical features of acute-on-chronic liver failure. The severe immune dysfunction or "immune paralysis" caused by advanced liver disease is associated with high short-term mortality. However, the pathogenic mechanisms underlying immune dysfunction and immunodeficiency are incompletely understood. Evidence to date suggests a complex, dynamic process that perturbs the physiological roles of the liver as a master regulator of systemic immunity and protector against noxious effects of exogenous molecules in the portal vein flowing from the gut. Thus, in cirrhosis and severe alcohol-associated hepatitis, the ability of hepatocytes and intrahepatic immune cells to balance normal context-dependent dichotomous responses of tolerance vs immune activation is lost. Contributing factors include loss of the gut barrier with translocation of microbial products through the portal vein, culminating in development of functional defects in innate and adaptive immune cells, and generation of immune-regulatory myeloid cells that permit microbial colonization and infection. This review addresses key evidence supporting the paradigm of immune dysfunction as a risk for microbial infections and identifies potential therapeutic targets for intervention. The primary focus is on cirrhosis-associated immune dysfunction and alcohol-associated liver disease, because the bulk of available data are from these 2 conditions.
Collapse
Affiliation(s)
- Brett McGettigan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Maria Hernandez-Tejero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Vijay Shah
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
3
|
Li P, Ji W, Zhang B, Jia H, Wang J, Sun Z, Wang Y, Wang W, Qi F. FPR1 affects acute rejection in kidney transplantation by regulating iron metabolism in neutrophils. Mol Med 2025; 31:23. [PMID: 39849390 PMCID: PMC11758745 DOI: 10.1186/s10020-025-01077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Acute rejection (AR) is one of the significant factors contributing to poor prognosis in patients following kidney transplantation. Neutrophils are the main cause of early host-induced tissue injury. This paper intends to investigate the possible mechanisms of neutrophil involvement in acute rejection in renal transplantation. METHODS Samples were analyzed for their relationship with immune cells using CIBERSORT. WGCNA was used to identify modules with high relevance to neutrophils and hub genes in the modules were extracted. The effect on neutrophil function after blocking formyl peptide receptor 1 (FPR1) was tested in vitro experiments. The effects of blocking FPR1 on neutrophil function as well as acute rejection were tested in vivo after constructing a mouse kidney transplant model. RESULTS The proportion of neutrophils was higher in the AR group than in the non-rejection group, and FPR1 was identified as an important gene in the regulation of acute rejection in kidney transplantation by neutrophils. At the cellular level, blocking FPR1 inhibited the activation of the ERK1/2 pathway, decreased ferrous ion content, affected the expression of iron metabolism-related proteins, and suppressed the formation of NETs. In the acute rejection model of renal transplantation, blockade of FPR1 decreased graft neutrophil infiltration and NETs content. Meanwhile, blocking FPR1 attenuated graft injury during acute rejection. CONCLUSION This study found that FPR1 might be an important molecule involved in neutrophils during acute rejection of kidney transplantation, explored the relationship between kidney transplantation and neutrophils, and provided potential treatment methods for clinical practice.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Wenbin Ji
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Baotong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Haowen Jia
- Department of General Surgery, Tianjin Medical University General Hospital Airport Hospital, No.85, East Sixth Road, Dongli District, Tianjin, 300300, China
| | - Jinmiao Wang
- Department of Breast and Thyroid Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, 300121, China
| | - Zhaonan Sun
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Yifan Wang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Weiwei Wang
- Department of General Surgery, Tianjin Baodi Hospital, Tianjin Medical University Baodi Hospital, #8 Guangchuan Road, Baodi, 301800, Tianjin, China.
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
4
|
Pan B, Zhang Z, Ye D, Zhang X, Yao Y, Luo Y, Hong H, Cai X, Chen Y, Tang N. PPARα suppresses growth of hepatocellular carcinoma in a high-fat diet context by reducing neutrophil extracellular trap release. JHEP Rep 2025; 7:101228. [PMID: 39802808 PMCID: PMC11719391 DOI: 10.1016/j.jhepr.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 01/16/2025] Open
Abstract
Background & Aims The role of infiltrating neutrophils in hepatocellular carcinoma (HCC) is modulated by cellular metabolism, specifically lipid homeostasis. Throughout the progression of HCC, alterations in lipid metabolism are intricately linked with regulation of neutrophil function and the release of neutrophil extracellular traps (NETs). However, how much the protumor effect of a high-fat diet (HFD) depends on NETs and the potential interplay between NETs and other leukocytes in HCC remains uncertain. Methods In this study, the molecular mechanism of NET release and the potential beneficial effects of PPARα agonists on the HCC microenvironment were explored through proteomics, metabolomics, tissue microarray, immunofluorescence, flow cytometry, western blot, and dual-luciferase reporter gene assays (n = 6 per group). Results Our study demonstrated a notable inhibition of PPARα signaling in HCC. Furthermore, the disruption of PPARα-mediated lipid metabolism was responsible for the release of NETs. The presence of a HFD was observed to induce mitochondrial impairment in neutrophils, leading to the activation of cGAS-STING by oxidized mitochondrial DNA (Ox-mtDNA). Consequently, this activation triggered the release of NETs containing Ox-mtDNA through the enhancement of NLRP3-GSDMD-N in a NF-κB-dependent manner. Moreover, the release of NETs within HCC tissues effectively isolated cytotoxic leukocytes in the outer regions of HCC. Conclusions Our study not only provides insight into the relationship between lipid metabolism disorders and NETs' tumor-promoting function, but also provides an important strategic reference for multi-target or combined immunotherapy of HCC. Impact and implications We have identified PPARα and its agonists as therapeutic targets for controlling the neutrophil extracellular traps associated with high lipid metabolism. Results from preclinical models suggest that PPARα can limit mitochondrial oxidative stress, inhibit cGAS-STING-NF-κB signaling, and limit the release of neutrophil extracellular traps, thereby increasing the contact of anti-tumor leukocytes and hepatocellular cancer cells and limiting tumor growth.
Collapse
Affiliation(s)
- Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhu Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dongjie Ye
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yue Luo
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haijie Hong
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xinran Cai
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou, China
| |
Collapse
|
5
|
Zhang Y, Wu R, Zhan X, Wang XY, Xiang LW, Duan YQ, You Y, Zhang JB, Wu R, Zhang YY, Duan L. Neutrophil extracellular traps facilitate liver inflammation/fibrosis progression by entering macrophages and triggering AIM2 inflammasome-dependent pyroptosis. Cell Commun Signal 2024; 22:556. [PMID: 39568027 PMCID: PMC11577833 DOI: 10.1186/s12964-024-01944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Absent in melanoma 2 (AIM2) inflammasome-dependent pyroptosis and neutrophil extracellular traps (NETs) have been implicated in chronic liver disease (CLD). However, the specific intrahepatic cell type that undergoes AIM2 inflammasome-dependent pyroptosis and how their interaction augments hepatic inflammation/fibrosis remains unclear. METHODS The expression and correlation of AIM2 inflammasome-dependent pyroptosis-related indicators and NETs were analyzed in biopsy tissue and blood specimens from chronic hepatitis patients (CHs). Cell-based experiments were conducted to investigate their interaction. In vitro and in vivo experiments were used to analyze their effects on the progression of hepatic inflammation/fibrosis as well as their clinical importance. RESULTS Elevated levels of AIM2 inflammasome-dependent pyroptosis indicators and NETs were detected in biopsy tissue and blood specimens. Circulating NETs were positively correlated with pyroptosis-related indicators, and both were related with disease severity. Confocal imaging revealed that AIM2 was mainly localized to hepatic macrophages, indicating that hepatic macrophages were the major cell type that underwent pyroptosis. NETs were directly engulfed by macrophages and then stimulated AIM2 inflammasome-dependent macrophage pyroptosis in vitro, which amplified the activation of hepatic stellate cells (HSCs) and increased collagen deposition. Administration of the NETs degradation agent DNase I or the AIM2 inflammasome activation inhibitor ODN A151 effectively alleviated chronic liver inflammation/fibrosis progression in vivo. CONCLUSIONS NETs-induced AIM2 inflammasome-dependent pyroptosis in macrophages facilitates liver inflammation/fibrosis progression. The identified NET-AIM2 inflammasome cascade could serve as a novel therapeutic target for hepatic inflammation/fibrosis progression.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Lin Jiang Road, Chongqing, 400010, China
| | - Rong Wu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Lin Jiang Road, Chongqing, 400010, China
| | - Xi Zhan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Lin Jiang Road, Chongqing, 400010, China
| | - Xuan-Yi Wang
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Wei Xiang
- Department of Laboratory Medicine, Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ya-Qian Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Lin Jiang Road, Chongqing, 400010, China
| | - Yan You
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Bo Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, No.1 You Yi Road, Chongqing, 400016, China.
| | - Yun-Yuan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, No.16 Jiang Su Road, Qingdao, 266003, China.
