1
|
Li L, Lin W, Wang Z, Huang R, Xia H, Li Z, Deng J, Ye T, Huang Y, Yang Y. Hormone Regulation in Testicular Development and Function. Int J Mol Sci 2024; 25:5805. [PMID: 38891991 PMCID: PMC11172568 DOI: 10.3390/ijms25115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract. These hormones are regulated by the hypothalamic-pituitary-gonad (HPG) axis, which is either quiescent or activated at different stages of the life course, and the regulation of the axis is crucial for the development and normal function of the male reproductive system. Hormonal imbalances, whether due to genetic predispositions or environmental influences, leading to hypogonadism or hypergonadism, can precipitate reproductive disorders. Investigating the regulatory network and molecular mechanisms involved in testicular development and spermatogenesis is instrumental in developing new therapeutic methods, drugs, and male hormonal contraceptives.
Collapse
Affiliation(s)
- Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Wanqing Lin
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Jingxian Deng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| |
Collapse
|
2
|
Xie Y, Xiao K, Cai T, Shi X, Zhou L, Du H, Yang J, Hu G. Neuropeptides and hormones in hypothalamus-pituitary axis of Chinese sturgeon (Acipenser sinensis). Gen Comp Endocrinol 2023; 330:114135. [PMID: 36181879 DOI: 10.1016/j.ygcen.2022.114135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/25/2022] [Accepted: 09/25/2022] [Indexed: 12/14/2022]
Abstract
The hypothalamus and pituitary serve as important neuroendocrine center, which is able to secrete a variety of neuropeptides and hormones to participate in the regulation of reproduction, growth, stress and feeding in fish. Chinese sturgeon is a basal vertebrate lineage fish with a special evolutionary status, but the information on its neuroendocrine system is relatively scarce. Using the transcriptome data on the hypothalamus-pituitary axis of Chinese sturgeon as reference, we found out 46 hypothalamus neuropeptide genes, which were involved in regulation of reproduction, growth, stress and feeding. The results of sequence alignment showed that the neuroendocrine system of Chinese sturgeon evolves slowly, which confirms that Chinese sturgeon is a species with a slow phenotypic evolution rate. In addition, we also isolated six pituitary hormones genes from Chinese sturgeon, including reproductive hormones: follicle-stimulating homone (FSH) and luteinizing hormone (LH), growth-related hormones: growth hormone (GH)/prolactin (PRL)/somatolactin (SL), and stress-related hormone gene: proopiomelanocortin (POMC). Similar to teleost, immunostaining localization analysis in Chinese sturgeon pituitary showed that LH and FSH were located in the pituitary proximal pars distalis, SL was located in the pituitary rostral pars distalis, and POMC was located in the pituitary pars intermedia and pituitary rostral pars distalis. This study will give a contribution to enrich our information on the neuroendocrine system in Chinese sturgeon.
Collapse
Affiliation(s)
- Yunyi Xie
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Kan Xiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Tianyi Cai
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Xuetao Shi
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Lingling Zhou
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Hejun Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Jing Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Guangfu Hu
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
3
|
Kisspeptin Modulation of Reproductive Function. ENDOCRINES 2022. [DOI: 10.3390/endocrines3030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Kisspeptin is a peptide expressed mainly in the infundibular nucleus of the hypothalamus. Kisspeptin plays a crucial role in the regulation of reproductive functions. It is regarded as the most important factor responsible for the control of the hypothalamic–pituitary–gonadal axis, the onset of puberty, and the regulation of menstruation and fertility. Kisspeptin activity influences numerous processes such as steroidogenesis, follicular maturation, ovulation, and ovarian senescence. The identification of kisspeptin receptor mutations that cause hypogonadotropic hypogonadism has initiated studies on the role of kisspeptin in puberty. Pathologies affecting the neurons secreting kisspeptin play a major role in the development of PCOS, functional hypothalamic amenorrhea, and perimenopausal vasomotor symptoms. Kisspeptin analogs (both agonists and antagonists), therefore, may be beneficial as therapy in those afflicted with such pathologies. The aim of this review is to summarize the influence of kisspeptin in the physiology and pathology of the reproductive system in humans, as well as its potential use in therapy.
