1
|
Fontecha-Barriuso M, Villar-Gomez N, Guerrero-Mauvecin J, Martinez-Moreno JM, Carrasco S, Martin-Sanchez D, Rodríguez-Laguna M, Gómez MJ, Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A, Sanz AB. Runt-related transcription factor 1 (RUNX1) is a mediator of acute kidney injury. J Pathol 2024; 264:396-410. [PMID: 39472111 DOI: 10.1002/path.6355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 11/09/2024]
Abstract
Treatment for acute kidney injury (AKI) is suboptimal. A better understanding of the pathogenesis of AKI may lead to new therapeutic approaches. Kidney transcriptomics of folic acid-induced AKI (FA-AKI) in mice identified Runx1 as the most upregulated RUNX family gene. We then examined the expression of RUNX1 in FA-AKI, in bacterial lipopolysaccharide (LPS)-induced cytokine storm-AKI (CS-AKI), and in human AKI. In cultured mouse tubule cells, we explored the expression and role of RUNX1 in response to the cytokine TWEAK or LPS. A chemical inhibitor of RUNX1 (Ro5-3335) was used in animal models of AKI to test its potential as a therapeutic target. RUNX1 overexpression in FA-AKI was validated at the mRNA and protein levels and localized mainly to tubule cell nuclei. CS-AKI also upregulated kidney RUNX1. Increased tubule and interstitial RUNX1 expression were also observed in human AKI. In cultured mouse tubule cells, the pro-inflammatory cytokine TWEAK and LPS increased RUNX1 and IL-6 expression. Mechanistically, RUNX1 bound to the Il6 gene promoter and RUNX1 targeting with the chemical inhibitor Ro5-3335, or a specific small interfering RNA (siRNA), prevented the TWEAK- and LPS-induced upregulation of IL6 through a RUNX1/NFκB1 p50 pathway. In vivo, preventive Ro5-3335 improved kidney function and reduced inflammation in FA-AKI and CS-AKI. However, Ro5-3335 administration after the insult only improved kidney function in CS-AKI. Kidney transcriptomics identified inflammatory genes and transcription factor mRNAs such as Yap1 and Trp53 as key targets of Ro5-3335 in CS-AKI. In conclusion, RUNX1 contributes to AKI by driving the expression of genes involved in inflammation and represents a novel therapeutic target in AKI. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Natalia Villar-Gomez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Juan Guerrero-Mauvecin
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Julio M Martinez-Moreno
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | - Susana Carrasco
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | - Diego Martin-Sanchez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | | | - Manuel J Gómez
- Unidad de Bioinformatica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María D Sanchez-Niño
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Pharmacology, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marta Ruiz-Ortega
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- IRSIN, Madrid, Spain
| | - Ana B Sanz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| |
Collapse
|
2
|
Liongue C, Ward AC. Myeloproliferative Neoplasms: Diseases Mediated by Chronic Activation of Signal Transducer and Activator of Transcription (STAT) Proteins. Cancers (Basel) 2024; 16:313. [PMID: 38254802 PMCID: PMC10813624 DOI: 10.3390/cancers16020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs) are hematopoietic diseases characterized by the clonal expansion of single or multiple lineages of differentiated myeloid cells that accumulate in the blood and bone marrow. MPNs are grouped into distinct categories based on key clinical presentations and distinctive mutational hallmarks. These include chronic myeloid leukemia (CML), which is strongly associated with the signature BCR::ABL1 gene translocation, polycythemia vera (PV), essential thrombocythemia (ET), and primary (idiopathic) myelofibrosis (PMF), typically accompanied by molecular alterations in the JAK2, MPL, or CALR genes. There are also rarer forms such as chronic neutrophilic leukemia (CNL), which involves mutations in the CSF3R gene. However, rather than focusing on the differences between these alternate disease categories, this review aims to present a unifying molecular etiology in which these overlapping diseases are best understood as disruptions of normal hematopoietic signaling: specifically, the chronic activation of signaling pathways, particularly involving signal transducer and activator of transcription (STAT) transcription factors, most notably STAT5B, leading to the sustained stimulation of myelopoiesis, which underpins the various disease sequalae.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
3
|
Yuan H, Liu Y, Zhang J, Dong JF, Zhao Z. Transcription factors in megakaryocytes and platelets. Front Immunol 2023; 14:1140501. [PMID: 36969155 PMCID: PMC10034027 DOI: 10.3389/fimmu.2023.1140501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Transcription factors bind promoter or regulatory sequences of a gene to regulate its rate of transcription. However, they are also detected in anucleated platelets. The transcription factors RUNX1, GATA1, STAT3, NFκB, and PPAR have been widely reported to play key roles in the pathophysiology of platelet hyper-reactivity, thrombosis, and atherosclerosis. These non-transcriptional activities are independent of gene transcription or protein synthesis but their underlying mechanisms of action remain poorly defined. Genetic and acquired defects in these transcription factors are associated with the production of platelet microvesicles that are known to initiate and propagate coagulation and to promote thrombosis. In this review, we summarize recent developments in the study of transcription factors in platelet generation, reactivity, and production of microvesicles, with a focus on non-transcriptional activities of selected transcription factors.