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Lin Jiang Road, Chongqing, 400010, China.
| |
Collapse
|
6
|
Yan S, Lin Z, Ma M, Arasteh A, Yin XM. Cholestatic insult triggers alcohol-associated hepatitis in mice. Hepatol Commun 2024; 8:e0566. [PMID: 39445893 PMCID: PMC11512636 DOI: 10.1097/hc9.0000000000000566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Alcohol-associated hepatitis (AH) is a severe, potentially life-threatening form of alcohol-associated liver disease with limited therapeutic options. Existing evidence shows that biliary dysfunction and cholestasis are common in patients with AH and are associated with poorer prognosis. However, the role of cholestasis in the development of AH is largely unknown. We aimed to examine the hypothesis that cholestasis can be an important etiology factor for AH. METHODS To study the interaction of cholestasis and alcohol, chronically ethanol (EtOH)-fed mice were challenged with a subtoxic dose of α-naphthylisothiocyanate (ANIT), a well-studied intrahepatic cholestasis inducer. Liver injury was measured by biochemical and histological methods. RNAseq was performed to determine hepatic transcriptomic changes. The impact of inflammation was assessed using an anti-LY6G antibody to deplete the neutrophils and DNase I to degrade neutrophil extracellular traps. RESULTS ANIT synergistically enhanced liver injury following a 4-week EtOH feeding with typical features of AH, including increased serum levels of ALT, AST, and total bile acids, cholestasis, necrosis, neutrophil infiltration, and accumulation of neutrophil extracellular traps. RNAseq revealed multiple genes uniquely altered in the livers of EtOH/ANIT-treated mice. Analysis of differentially expressed genes suggested an enrichment of genes related to inflammatory response. Anti-LY6G antibody or DNase I treatment significantly inhibited liver damage in EtOH/ANIT-treated mice. CONCLUSIONS Our results support the hypothesis that cholestasis can be a critical contributor to the pathogenesis of AH. A combined treatment of EtOH and ANIT in mice presents biochemical, histological, and molecular features similar to those found in patients with AH, suggesting that this treatment scheme can be a useful model for studying Alcohol-associated Cholestasis and Hepatitis (AlChoHep).
Collapse
|
7
|
Zhang Y, Shi K, Zhu B, Feng Y, Liu Y, Wang X. Neutrophil Extracellular Trap Scores Predict 90-Day Mortality in Hepatitis B-Related Acute-on-Chronic Liver Failure. Biomedicines 2024; 12:2048. [PMID: 39335563 PMCID: PMC11429194 DOI: 10.3390/biomedicines12092048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF) is associated with pronounced systemic inflammation, and neutrophil extracellular traps (NETs) are key components of this response. The primary objective of this study was to establish an NET-related scoring system for patients with HBV-ACLF. A prospective training cohort of 81 patients from the Beijing Ditan Hospital was included. The concentrations of NET markers (cell-free DNA, myeloperoxidase DNA [MPO-DNA], and citrullinated histone H3) in peripheral blood were quantified. Random survival forest, LASSO regression, and multivariate Cox regression analyses were used to identify prognostic factors associated with 90-day mortality in ACLF patients and develop a nomogram for visualization, which was followed by evaluation in a validation cohort (n = 40). NET-related marker levels were significantly higher in the non-survival group than in the survival group (p < 0.05). The NET score was constructed by combining MPO-DNA, neutrophil-to-lymphocyte ratio, and age data. The score's diagnostic effectiveness, assessed by the area under the curve, yielded values of 0.83 and 0.77 in the training and validation sets, respectively, markedly surpassing those of other established models (p < 0.05). In both groups, the 90-day mortality rates were 88.8% and 75.0%, respectively, for patients categorized as high risk and 18.0% and 12.5%, respectively, for those classified as low risk.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianbo Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100054, China; (Y.Z.); (K.S.); (B.Z.); (Y.F.); (Y.L.)
| |
Collapse
|
8
|
Li C, Wu C, Li F, Xu W, Zhang X, Huang Y, Xia D. Targeting Neutrophil Extracellular Traps in Gouty Arthritis: Insights into Pathogenesis and Therapeutic Potential. J Inflamm Res 2024; 17:1735-1763. [PMID: 38523684 PMCID: PMC10960513 DOI: 10.2147/jir.s460333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Gouty arthritis (GA) is an immune-mediated disorder characterized by severe inflammation due to the deposition of monosodium urate (MSU) crystals in the joints. The pathophysiological mechanisms of GA are not yet fully understood, and therefore, the identification of effective therapeutic targets is of paramount importance. Neutrophil extracellular traps (NETs), an intricate structure of DNA scaffold, encompassing myeloperoxidase, histones, and elastases - have gained significant attention as a prospective therapeutic target for gouty arthritis, due to their innate antimicrobial and immunomodulatory properties. Hence, exploring the therapeutic potential of NETs in gouty arthritis remains an enticing avenue for further investigation. During the process of gouty arthritis, the formation of NETs triggers the release of inflammatory cytokines, thereby contributing to the inflammatory response, while MSU crystals and cytokines are sequestered and degraded by the aggregation of NETs. Here, we provide a concise summary of the inflammatory processes underlying the initiation and resolution of gouty arthritis mediated by NETs. Furthermore, this review presents an overview of the current pharmacological approaches for treating gouty arthritis and summarizes the potential of natural and synthetic product-based inhibitors that target NET formation as novel therapeutic options, alongside elucidating the intrinsic challenges of these inhibitors in NETs research. Lastly, the limitations of HL-60 cell as a suitable substitute of neutrophils in NETs research are summarized and discussed. Series of recommendations are provided, strategically oriented towards guiding future investigations to effectively address these concerns. These findings will contribute to an enhanced comprehension of the interplay between NETs and GA, facilitating the proposition of innovative therapeutic strategies and novel approaches for the management of GA.
Collapse
Affiliation(s)
- Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoxi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
9
|
Liu Y, Chen S, Yu S, Wang J, Zhang X, Lv H, Aboubacar H, Gao N, Ran X, Sun Y, Cao G. LPS-TLR4 pathway exaggerates alcoholic hepatitis via provoking NETs formation. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:158-169. [PMID: 37150251 DOI: 10.1016/j.gastrohep.2023.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Intrahepatic infiltration of neutrophils is a character of alcoholic hepatitis (AH) and neutrophil extracellular traps (NETs) are an important strategy for neutrophils to fix and kill invading microorganisms. The gut-liver axis has been thought to play a critical role in many liver diseases also including AH. However, whether NETs appear in AH and play role in AH is still unsure. METHODS Serum samples from AH patients were collected and LPS and MPO-DNA were detected. WT, NE KO, and TLR4 KO mice were used to build the AH model, and the intestinal bacteria were eliminated at the same time and LPS was given. Then the formation of NETs and AH-related markers were detected. RESULTS The serum MPO-DNA and LPS concentration was increased in AH patients and a correlation was revealed between these two indexes. More intrahepatic NETs formed in AH mice. NETs formation decreased with antibiotic intervention and restored with antibiotic intervention plus LPS supplement. While NETs formation failed to change with gut microbiome or combine LPS supplement in TLR4 KO mice. As we tested AH-related characters, liver injury, intrahepatic fat deposition, inflammation, and fibrosis alleviated with depletion of NE. These related marks were also attenuated with gut sterilization by antibiotics and recovered with a combined treatment with antibiotics plus LPS. But the AH-related markers did show a difference in TLR4 KO mice when they received the same treatment. CONCLUSION Intestinal-derived LPS promotes NETs formation in AH through the TLR4 pathway and further accelerates the AH process by NETs.