Collapse
|
4
|
Sheep as a model for neuroendocrinology research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:1-34. [PMID: 35595346 DOI: 10.1016/bs.pmbts.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animal models remain essential to understand the fundamental mechanisms of physiology and pathology. Particularly, the complex and dynamic nature of neuroendocrine cells of the hypothalamus make them difficult to study. The neuroendocrine systems of the hypothalamus are critical for survival and reproduction, and are highly conserved throughout vertebrate evolution. Their roles in controlling body metabolism, growth and body composition, stress, electrolyte balance, and reproduction, have been intensively studied, and have yielded groundbreaking discoveries. Many of these discoveries would not have been feasible without the use of the domestic sheep (Ovis aries). The sheep has been used for decades to study the neuroendocrine systems of the hypothalamus and has become a model for human neuroendocrinology. The aim of this chapter is to review some of the profound biomedical discoveries made possible by the use of sheep. The advantages and limitations of sheep as a neuroendocrine model will be discussed. While no animal model can perfectly recapitulate a human disease or condition, sheep are invaluable for enabling manipulations not possible in human subjects and isolating physiologic variables to garner insight into neuroendocrinology and associated pathologies.
Collapse
|
5
|
Terasawa E. The mechanism underlying the pubertal increase in pulsatile GnRH release in primates. J Neuroendocrinol 2022; 34:e13119. [PMID: 35491543 PMCID: PMC9232993 DOI: 10.1111/jne.13119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
In primates, the gonatotropin-releasing hormone (GnRH) neurosecretory system, consisting of GnRH, kisspeptin, and neurokinin B neurons, is active during the neonatal/early infantile period. During the late infantile period, however, activity of the GnRH neurosecretory system becomes minimal as a result of gonadal steroid independent central inhibition, and this suppressed GnRH neurosecretory state continues throughout the prepubertal period. At the initiation of puberty, the GnRH neurosecretory system becomes active again because of the decrease in central inhibition. During the progress of puberty, kisspeptin and neurokinin B signaling to GnRH neurons further increases, resulting in the release of gonadotropins and subsequent gonadal maturation, and hence puberty. This review further discusses potential substrates of central inhibition and subsequent pubertal modification of the GnRH neurosecretory system by the pubertal increase in steroid hormones, which ensures the regulation of adult reproductive function.
Collapse
Affiliation(s)
- Ei Terasawa
- Department of Pediatrics and Wisconsin National Primate Research CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
6
|
Robertson EL, Boehnke SE, Lyra e Silva NDM, Armitage‐Brown B, Winterborn A, Cook DJ, De Felice FG, Munoz DP. Characterization of cerebrospinal fluid biomarkers associated with neurodegenerative diseases in healthy cynomolgus and rhesus macaque monkeys. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12289. [PMID: 35415210 PMCID: PMC8984079 DOI: 10.1002/trc2.12289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Monkeys are becoming important translational models of neurodegenerative disease. To facilitate model development, we measured cerebrospinal fluid (CSF) concentrations of key biomarkers in healthy male and female cynomolgus and rhesus macaques. Amyloid beta (Aβ40, Aβ42), tau (total tau [t-tau], phosphorylated tau [pThr181]), and neurofilament light (NfL) concentrations were measured in CSF of 82 laboratory-housed, experimentally naïve cynomolgus (n = 33) and rhesus (n = 49) macaques. Aβ40 and Aβ42 were significantly higher in rhesus, and female rhesus were higher than males. NfL and t-tau were higher in males, and NfL was higher in rhesus macaques. p-tau was not affected by species or sex. We also examined whether sample location (lumbar or cisterna puncture) affected concentrations. Sample acquisition site only affected NfL, which was higher in CSF from lumbar puncture compared to cisterna magna puncture. Establishing normative biomarker values for laboratory-housed macaque monkeys provides an important resource by which to compare to monkey models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Emma L. Robertson
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
| | - Susan E. Boehnke
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Natalia de M. Lyra e Silva
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Brittney Armitage‐Brown
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Animal Care ServicesQueen's UniversityKingstonOntarioCanada
| | | | - Douglas J. Cook
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of SurgeryKingston Health Sciences CentreKingstonOntarioCanada
| | - Fernanda G. De Felice
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de Janeiro, Cidade Universitaria – Rio de JaneiroRio de JaneiroBrazil
- D'OR Institute for Research and EducationRio de JaneiroBrazil
- Department of PsychiatryProvidence Care HospitalKingstonOntarioCanada
| | - Douglas P. Munoz
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
7
|
Inverse age-related changes between hypothalamic NPY and KISS1 gene expression during pubertal initiation in male rhesus monkey. Reprod Biol 2022; 22:100599. [PMID: 35033902 DOI: 10.1016/j.repbio.2021.100599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/30/2021] [Accepted: 12/26/2021] [Indexed: 01/12/2023]
Abstract
The neuroendocrine mechanism underlying the sinusoidal wave nature of gonadotropin-releasing hormone pulse generator activity from infantile to adult age still needs to be meticulously defined. Direct inhibition of kisspeptin neurons by neuropeptide Y (NPY) and close intimacy between the two rekindle the importance of these two neuropeptides controlling reproductive axis activity. Thus, the present study was undertaken to decipher simultaneous fluctuations and to profile correlative changes in the relative expression of KISS1, NPY, and their receptor genes from the mediobasal hypothalamus of infant (n = 3), juvenile, pre-pubertal, and adult (n = 4 in each stage) male rhesus monkey (Macaca mulatta) by RT-qPCR. Significant elevation (p < 0.05-0.01) in KISS1 and KISS1R and low (p < 0.05) expression in NPY and NPY1R mRNA in the adult group as compared to the pre-pubertal group was observed. Moreover, significantly high (p < 0.05) expression of NPY and NPY1R mRNA with non-significant (p> 0.05) decline in KISS1 and KISS1R in pre-pubertal animals in comparison to infants describe inverse correlative age-associated changes during pubertal development. Current findings imply that NPY may contribute as a neurobiological brake for the dormancy of kisspeptin neurons before pubertal onset, while dwindling of this brake is likely to occasion kisspeptin dependent hypothalamic-pituitary-gonadal axis activation at puberty. These findings may help in the development of clinical and therapeutic strategies to regulate fertility in humans.