Collapse
Affiliation(s)
- Yang Liu
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China.
| | - Shuo Chen
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Shuo Yu
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Jiazhong Wang
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Xin Zhang
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Hao Lv
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Harouna Aboubacar
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Nan Gao
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China; Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Xiaoli Ran
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China; Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Yun Sun
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China; Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Gang Cao
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China.
| |
Collapse
|
10
|
Madir A, Grgurevic I, Tsochatzis EA, Pinzani M. Portal hypertension in patients with nonalcoholic fatty liver disease: Current knowledge and challenges. World J Gastroenterol 2024; 30:290-307. [PMID: 38313235 PMCID: PMC10835535 DOI: 10.3748/wjg.v30.i4.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Portal hypertension (PH) has traditionally been observed as a consequence of significant fibrosis and cirrhosis in advanced non-alcoholic fatty liver disease (NAFLD). However, recent studies have provided evidence that PH may develop in earlier stages of NAFLD, suggesting that there are additional pathogenetic mechanisms at work in addition to liver fibrosis. The early development of PH in NAFLD is associated with hepatocellular lipid accumulation and ballooning, leading to the compression of liver sinusoids. External compression and intra-luminal obstacles cause mechanical forces such as strain, shear stress and elevated hydrostatic pressure that in turn activate mechanotransduction pathways, resulting in endothelial dysfunction and the development of fibrosis. The spatial distribution of histological and functional changes in the periportal and perisinusoidal areas of the liver lobule are considered responsible for the pre-sinusoidal component of PH in patients with NAFLD. Thus, current diagnostic methods such as hepatic venous pressure gradient (HVPG) measurement tend to underestimate portal pressure (PP) in NAFLD patients, who might decompensate below the HVPG threshold of 10 mmHg, which is traditionally considered the most relevant indicator of clinically significant portal hypertension (CSPH). This creates further challenges in finding a reliable diagnostic method to stratify the prognostic risk in this population of patients. In theory, the measurement of the portal pressure gradient guided by endoscopic ultrasound might overcome the limitations of HVPG measurement by avoiding the influence of the pre-sinusoidal component, but more investigations are needed to test its clinical utility for this indication. Liver and spleen stiffness measurement in combination with platelet count is currently the best-validated non-invasive approach for diagnosing CSPH and varices needing treatment. Lifestyle change remains the cornerstone of the treatment of PH in NAFLD, together with correcting the components of metabolic syndrome, using nonselective beta blockers, whereas emerging candidate drugs require more robust confirmation from clinical trials.
Collapse
Affiliation(s)
- Anita Madir
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Zagreb 10000, Croatia
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London NW3 2PF, United Kingdom
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
11
|
Brunnthaler L, Pereyra D, Brenner M, Santol J, Herrmann L, Schrottmaier WC, Pirabe A, Schmuckenschlager A, Kim S, Kern AE, Huber FX, Michels LE, Brostjan C, Salzmann M, Hohensinner P, Kain R, Gruenberger T, Starlinger P, Assinger A. Intrahepatic neutrophil accumulation and extracellular trap formation are associated with posthepatectomy liver failure. Hepatol Commun 2024; 8:e0348. [PMID: 38099865 PMCID: PMC10727591 DOI: 10.1097/hc9.0000000000000348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Posthepatectomy liver failure (PHLF) represents a life-threatening complication with limited therapeutic options. Neutrophils play a critical and dynamic role during regeneratory processes, but their role in human liver regeneration is incompletely understood, especially as underlying liver disease, detectable in the majority of patients, critically affects hepatic regeneration. Here we explored intrahepatic neutrophil accumulation and neutrophil extracellular traps (NETs) in patients with PHLF and validated the functional relevance of NETs in a murine partial hepatectomy (PHx) model. METHODS We investigated the influx of neutrophils, macrophages, eosinophils, and mast cells and the presence of their respective extracellular traps in liver biopsies of 35 patients undergoing hepatectomy (10 patients with PHLF) before and after the initiation of liver regeneration by fluorescence microscopy. In addition, NET formation and neutrophil activation were confirmed by plasma analysis of 99 patients (24 patients with PHLF) before and up to 5 days after surgery. Furthermore, we inhibited NETs via DNase I in a murine PHx model of mice with metabolically induced liver disease. RESULTS We detected rapid intrahepatic neutrophil accumulation, elevated levels of myeloperoxidase release, and NET formation in regenerating human livers, with a significantly higher increase of infiltrating neutrophils and NETs in patients with PHLF. Circulating markers of neutrophil activation, including elastase, myeloperoxidase, and citrullinated histone H3, correlated with markers of liver injury. In a murine PHx model, we showed that the inhibition of NET accelerated hepatocyte proliferation and liver regeneration. CONCLUSIONS Patients with PHLF showed accelerated intrahepatic neutrophil infiltration and NET formation, which were associated with liver damage. Further, we identified postsurgical myeloperoxidase levels as predictive markers for adverse outcomes and observed that blocking NETs in a murine PHx model accelerated tissue regeneration.
Collapse
Affiliation(s)
- Laura Brunnthaler
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - David Pereyra
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Miriam Brenner
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jonas Santol
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Surgery, HPB Center, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Lukas Herrmann
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Waltraud C. Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmuckenschlager
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sarang Kim
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Anna Emilia Kern
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Felix Xaver Huber
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Lisa Emilie Michels
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Manuel Salzmann
- Department of Medicine II, Division of Cardiology, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Philipp Hohensinner
- Center for Biomedical Research, Division of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Thomas Gruenberger
- Department of Surgery, HPB Center, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Zhu C, Shi S, Jiang P, Huang X, Zhao J, Jin Y, Shen Y, Zhou X, Liu H, Cai J. Curcumin Alleviates Hepatic Ischemia-Reperfusion Injury by Inhibiting Neutrophil Extracellular Traps Formation. J INVEST SURG 2023; 36:2164813. [PMID: 36603844 DOI: 10.1080/08941939.2022.2164813] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (IRI) is a common innate immune-mediated sterile inflammatory response in liver transplantation and liver tumor resection. Neutrophil extracellular traps (NETs) can aggravate liver injury and activates innate immune response in the process of liver IRI. However, Curcumin (Cur) can reverse this damage and reduce NETs formation. Nevertheless, the specific regulatory mechanism is still unclear in liver IRI. This study aimed to explore the potential mechanisms that how does Cur alleviate hepatic IRI by inhibits NETs production and develop novel treatment regimens. METHODS We established a hepatic IRI model by subjecting C57BL/6J mice to 60 min of ischemia, followed by reperfusion for 2 h, 6 h, 12 h, and 24 h respectively. Subsequently, we were separated into 5 groups, namely the I/R group, Cur group, DNase-1 group, Cur + DNase1 group and sham operation group. Serum alanine aminotransferase (ALT) and aspartate transaminase (AST), Hematoxylin-eosin staining, immunofluorescence, and TUNEL analysis were applied to assess liver injury degree and NETs levels. Western blot assay was used to detect the protein levels of apoptosis-related proteins and MEK pathway proteins. RESULTS Cur could alleviate hepatic IRI by inhibiting the generation of NETs via suppressing the MEK/ERK pathway. In addition, this study also revealed that DNase-1 is vital for alleviating hepatic IRI by reducing the generation of NETs. CONCLUSIONS Cur combined with DNase-1 was more effective than the two drugs administered alone in alleviating hepatic IRI by inhibiting the generation of NETs. These results also suggested that curcumin combined with DNase-1 was a potential therapeutic strategy to mitigate hepatic IRI.
Collapse
Affiliation(s)
- Cunle Zhu
- The Institute of Transplantation Science, Qingdao University, Qingdao, Shandong Province, China.,Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shangheng Shi
- The Institute of Transplantation Science, Qingdao University, Qingdao, Shandong Province, China
| | - Peng Jiang
- The Institute of Transplantation Science, Qingdao University, Qingdao, Shandong Province, China
| | - Xijian Huang
- The Institute of Transplantation Science, Qingdao University, Qingdao, Shandong Province, China
| | - Jinxin Zhao
- The Institute of Transplantation Science, Qingdao University, Qingdao, Shandong Province, China
| | - Yan Jin
- The Institute of Transplantation Science, Qingdao University, Qingdao, Shandong Province, China
| | - Yuntai Shen
- The Institute of Transplantation Science, Qingdao University, Qingdao, Shandong Province, China
| | - Xin Zhou
- The Institute of Transplantation Science, Qingdao University, Qingdao, Shandong Province, China
| | - Huan Liu
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jinzhen Cai
- Organ Transplantation Center, The Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
13
|
Wang Y, Shi C, Guo J, Zhang Y, Gong Z. Distinct Types of Cell Death and Implications in Liver Diseases: An Overview of Mechanisms and Application. J Clin Transl Hepatol 2023; 11:1413-1424. [PMID: 37719956 PMCID: PMC10500292 DOI: 10.14218/jcth.2023.00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 09/19/2023] Open
Abstract
Cell death is associated with a variety of liver diseases, and hepatocyte death is a core factor in the occurrence and progression of liver diseases. In recent years, new cell death modes have been identified, and certain biomarkers have been detected in the circulation during various cell death modes that mediate liver injury. In this review, cell death modes associated with liver diseases are summarized, including some cell death modes that have emerged in recent years. We described the mechanisms associated with liver diseases and summarized recent applications of targeting cell death in liver diseases. It provides new ideas for the diagnosis and treatment of liver diseases. In addition, multiple cell death modes can contribute to the same liver disease. Different cell death modes are not isolated, and they interact with each other in liver diseases. Future studies may focus on exploring the regulation between various cell death response pathways in liver diseases.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Watakulsin K, Chuenchom C, Thapphan C, Thai TD, Chareonsudjai S, Faksri K, Suttiprapa S, Tangkawatana S, Sripa B, Edwards SW, Salao K. Neutrophils form extracellular traps in response to Opisthorchis viverrini crude antigens, which are elevated in neutrophils from opisthorchiasis patients with hepatobiliary abnormalities. Biol Open 2023; 12:bio059909. [PMID: 37493409 PMCID: PMC10434363 DOI: 10.1242/bio.059909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023] Open
Abstract
Opisthorchis viverrini (Ov) infection can cause several disease conditions of the bile duct including hepatobiliary abnormalities (HBAs) and the most severe, cholangiocarcinoma (CCA). Fibrosis occurs when tissues are damaged and normal wound-healing responses are dysregulated. Neutrophils are the first cells to migrate to an infection site to protect the host from intruding extracellular pathogens through a wide range of effector mechanisms such as phagocytosis, production of reactive oxygen species, proteases, or release of neutrophil extracellular traps (NETs). In this work, we used confocal microscopy to assess whether Ov crude antigens can cause release of NETs from neutrophils from Ov-free individuals. We demonstrated for the first time that these antigens could induce release of NETs ex vivo in a dose-dependent manner from neutrophils isolated from Ov-free individuals. Intriguingly, when we measured NETs from neutrophils isolated from Ov-infected patients, we found increased spontaneous production of NETs in patients with HBAs. Interestingly, exposure to Ov crude antigens lowered the level of NETs released by neutrophils from patients with active Ov infection regardless of HBA status. We propose that in the case of acute Ov infection, even when concentration of Ov antigens is relatively low, neutrophils can form NETs. However, when this infection becomes chronic, manifesting as a definite HBA, the levels of NET production are reduced when treated with Ov crude antigens. Excessive production of proinflammatory mediators from these NETs might have effects on the parasites, but may also lead to excessive injury of surrounding tissues resulting in HBAs and may lead eventually to the most severe complications such as CCA.
Collapse
Affiliation(s)
- Krongkarn Watakulsin
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Chalida Chuenchom
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Chakrit Thapphan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40000, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen 40000, Thailand
| | - Tran Duong Thai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40000, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen 40000, Thailand
| | - Sorutsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40000, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen 40000, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40000, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen 40000, Thailand
| | - Sutas Suttiprapa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Sirikachorn Tangkawatana
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Banchob Sripa
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Steven W. Edwards
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Kanin Salao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40000, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen 40000, Thailand
| |
Collapse
|
15
|
Rodríguez-Lara A, Rueda-Robles A, Sáez-Lara MJ, Plaza-Diaz J, Álvarez-Mercado AI. From Non-Alcoholic Fatty Liver Disease to Liver Cancer: Microbiota and Inflammation as Key Players. Pathogens 2023; 12:940. [PMID: 37513787 PMCID: PMC10385788 DOI: 10.3390/pathogens12070940] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
It is estimated that 25% of the world's population has non-alcoholic fatty liver disease. This disease can advance to a more severe form, non-alcoholic steatohepatitis (NASH), a disease with a greater probability of progression to cirrhosis and hepatocellular carcinoma (HCC). NASH could be characterized as a necro-inflammatory complication of chronic hepatic steatosis. The combination of factors that lead to NASH and its progression to HCC in the setting of inflammation is not clearly understood. The portal vein is the main route of communication between the intestine and the liver. This allows the transfer of products derived from the intestine to the liver and the hepatic response pathway of bile and antibody secretion to the intestine. The intestinal microbiota performs a fundamental role in the regulation of immune function, but it can undergo changes that alter its functionality. These changes can also contribute to cancer by disrupting the immune system and causing chronic inflammation and immune dysfunction, both of which are implicated in cancer development. In this article, we address the link between inflammation, microbiota and HCC. We also review the different in vitro models, as well as recent clinical trials addressing liver cancer and microbiota.
Collapse
Affiliation(s)
- Avilene Rodríguez-Lara
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
| | - Ascensión Rueda-Robles
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada,18071 Granada, Spain;
| | - María José Sáez-Lara
- Department of Biochemistry and Molecular Biology I, School of Sciences, University of Granada, 18071 Granada, Spain;
| | - Julio Plaza-Diaz
- Children’s Hospital Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|
16
|
Yokoyama APH, Kutner JM, de Moraes Mazetto Fonseca B, Mesquita GLTV, Sakashita AM, Dos Santos APR, Nakazawa CY, de Almeida MD, de Andrade Orsi FL. Neutrophil extracellular traps (NETs), transfusion requirements and clinical outcomes in orthotopic liver transplantation. J Thromb Thrombolysis 2023:10.1007/s11239-023-02825-7. [PMID: 37227652 DOI: 10.1007/s11239-023-02825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Inflammatory phenomena have a direct impact on the prognosis of orthotopic liver transplantation (OLT). Neutrophil extracellular traps (NETs) contribute to OLT inflammation and hemostasis imbalance in OLT. The association between NETosis, clinical outcomes and transfusion requirements is not determined. To evaluate NETs release during OLT and the effect of NETosis ontransfusion requirements and adverse outcomes in a prospective cohort of patients submitted to OLT. We quantified citrullinated histones (cit-H3) and circulating-free-DNA (cf-DNA) in ninety-three patients submitted to OLT in three periods: pre-transplant, after graft reperfusion and before discharge. NETs markers were compared between these periods using ANOVA test. The association of NETosis and adverse outcomes was evaluated using regression models adjusted for age, sex and corrected MELD. We observed a peak of circulating NETs following reperfusion, evidenced by a 2.4-fold increase in cit-H3 levels in the post-graft reperfusion period (median levels of cit-H3 pre transplant: 0.5 ng/mL, after reperfusion: 1.2 ng/mL and at discharge 0.5 ng/mL, p < 0.0001). We observed an association between increased levels of cit-H3 and in-hospital death (OR = 1.168, 95% CI 1.021-1.336, p = 0.024). No association was found between NETs markers and transfusion requirements. There is a prompt release of NETs after reperfusion that is associated with poorer outcomes and death. Intraoperative NETs release seems to be independent of transfusion requirements. These findings highlight the relevance of inflammation promoted by NETS and its impact on OLT adverse clinical outcomes.
Collapse
Affiliation(s)
- Ana Paula Hitomi Yokoyama
- Hemotherapy and Cell Therapy Department, Hospital Israelita Albert Einstein, Av Albert Einstein, 627-3o Andar, São Paulo, SP, 05652-000, Brazil.
- Faculty of Medical Sciences, University of Campinas, Campinas, Brazil.
| | - Jose Mauro Kutner
- Hemotherapy and Cell Therapy Department, Hospital Israelita Albert Einstein, Av Albert Einstein, 627-3o Andar, São Paulo, SP, 05652-000, Brazil
| | | | | | - Araci Massami Sakashita
- Hemotherapy and Cell Therapy Department, Hospital Israelita Albert Einstein, Av Albert Einstein, 627-3o Andar, São Paulo, SP, 05652-000, Brazil
| | | | | | | | | |
Collapse
|
17
|
Tu Y, Mao Z. Identification and Validation of Molecular Subtype and Prognostic Signature for Bladder Cancer Based on Neutrophil Extracellular Traps. Cancer Invest 2023; 41:354-368. [PMID: 36762827 DOI: 10.1080/07357907.2023.2179063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Neutrophil extracellular traps (NETs) could promote tumor growth and distant metastases. Molecular subtypes of bladder cancer were identified with consensus cluster analysis. A NETs-related prognostic signature was constructed with LASSO cox regression analysis. As a result, we identified three subtypes of bladder cancer, which had a distinct difference in prognosis, immune microenvironment, TIDE score, mRNAsi score and IC50 score. We also developed a prognostic signature based on 5 NETs-related genes, which had a good performance in clinical outcome prediction of bladder cancer. These results may provide more data about the vital role of NETs in bladder cancer.
Collapse
Affiliation(s)
- Yaofen Tu
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zujie Mao
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
18
|
Zhang Y, Song J, Zhang Y, Li T, Peng J, Zhou H, Zong Z. Emerging Role of Neutrophil Extracellular Traps in Gastrointestinal Tumors: A Narrative Review. Int J Mol Sci 2022; 24:334. [PMID: 36613779 PMCID: PMC9820455 DOI: 10.3390/ijms24010334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibrous networks consisting of depolymerized chromatin DNA skeletons with a variety of antimicrobial proteins. They are secreted by activated neutrophils and play key roles in host defense and immune responses. Gastrointestinal (GI) malignancies are globally known for their high mortality and morbidity. Increasing research suggests that NETs contribute to the progression and metastasis of digestive tract tumors, among them gastric, colon, liver, and pancreatic cancers. This article explores the formation of NETs and reviews the role that NETs play in the gastrointestinal oncologic microenvironment, tumor proliferation and metastasis, tumor-related thrombosis, and surgical stress. At the same time, we analyze the qualitative and quantitative detection methods of NETs in recent years and found that NETs are specific markers of coronavirus disease 2019 (COVID-19). Then, we explore the possibility of NET inhibitors for the treatment of digestive tract tumor diseases to provide a new, efficient, and safe solution for the future therapy of gastrointestinal tumors.