Collapse
|
8
|
Ogawa S, Parhar IS. Heterogeneity in GnRH and kisspeptin neurons and their significance in vertebrate reproductive biology. Front Neuroendocrinol 2022; 64:100963. [PMID: 34798082 DOI: 10.1016/j.yfrne.2021.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023]
Abstract
Vertebrate reproduction is essentially controlled by the hypothalamus-pituitary-gonadal (HPG) axis, which is a central dogma of reproductive biology. Two major hypothalamic neuroendocrine cell groups containing gonadotropin-releasing hormone (GnRH) and kisspeptin are crucial for control of the HPG axis in vertebrates. GnRH and kisspeptin neurons exhibit high levels of heterogeneity including their cellular morphology, biochemistry, neurophysiology and functions. However, the molecular foundation underlying heterogeneities in GnRH and kisspeptin neurons remains unknown. More importantly, the biological and physiological significance of their heterogeneity in reproductive biology is poorly understood. In this review, we first describe the recent advances in the neuroendocrine functions of kisspeptin-GnRH pathways. We then view the recent emerging progress in the heterogeneity of GnRH and kisspeptin neurons using morphological and single-cell transcriptomic analyses. Finally, we discuss our views on the significance of functional heterogeneity of reproductive endocrine cells and their potential relevance to reproductive health.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
9
|
Patisaul HB. REPRODUCTIVE TOXICOLOGY: Endocrine disruption and reproductive disorders: impacts on sexually dimorphic neuroendocrine pathways. Reproduction 2021; 162:F111-F130. [PMID: 33929341 PMCID: PMC8484365 DOI: 10.1530/rep-20-0596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
We are all living with hundreds of anthropogenic chemicals in our bodies every day, a situation that threatens the reproductive health of present and future generations. This review focuses on endocrine-disrupting compounds (EDCs), both naturally occurring and man-made, and summarizes how they interfere with the neuroendocrine system to adversely impact pregnancy outcomes, semen quality, age at puberty, and other aspects of human reproductive health. While obvious malformations of the genitals and other reproductive organs are a clear sign of adverse reproductive health outcomes and injury to brain sexual differentiation, the hypothalamic-pituitary-gonadal (HPG) axis can be much more difficult to discern, particularly in humans. It is well-established that, over the course of development, gonadal hormones shape the vertebrate brain such that sex-specific reproductive physiology and behaviors emerge. Decades of work in neuroendocrinology have elucidated many of the discrete and often very short developmental windows across pre- and postnatal development in which this occurs. This has allowed toxicologists to probe how EDC exposures in these critical windows can permanently alter the structure and function of the HPG axis. This review includes a discussion of key EDC principles including how latency between exposure and the emergence of consequential health effects can be long, along with a summary of the most common and less well-understood EDC modes of action. Extensive examples of how EDCs are impacting human reproductive health, and evidence that they have the potential for multi-generational physiological and behavioral effects are also provided.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
Aerts EG, Harlow K, Griesgraber MJ, Bowdridge EC, Hardy SL, Nestor CC, Hileman SM. Kisspeptin, Neurokinin B, and Dynorphin Expression during Pubertal Development in Female Sheep. BIOLOGY 2021; 10:biology10100988. [PMID: 34681086 PMCID: PMC8533601 DOI: 10.3390/biology10100988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
The neural mechanisms underlying increases in gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion that drive puberty onset are unknown. Neurons coexpressing kisspeptin, neurokinin B (NKB), and dynorphin, i.e., KNDy neurons, are important as kisspeptin and NKB are stimulatory, and dynorphin inhibitory, to GnRH secretion. Given this, we hypothesized that kisspeptin and NKB expression would increase, but that dynorphin expression would decrease, with puberty. We collected blood and hypothalamic tissue from ovariectomized lambs implanted with estradiol at five, six, seven, eight (puberty), and ten months of age. Mean LH values and LH pulse frequency were the lowest at five to seven months, intermediate at eight months, and highest at ten months. Kisspeptin and NKB immunopositive cell numbers did not change with age. Numbers of cells expressing mRNA for kisspeptin, NKB, or dynorphin were similar at five, eight, and ten months of age. Age did not affect mRNA expression per cell for kisspeptin or NKB, but dynorphin mRNA expression per cell was elevated at ten months versus five months. Thus, neither KNDy protein nor mRNA expression changed in a predictable manner during pubertal development. These data raise the possibility that KNDy neurons, while critical, may await other inputs for the initiation of puberty.