Collapse
Affiliation(s)
- Yujun Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- HuanKui Academy, Nanchang University, Nanchang 330006, China
| | - Jingjing Song
- Nanchang University School of Ophthalmology & Optometry, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yiwei Zhang
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Peng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Haonan Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
| |
Collapse
|
19
|
Chooklin S, Chuklin S, Barylyak R. NEUTROPHIL EXTRACELLULAR TRAPS AS A THERAPEUTIC TARGET IN SYSTEMIC COMPLICATIONS OF ACUTE PANCREATITIS. FIZIOLOHICHNYĬ ZHURNAL 2022; 68:80-89. [DOI: 10.15407/fz68.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The review focuses on the role of neutrophilic extracellular traps (NETs) in systemic complications of acute pancreatitis. NETs can activate trypsin, cause inflammation and pancreatic tissue damage, and clog the excretory ducts. The main fatal complications of acute pancreatitis, such as acute lung injury, kidney, myocardial and CNS damage, intestinal dysfunction, hemocoagulation disorders are associated with NETs. Focusing on the formation and degradation of NETs may be a way to develop strategies for treating organ damage in severe acute pancreatitis. Current data on the use of NET-targeted therapy in experimental severe acute pancreatitis, which is aimed at blocking the NETs formation and disassembly of the DNA scaffold, inhibition of proteins toxicity in NETs, are considered.
Collapse
|
20
|
Liu N, Bauer M, Press AT. The immunological function of CXCR2 in the liver during sepsis. J Inflamm (Lond) 2022; 19:23. [DOI: 10.1186/s12950-022-00321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Abstract
Background
The chemokine receptor CXCR2 and its ligands, especially CXCL8, are crucial mediators for the progression of liver inflammation and liver failure in sepsis. Neutrophils have the highest CXCR2 expression in mice and humans, and their activation via CXCL8 facilitates their migration to the inflamed liver for the clearance of the pathogens and, in turn, the inflammation.
Main body
In sepsis, the inflammatory insult causes extensive neutrophil migration to the liver that overwhelms the immune response. To compensate for the strong receptor activation, CXCR2 desensitizes, incapacitating the immune cells to efficiently clear pathogens, causing further life-threatening liver damage and uncontrolled pathogen spread.
Conclusion
CXCR2 function during infection strongly depends on the expressing cell type. It signals pro- and anti-inflammatory effects that may prompt novel cell-type-specific CXCR2-directed therapeutics.
Collapse
|
21
|
Liu Y, Yan P, Bin Y, Qin X, Wu Z. Neutrophil extracellular traps and complications of liver transplantation. Front Immunol 2022; 13:1054753. [PMID: 36466888 PMCID: PMC9712194 DOI: 10.3389/fimmu.2022.1054753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/26/2022] [Indexed: 08/29/2023] Open
Abstract
Many end-stage liver disease etiologies are attributed to robust inflammatory cell recruitment. Neutrophils play an important role in inflammatory infiltration and neutrophil phagocytosis, oxidative burst, and degranulation. It has also been suggested that neutrophils may release neutrophil extracellular traps (NETs) to kill pathogens. It has been proven that neutrophil infiltration within the liver contributes to an inflammatory microenvironment and immune cell activation. Growing evidence implies that NETs are involved in the progression of numerous complications of liver transplantation, including ischemia-reperfusion injury, acute rejection, thrombosis, and hepatocellular carcinoma recurrence. NETs are discussed in this comprehensive review, focusing on their effects on liver transplantation complications. Furthermore, we discuss NETs as potential targets for liver transplantation therapy.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Bin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Qin
- Department of General Surgery and Trauma Surgery, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Al Mowafy EAE, Shawkat SA. Quantitation of neutrophil extra cellular traps (NETs) in liver cirrhosis patients and their relation to the incidence of different complications. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Backgrounds and aim
Neutrophil extracellular traps (NETs) have been shown to play an important role in inflammatory and thrombotic processes. Investigating the presence of NETs in liver cirrhosis to detect any contribution to occurrence of complications may help predict or prevent those complications.
Methods
Among 78 cirrhotic patients, the serum NETs level was measured using ELISA and compared to different etiologies of liver cirrhosis (Viral, HCC, Bilharzial, NASH, cardiac cirrhosis and undetermined etiology) as well as markers of inflammation and complications in those patients.
Results
We found that NETs are substantially found in LCF and have a significant relation to malignant portal vein thrombosis but not other studied complications or etiology of liver cirrhosis.
Conclusion
NETs however found in liver cirrhosis patients may not play as a significant role in occurrence of complications as thought. So, NETs cannot be reliably used as a biomarker or predictor for occurrence of thrombosis in liver cirrhosis patients.
Lay summary
Liver cirrhosis patients have many factors at play that lead to development of thrombosis. NETS may play a role with the development of malignant thrombosis in those patients. Further evaluation for their level and action should be studied before considering NETs as a key player in development of complications.
Collapse
|
23
|
Yu S, Wang J, Zheng H, Wang R, Johnson N, Li T, Li P, Lin J, Li Y, Yan J, Zhang Y, Zhu Z, Ding X. Pathogenesis from Inflammation to Cancer in NASH-Derived HCC. J Hepatocell Carcinoma 2022; 9:855-867. [PMID: 36051860 PMCID: PMC9426868 DOI: 10.2147/jhc.s377768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the deadliest cancers worldwide. As opposed to the majority of patients with HCC, approximately 20–30% of cases of non-alcoholic steatohepatitis (NASH)-derived HCC develop malignant tumours in the absence of liver cirrhosis. NASH is characterized by metabolic dysregulation, chronic inflammation and cell death in the liver, which provide a favorable setting for the transformation of inflammation into cancer. This review aims to describe the pathogenesis and the underlying mechanism of the transition from inflammation to cancer in NASH.
Collapse
Affiliation(s)
- Simiao Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jingxiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ruilin Wang
- Department of Hepatology of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Nadia Johnson
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Tao Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ping Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jie Lin
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yuan Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jin Yan
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Ying Zhang
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Zhenyu Zhu
- Department of Hepatobiliary Surgery, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Centre of Research for Traditional Chinese Medicine Digestive, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| |
Collapse
|
24
|
Shafqat A, Abdul Rab S, Ammar O, Al Salameh S, Alkhudairi A, Kashir J, Alkattan K, Yaqinuddin A. Emerging role of neutrophil extracellular traps in the complications of diabetes mellitus. Front Med (Lausanne) 2022; 9:995993. [PMID: 36082273 PMCID: PMC9445264 DOI: 10.3389/fmed.2022.995993] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Immune dysfunction is widely regarded as one of the central tenants underpinning the pathophysiology of diabetes mellitus (DM) and its complications. When discussing immunity, the role of neutrophils must be accounted for: neutrophils are the most abundant of the circulating immune cells and are the first to be recruited to sites of inflammation, where they contribute to host defense via phagocytosis, degranulation, and extrusion of neutrophil extracellular traps (NETs). NETs are composed of DNA associated with nuclear and cytosolic neutrophil proteins. Although originally reported as an antimicrobial strategy to prevent microbial dissemination, a growing body of evidence has implicated NETs in the pathophysiology of various autoimmune and metabolic disorders. In these disorders, NETs propagate a pathologic inflammatory response with consequent tissue injury and thrombosis. Many diabetic complications—such as stroke, retinopathy, impaired wound healing, and coronary artery disease—involve these mechanisms. Therefore, in this review, we discuss laboratory and clinical data informing our understanding of the role of NETs in the development of these complications. NET markers, including myeloperoxidase, citrullinated histone H3, neutrophil elastase, and cell-free double-stranded DNA, can easily be measured in serum or be detected via immunohistochemical/immunocytochemical staining of tissue specimens. Therefore, NET constituents potentially constitute reliable biomarkers for use in the management of diabetic patients. However, no NET-targeting drug is currently approved for the treatment of diabetic complications; a candidate drug will require the outcomes of well-designed, robust clinical trials assessing whether NET inhibition can benefit patients in terms of morbidity, quality of life, health expenditures, and mortality. Therefore, much work remains to be done in translating these encouraging pieces of data into clinical trials for NET-targeting medications to be used in the clinic.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- *Correspondence: Areez Shafqat
| | | | - Osama Ammar
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Anas Alkhudairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Center of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
25
|
Xiao S, Liu L, Sun Z, Liu X, Xu J, Guo Z, Yin X, Liao F, Xu J, You Y, Zhang T. Network Pharmacology and Experimental Validation to Explore the Mechanism of Qing-Jin-Hua-Tan-Decoction Against Acute Lung Injury. Front Pharmacol 2022; 13:891889. [PMID: 35873580 PMCID: PMC9304690 DOI: 10.3389/fphar.2022.891889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Qing-Jin-Hua-Tan-Decoction (QJHTD), a classic famous Chinese ancient prescription, has been used for treatment of pulmonary diseases since Ming Dynasty. A total of 22 prototype compounds of QJHTD absorbed into rat blood were chosen as candidates for the pharmacological network analysis and molecular docking. The targets from the intersection of compound target and ALI disease targets were used for GO and KEGG enrichment analyses. Molecular docking was adopted to further verify the interactions between 22 components and the top 20 targets with higher degree values in the component-target-pathway network. In vitro experiments were performed to verify the results of network pharmacology using SPR experiments, Western blot experiments, and the PMA-induced neutrophils to produce neutrophil extracellular trap (NET) model. The compound-target-pathway network includes 176 targets and 20 signaling pathways in which the degree of MAPK14, CDK2, EGFR, F2, SRC, and AKT1 is higher than that of other targets and which may be potential disease targets. The biological processes in QJHTD for ALI mainly included protein phosphorylation, response to wounding, response to bacterium, regulation of inflammatory response, and so on. KEGG enrichment analyses revealed multiple signaling pathways, including lipid and atherosclerosis, HIF-1 signaling pathway, renin-angiotensin system, and neutrophil extracellular trap formation. The molecular docking results showed that baicalin, oroxylin A-7-glucuronide, hispidulin-7-O-β-D-glucuronide, wogonoside, baicalein, wogonin, tianshic acid, and mangiferin can be combined with most of the targets, which might be the core components of QJHTD in treatment of ALI. Direct binding ability of baicalein, wogonin, and baicalin to thrombin protein was all micromolar, and their KD values were 11.92 μM, 1.303 μM, and 1.146 μM, respectively, revealed by SPR experiments, and QJHTD could inhibit Src phosphorylation in LPS-activated neutrophils by Western blot experiments. The experimental results of PMA-induced neutrophils to produce NETs indicated that QJHTD could inhibit the production of NETs. This study revealed the active compounds, effective targets, and potential pharmacological mechanisms of QJHTD acting on ALI.