Collapse
Affiliation(s)
- Eliana G. Aerts
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9229, Morgantown, WV 26506, USA; (E.G.A.); (M.J.G.); (E.C.B.); (S.L.H.)
| | - KaLynn Harlow
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (K.H.); (C.C.N.)
| | - Max J. Griesgraber
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9229, Morgantown, WV 26506, USA; (E.G.A.); (M.J.G.); (E.C.B.); (S.L.H.)
| | - Elizabeth C. Bowdridge
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9229, Morgantown, WV 26506, USA; (E.G.A.); (M.J.G.); (E.C.B.); (S.L.H.)
| | - Steven L. Hardy
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9229, Morgantown, WV 26506, USA; (E.G.A.); (M.J.G.); (E.C.B.); (S.L.H.)
| | - Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (K.H.); (C.C.N.)
| | - Stanley M. Hileman
- Department of Physiology and Pharmacology, West Virginia University, P.O. Box 9229, Morgantown, WV 26506, USA; (E.G.A.); (M.J.G.); (E.C.B.); (S.L.H.)
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA
- Correspondence: ; Tel.: +1-304-293-1502; Fax: +1-304-293-3850
| |
Collapse
|
11
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
12
|
Abstract
Puberty, which in humans is considered to include both gonadarche and adrenarche, is the period of becoming capable of reproducing sexually and is recognized by maturation of the gonads and development of secondary sex characteristics. Gonadarche referring to growth and maturation of the gonads is fundamental to puberty since it encompasses increased gonadal steroid secretion and initiation of gametogenesis resulting from enhanced pituitary gonadotropin secretion, triggered in turn by robust pulsatile GnRH release from the hypothalamus. This chapter reviews the development of GnRH pulsatility from before birth until the onset of puberty. In humans, GnRH pulse generation is restrained during childhood and juvenile development. This prepubertal hiatus in hypothalamic activity is considered to result from a neurobiological brake imposed upon the GnRH pulse generator resident in the infundibular nucleus. Reactivation of the GnRH pulse generator initiates pubertal development. Current understanding of the genetics and physiology of the brake will be discussed, as will hypotheses proposed to account for timing the resurgence in pulsatile GnRH and initiation of puberty. The chapter ends with a discussion of disorders associated with precocious or delayed puberty with a focus on those with etiologies attributed to aberrant GnRH neuron anatomy or function. A pediatric approach to patients with pubertal disorders is provided and contemporary treatments for both precocious and delayed puberty outlined.
Collapse
Affiliation(s)
- Selma Feldman Witchel
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Tony M Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Abstract
An increase in pulsatile release of gonadotropin releasing hormone (GnRH) initiates puberty in mammalian species. While mutations in KISS1 and TAC3 and their receptors, KISS1R and NK3R, respectively, result in the absence or abnormal timing of puberty, the neurocircuitry and precise role of kisspeptin and neurokinin B (NKB) in regulation of the GnRH neurosecretory system in primate puberty remain elusive. This review discusses how kisspeptin and NKB signaling contributes to the pubertal increase in GnRH release in non-human primates and how remodeling of the NKB and kisspeptin signaling circuitry controlling GnRH neurons takes place during the progress of puberty. Importantly, the pubertal remodeling of kisspeptin and NKB signaling ensures efficient functions of the GnRH neurosecretory system that regulates sex-specific reproduction in primates.
Collapse
Affiliation(s)
- Ei Terasawa
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA.,Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - James P Garcia
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| |
Collapse
|