Collapse
Affiliation(s)
- Shunli Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengxiao Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyuan Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Xu
- National and Local United Engineering Laboratory of Modern Preparation and Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiejun Zhang
- National and Local United Engineering Laboratory of Modern Preparation and Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|
26
|
Li D, Shao J, Cao B, Zhao R, Li H, Gao W, Chen P, Jin L, Cao L, Ji S, Dong G. The Significance of Neutrophil Extracellular Traps in Colorectal Cancer and Beyond: From Bench to Bedside. Front Oncol 2022; 12:848594. [PMID: 35747797 PMCID: PMC9209713 DOI: 10.3389/fonc.2022.848594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Neutrophil extracellular traps (NETs), products of neutrophil death when exposed to certain stimuli, were first proposed as a type of response to bacterial infection in infectious diseases. Since then, extensive studies have discovered its involvement in other non-infectious inflammatory diseases including thromboembolism, autoimmune diseases, and cancer. Colorectal cancer (CRC) is one of the most common malignancies in the world. NET formation is closely associated with tumorigenesis, progression, and metastasis in CRC. Therefore, the application of NETs in clinical practice as diagnostic biomarkers, therapeutic targets, and prognostic predictors has a promising prospect. In addition, therapeutics targeting NETs are significantly efficient in halting tumor progression in preclinical cancer models, which further indicates its potential clinical utility in cancer treatment. This review focuses on the stimuli of NETosis, its pro-tumorigenic activity, and prospective clinical utility primarily in but not limited to CRC.
Collapse
Affiliation(s)
- Dingchang Li
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | | | - Bo Cao
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Ruiyang Zhao
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Hanghang Li
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Wenxing Gao
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Peng Chen
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Lujia Jin
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Li Cao
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shuaifei Ji
- Medical School of Chinese PLA, Beijing, China
- *Correspondence: Shuaifei Ji, ; Guanglong Dong,
| | - Guanglong Dong
- Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Shuaifei Ji, ; Guanglong Dong,
| |
Collapse
|
27
|
Chen J, Wang H, Zhou L, Liu Z, Chen H, Tan X. A necroptosis-related gene signature for predicting prognosis, immune landscape, and drug sensitivity in hepatocellular carcinoma. Cancer Med 2022; 11:5079-5096. [PMID: 35560794 PMCID: PMC9761093 DOI: 10.1002/cam4.4812] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a growing threat to global health. Necroptosis is a newly discovered form of cell necrosis that plays a vital role in cancer development. Thus, we conducted this study to identify a predictive signature of HCC based on necroptosis-related genes. METHODS The tumor samples in the liver hepatocellular carcinoma (LIHC) cohort from The Cancer Genome Atlas (TCGA) database were subtyped using the consensus clustering algorithm. Univariate Cox regression and LASSO-Cox analysis were performed to identify a gene signature from genes differentially expressed between tumor clusters. Then, we integrated the TNM stage and the prognostic model to build a nomogram. The gene signature and the nomogram were externally validated in the GSE14520 cohort from the Gene Expression Omnibus (GEO) and the LIRP-JP cohort from the International Cancer Genome Consortium (ICGC). Evaluations of predictive performance evaluations were conducted using Kaplan-Meier plots, time-dependent receiver operating characteristic curves, principal component analyses, concordance indices, and decision curve analyses. The tumor microenvironment was estimated using eight published methods. Finally, we forecasted the sensitivity of HCC patients to immunotherapy and chemotherapy based on this gene signature. RESULTS We identified two necroptosis-related clusters and a 10-gene signature (MTMR2, CDCA8, S100A9, ANXA10, G6PD, SLC1A5, SLC2A1, SPP1, PLOD2, and MMP1). The gene signature and the nomogram had good predictive ability in the TCGA, ICGC, and GEO cohorts. The risk score was positively associated with the levels of necroptosis and immune cell infiltrations (especially of immunosuppressive cells). The high-risk group could benefit more from immunotherapy and some chemotherapeutics than the low-risk group. CONCLUSION The necroptosis-related gene signature provides a new method for the risk stratification and treatment optimization of HCC. The nomogram can further improve predictive accuracy.
Collapse
Affiliation(s)
- Junliang Chen
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Huaitao Wang
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Lei Zhou
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhihao Liu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Hui Chen
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xiaodong Tan
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
28
|
Liu Y, Pu X, Qin X, Gong J, Huang Z, Luo Y, Mou T, Zhou B, Shen A, Wu Z. Neutrophil Extracellular Traps Regulate HMGB1 Translocation and Kupffer Cell M1 Polarization During Acute Liver Transplantation Rejection. Front Immunol 2022; 13:823511. [PMID: 35603144 PMCID: PMC9120840 DOI: 10.3389/fimmu.2022.823511] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Neutrophil extracellular traps (NETs) play important roles in hepatic ischemic reperfusion injury (IRI) and acute rejection (AR)-induced immune responses to inflammation. After liver transplantation, HMGB1, an inflammatory mediator, contributes to the development of AR. Even though studies have found that HMGB1 can promote NET formation, the correlation between NETs and HMGB1 in the development of AR following liver transplantation has not been elucidated. In this study, levels of serum NETs were significantly elevated in patients after liver transplantation. Moreover, we found that circulating levels of NETs were negatively correlated with liver function. In addition, liver transplantation and elevated extracellular HMGB1 promoted NET formation. The HMGB1/TLR-4/MAPK signaling pathway, which is initiated by HMGB1, participates in NET processes. Moreover, in the liver, Kupffer cells were found to be the main cells secreting HMGB1. NETs induced Kupffer cell M1 polarization and decreased the intracellular translocation of HMGB1 by inhibiting DNase-1. Additionally, co-treatment with TAK-242 (a TLR-4 inhibitor) and rapamycin more effectively alleviated the damaging effects of AR following liver transplantation than either drug alone.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingyu Pu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyan Qin
- Department of General Surgery and Trauma Surgery, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Children Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Children Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Junhua Gong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zuotian Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhai Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tong Mou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Baoyong Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ai Shen
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Kashir J, Ambia AR, Shafqat A, Sajid MR, AlKattan K, Yaqinuddin A. Scientific premise for the involvement of neutrophil extracellular traps (NETs) in vaccine-induced thrombotic thrombocytopenia (VITT). J Leukoc Biol 2022; 111:725-734. [PMID: 34467562 PMCID: PMC8667645 DOI: 10.1002/jlb.5covr0621-320rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Following on from the devastating spread of COVID-19, a major global priority has been the production, procurement, and distribution of effective vaccines to ensure that the global pandemic reaches an end. However, concerns were raised about worrying side effects, particularly the occurrence of thrombosis and thrombocytopenia after administration of the Oxford/AstraZeneca and Johnson & Johnson's Janssen COVID-19 vaccine, in a phenomenon being termed vaccine-induced thrombotic thrombocytopenia (VITT). Similar to heparin-induced thrombocytopenia (HIT), this condition has been associated with the development of anti-platelet factor 4 antibodies, purportedly leading to neutrophil-platelet aggregate formation. Although thrombosis has also been a common association with COVID-19, the precise molecular mechanisms governing its occurrence are yet to be established. Recently, increasing evidence highlights the NLRP3 (NOD-like, leucine-rich repeat domains, and pyrin domain-containing protein) inflammasome complex along with IL-1β and effete neutrophils producing neutrophil extracellular traps (NETs) through NETosis. Herein, we propose and discuss that perhaps the incidence of VITT may be due to inflammatory reactions mediated via IL-1β/NLRP3 inflammasome activation and consequent overproduction of NETs, where similar autoimmune mechanisms are observed in HIT. We also discuss avenues by which such modalities could be treated to prevent the occurrence of adverse events and ensure vaccine rollouts remain safe and on target to end the current pandemic.
Collapse
Affiliation(s)
- Junaid Kashir
- Alfaisal UniversityRiyadhKingdom of Saudi Arabia
- Department of Comparative MedicineKing Faisal Specialist Hospital and Research CenterRiyadhKingdom of Saudi Arabia
| | | | | | | | | | | |
Collapse
|
30
|
Alkattan W, Yaqinuddin A, Shafqat A, Kashir J. NET-Mediated Pathogenesis of COVID-19: The Role of NETs in Hepatic Manifestations. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2022. [DOI: 10.1055/s-0041-1741418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractSome coronavirus disease-2019 (COVID-19) patients exhibit multi-organ failure, which often includes the liver. Indeed, liver disease appears to be an emerging feature of COVID-19 infections. However, the exact mechanism behind this remains unknown. Neutrophil extracellular traps (NETs) have increasingly been attributed as major contributors to various liver pathologies, including sepsis, ischemic-reperfusion (I/R) injury, and portal hypertension in the setting of chronic liver disease. Although vital in normal immunity, excessive NET formation can drive inflammation, particularly of the endothelium. Collectively, we propose that NETs observed to be elevated in severe COVID-19 infection play principal roles in liver injury in addition to acute lung injury. Herein, we discuss the potential mechanisms underlying COVID-induced liver injury including cytopathic effects from direct liver infection, systemic inflammatory response syndrome, and hypoxic injury, encompassing I/R injury and coagulopathy. Further research is required to further elucidate the role of NETs in COVID. This holds potential therapeutic significance, as inhibition of NETosis could alleviate the symptoms of acute respiratory distress syndrome and liver injury, as well as other organs.
Collapse
Affiliation(s)
- Wael Alkattan
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
31
|
Chen Y, Han L, Qiu X, Wang G, Zheng J. Neutrophil Extracellular Traps in Digestive Cancers: Warrior or Accomplice. Front Oncol 2021; 11:766636. [PMID: 34868992 PMCID: PMC8639597 DOI: 10.3389/fonc.2021.766636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Characterized as a complex of extracellular DNA fibers and granule proteins, neutrophil extracellular traps (NETs) are generated specifically by neutrophils which play a critical role in host defense and immune regulation. NETs have been initially found crucial for neutrophil anti-microbial function. Recent studies suggest that NETs are involved in tumorigenesis and cancer progression. However, the function of NETs in cancer remains unclear, which might be due to the variation of research models and the heterogeneity of cancers. Although most of malignant tumors have similar biological behaviors, significant differences indeed exist in various systems. Malignant tumors of the digestive system cause the most incidence and mortality of cancer worldwide. In this review, we would focus on research developments on NETs in digestive cancers to provide insights on their role in digestive cancer progression and future research directions.
Collapse
Affiliation(s)
- Yuxin Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lulu Han
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyan Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
32
|
Vacani-Martins N, Meuser-Batista M, dos Santos CDLP, Hasslocher-Moreno AM, Henriques-Pons A. The Liver and the Hepatic Immune Response in Trypanosoma cruzi Infection, a Historical and Updated View. Pathogens 2021; 10:pathogens10091074. [PMID: 34578107 PMCID: PMC8465576 DOI: 10.3390/pathogens10091074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chagas disease was described more than a century ago and, despite great efforts to understand the underlying mechanisms that lead to cardiac and digestive manifestations in chronic patients, much remains to be clarified. The disease is found beyond Latin America, including Japan, the USA, France, Spain, and Australia, and is caused by the protozoan Trypanosoma cruzi. Dr. Carlos Chagas described Chagas disease in 1909 in Brazil, and hepatomegaly was among the clinical signs observed. Currently, hepatomegaly is cited in most papers published which either study acutely infected patients or experimental models, and we know that the parasite can infect multiple cell types in the liver, especially Kupffer cells and dendritic cells. Moreover, liver damage is more pronounced in cases of oral infection, which is mainly found in the Amazon region. However, the importance of liver involvement, including the hepatic immune response, in disease progression does not receive much attention. In this review, we present the very first paper published approaching the liver's participation in the infection, as well as subsequent papers published in the last century, up to and including our recently published results. We propose that, after infection, activated peripheral T lymphocytes reach the liver and induce a shift to a pro-inflammatory ambient environment. Thus, there is an immunological integration and cooperation between peripheral and hepatic immunity, contributing to disease control.
Collapse
Affiliation(s)
- Natalia Vacani-Martins
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
| | - Marcelo Meuser-Batista
- Depto de Anatomia Patológica e Citopatologia, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil;
| | - Carina de Lima Pereira dos Santos
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
| | | | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
- Correspondence:
| |
Collapse
|
33
|
Trocha M, Fleszar MG, Fortuna P, Lewandowski Ł, Gostomska-Pampuch K, Sozański T, Merwid-Ląd A, Krzystek-Korpacka M. Sitagliptin Modulates Oxidative, Nitrative and Halogenative Stress and Inflammatory Response in Rat Model of Hepatic Ischemia-Reperfusion. Antioxidants (Basel) 2021; 10:antiox10081168. [PMID: 34439416 PMCID: PMC8388898 DOI: 10.3390/antiox10081168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022] Open
Abstract
A possibility of repurposing sitagliptin, a well-established antidiabetic drug, for alleviating injury caused by ischemia-reperfusion (IR) is being researched. The aim of this study was to shed some light on the molecular background of the protective activity of sitagliptin during hepatic IR. The expression and/or concentration of inflammation and oxidative stress-involved factors have been determined in rat liver homogenates using quantitative RT-PCR and Luminex® xMAP® technology and markers of nitrative and halogenative stress were quantified using targeted metabolomics (LC-MS/MS). Animals (n = 36) divided into four groups were treated with sitagliptin (5 mg/kg) (S and SIR) or saline solution (C and IR), and the livers from IR and SIR were subjected to ischemia (60 min) and reperfusion (24 h). The midkine expression (by 2.2-fold) and the free 3-nitrotyrosine (by 2.5-fold) and IL-10 (by 2-fold) concentration were significantly higher and the Nox4 expression was lower (by 9.4-fold) in the IR than the C animals. As compared to IR, the SIR animals had a lower expression of interleukin-6 (by 4.2-fold) and midkine (by 2-fold), a lower concentration of 3-nitrotyrosine (by 2.5-fold) and a higher Nox4 (by 2.9-fold) and 3-bromotyrosine (by 1.4-fold). In conclusion, IR disturbs the oxidative, nitrative and halogenative balance and aggravates the inflammatory response in the liver, which can be attenuated by low doses of sitagliptin.
Collapse
Affiliation(s)
- Małgorzata Trocha
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (T.S.); (A.M.-L.)
- Correspondence: (M.T.); (M.K.-K.)
| | - Mariusz G. Fleszar
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Paulina Fortuna
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Łukasz Lewandowski
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Kinga Gostomska-Pampuch
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Tomasz Sozański
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (T.S.); (A.M.-L.)
| | - Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (T.S.); (A.M.-L.)
| | - Małgorzata Krzystek-Korpacka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
- Correspondence: (M.T.); (M.K.-K.)
| |
Collapse
|
34
|
Liu Y, Qin X, Lei Z, Chai H, Huang Z, Wu Z. Tetramethylpyrazine inhibits neutrophil extracellular traps formation and alleviates hepatic ischemia/reperfusion injury in rat liver transplantation. Exp Cell Res 2021; 406:112719. [PMID: 34273405 DOI: 10.1016/j.yexcr.2021.112719] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Hepatic ischemia/reperfusion injury (IRI) is an adverse effect for liver transplantation which is characterized by immune response mediated inflammation. Recent studies report that neutrophil extracellular traps (NETs) are implicated in hepatic IRI. The aim of this study was to explore the mechanism of action of tetramethylpyrazine (TMP), the main chemical composition of Ligusticum chuanxiong in treatment of ischemic related diseases. Data showed that hepatic IRI increases the leak of alanine aminotransferase (ALT) and aspartate transaminase (AST), and stimulates formation of NETs. Extracellular DNA/NETs assay, hematoxylin-eosin (HE) staining, immunofluorescence assay, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and Western blot assay, showed that TMP significantly reduces formation of NETs and alleviates hepatic IRI. Moreover, TMP and Diphenyleneiodonium (DPI) suppressed ROS production in neutrophils. In addition, analysis showed that activation of NADPH oxidase plays a role in formation of NETs triggered by hepatic IRI. Notably, TMP inhibited formation of NETs though inhibition of NADPH oxidase. Additionally, Combination treatment using TMP and DPI was more effective compared with monotherapy of either of the two drugs. These findings show that combination therapy using TMP and DPI is a promising method for treatment hepatic IRI.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Qin
- Department of General Surgery of Yuzhong District, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zilun Lei
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Chai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zuotian Huang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
35
|
Rangaswamy C, Mailer RK, Englert H, Konrath S, Renné T. The contact system in liver injury. Semin Immunopathol 2021; 43:507-517. [PMID: 34125270 PMCID: PMC8202222 DOI: 10.1007/s00281-021-00876-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/27/2021] [Indexed: 01/18/2023]
Abstract
Coagulation is controlled by a delicate balance of prothrombotic and antithrombotic mechanisms, to prevent both excessive blood loss from injured vessels and pathologic thrombosis. The liver plays a pivotal role in hemostasis through the synthesis of plasma coagulation factors and their inhibitors that, in addition to thrombosis and hemostasis, orchestrates an array of inflammatory responses. As a result, impaired liver function has been linked with both hypercoagulability and bleeding disorders due to a pathologic balance of pro- and anticoagulant plasma factors. At sites of vascular injury, thrombus propagation that finally may occlude the blood vessel depends on negatively charged biopolymers, such as polyphosphates and extracellular DNA, that provide a physiological surface for contact activation of coagulation factor XII (FXII). FXII initiates the contact system that drives both the intrinsic pathway of coagulation, and formation of the inflammatory mediator bradykinin by the kallikrein–kinin system. Moreover, FXII facilitates receptor-mediated signalling, thereby promoting mitogenic activities, angiogenesis, and neutrophil stimulation with implications for liver diseases. Here, we summarize current knowledge on the FXII-driven contact system in liver diseases and review therapeutic approaches to target its activities during impaired liver function.
Collapse
Affiliation(s)
- Chandini Rangaswamy
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Hanna Englert
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine (O26), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.
| |
Collapse
|
36
|
Farouk AF, Shafqat A, Shafqat S, Kashir J, Alkattan K, Yaqinuddin A. COVID-19 associated cardiac disease: Is there a role of neutrophil extracellular traps in pathogenesis? AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
<abstract>
<p>The COVID-19 pandemic has driven an upheaval of new research, providing key insights into the pathogenesis of this disease. Lymphocytopenia, hyper-inflammation and cardiac involvement are prominent features of the disease and have prognostic value. However, the mechanistic links among these phenomena are not well understood. Likewise, some COVID-19 patients exhibit multi-organ failure with diseases affecting the cardiac system, appearing to be an emerging feature of the COVID-19 pandemic. Neutrophil extracellular traps (NETs) have been frequently correlated with larger infarct sizes and can predict major adverse cardiac events. However, the exact mechanism behind this remains unknown. Although the excessive NET formation can drive inflammation, particularly endothelial and promote thrombosis, it is essential to normal immunity. In this paper, we postulate the role of NETs in cardiac disease by providing an overview of the relationship between NET and inflammasome activities in lung and liver diseases, speculating a link between these entities in cardiac diseases as well. Future research is required to specify the role of NETs in COVID-19, since this carries potential therapeutic significance, as inhibition of NETosis could alleviate symptoms of this disease. Knowledge gained from this could serve to inform the assessment and therapeutics of other hyper inflammatory diseases affecting the heart and vasculature alike.</p>
</abstract>
Collapse
|
37
|
Burgos RA, Alarcón P, Quiroga J, Manosalva C, Hancke J. Andrographolide, an Anti-Inflammatory Multitarget Drug: All Roads Lead to Cellular Metabolism. Molecules 2020; 26:molecules26010005. [PMID: 33374961 PMCID: PMC7792620 DOI: 10.3390/molecules26010005] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Andrographolide is a labdane diterpene and the main active ingredient isolated from the herb Andrographis paniculata. Andrographolide possesses diverse biological effects including anti-inflammatory, antioxidant, and antineoplastic properties. Clinical studies have demonstrated that andrographolide could be useful in therapy for a wide range of diseases such as osteoarthritis, upper respiratory diseases, and multiple sclerosis. Several targets are described for andrographolide, including the interference of transcription factors NF-κB, AP-1, and HIF-1 and signaling pathways such as PI3K/Akt, MAPK, and JAK/STAT. In addition, an increase in the Nrf2 (nuclear factor erythroid 2–related factor 2) signaling pathway also supports its antioxidant and anti-inflammatory properties. However, this scenario could be more complex since recent evidence suggests that andrographolide targets can modulate glucose metabolism. The metabolic effect of andrographolide might be the key to explaining the diverse therapeutic effects described in preclinical and clinical studies. This review discusses some of the most recent evidence about the anti-inflammatory and metabolic effects of andrographolide.
Collapse
Affiliation(s)
- Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
- Correspondence: ; Tel.: +56-63-2293-015
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - John Quiroga
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
- Laboratory of Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
- PhD Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Juan Hancke
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile; (P.A.); (J.Q.); (J.H.)
| |
Collapse
|
38
|
Thierry AR, Roch B. Neutrophil Extracellular Traps and By-Products Play a Key Role in COVID-19: Pathogenesis, Risk Factors, and Therapy. J Clin Med 2020; 9:E2942. [PMID: 32933031 PMCID: PMC7565044 DOI: 10.3390/jcm9092942] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding of the pathogenesis of the coronavirus disease-2019 (COVID-19) remains incomplete, particularly in respect to the multi-organ dysfunction it may cause. We were the first to report the analogous biological and physiological features of COVID-19 pathogenesis and the harmful amplification loop between inflammation and tissue damage induced by the dysregulation of neutrophil extracellular traps (NETs) formation. Given the rapid evolution of this disease, the nature of its symptoms, and its potential lethality, we hypothesize that COVID-19 progresses under just such an amplifier loop, leading to a massive, uncontrolled inflammation process. Here, we describe in-depth the correlations of COVID-19 symptoms and biological features with those where uncontrolled NET formation is implicated in various sterile or infectious diseases. General clinical conditions, as well as numerous pathological and biological features, are analogous with NETs deleterious effects. Among NETs by-products implicated in COVID-19 pathogenesis, one of the most significant appears to be elastase, in accelerating virus entry and inducing hypertension, thrombosis and vasculitis. We postulate that severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2) may evade innate immune response, causing uncontrolled NETs formation and multi-organ failure. In addition, we point to indicators that NETS-associated diseases are COVID-19 risk factors. Acknowledging that neutrophils are the principal origin of extracellular and circulating DNA release, we nonetheless, explain why targeting NETs rather than neutrophils themselves may in practice be a better strategy. This paper also offers an in-depth review of NET formation, function and pathogenic dysregulation, as well as of current and prospective future therapies to control NETopathies. As such, it enables us also to suggest new therapeutic strategies to fight COVID-19. In combination with or independent of the latest tested approaches, we propose the evaluation, in the short term, of treatments with DNase-1, with the anti-diabetic Metformin, or with drugs targeting elastase (i.e., Silvelestat). With a longer perspective, we also advocate a significant increase in research on the development of toll-like receptors (TLR) and C-type lectin-like receptors (CLEC) inhibitors, NET-inhibitory peptides, and on anti-IL-26 therapies.
Collapse
Affiliation(s)
- Alain R. Thierry
- Research Institute of Cancerology of Montpellier, INSERM U1194, IRCM, ICM, Montpellier University, F-34298 Montpellier, France
| | - Benoit Roch
- Respiratory Medicine, University Hospital of Montpellier, Montpellier University, F-34298 Montpellier, France;
| |
Collapse
|