Collapse
Affiliation(s)
- Hengjie Yuan
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- BloodWorks Research Institute, Seattle, WA, United States
| | - Yafan Liu
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-fei Dong
- BloodWorks Research Institute, Seattle, WA, United States
- Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA, United States
- *Correspondence: Zilong Zhao, ; Jing-fei Dong,
| | - Zilong Zhao
- Tianjin Institute of Neurology, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- BloodWorks Research Institute, Seattle, WA, United States
- *Correspondence: Zilong Zhao, ; Jing-fei Dong,
| |
Collapse
|
4
|
Kellaway SG, Coleman DJL, Cockerill PN, Raghavan M, Bonifer C. Molecular Basis of Hematological Disease Caused by Inherited or Acquired RUNX1 Mutations. Exp Hematol 2022; 111:1-12. [PMID: 35341804 DOI: 10.1016/j.exphem.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/04/2022]
Abstract
The transcription factor RUNX1 is essential for correct hematopoietic development; in its absence in the germ line, blood stem cells are not formed. RUNX1 orchestrates dramatic changes in the chromatin landscape at the onset of stem cell formation, which set the stage for both stem self-renewal and further differentiation. However, once blood stem cells are formed, the mutation of the RUNX1 gene is not lethal but can lead to various hematopoietic defects and a predisposition to cancer. Here we summarize the current literature on inherited and acquired RUNX1 mutations, with a particular emphasis on mutations that alter the structure of the RUNX1 protein itself, and place these changes in the context of what is known about RUNX1 function. We also summarize which mutant RUNX1 proteins are actually expressed in cells and discuss the molecular mechanism underlying how such variants reprogram the epigenome setting stem cells on the path to malignancy.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK; Centre of Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
5
|
Fernández-González JF, García-Pedraza JÁ, Marín-Quílez A, Bastida JM, Martín ML, Morán A, García-Domingo M. Effect of sarpogrelate treatment on 5-HT modulation of vascular sympathetic innervation and platelet activity in diabetic rats. Biomed Pharmacother 2022; 153:113276. [PMID: 35717784 DOI: 10.1016/j.biopha.2022.113276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate whether the 5-HT2 receptor blockade alters the 5-HT effect on vascular sympathetic neurotransmission and platelet activation in type 1 diabetes. 28-day diabetes was obtained by alloxan (150 mg/kg; s.c.) in male Wistar rats, administering sarpogrelate (5-HT2 blocker; 30 mg/kg/day; p.o.) for 14 days. Blood glucose and body weight were monitored for 28 days. After 4 weeks of diabetes induction, food and drink intake, urine, plasma-platelet 5-HT, and platelet activation were determined in normoglycemic, non-treated diabetic and sarpogrelate-treated diabetic rats. Another set of diabetic rats were pithed to run the vascular sympathetic stimulation or exogenous noradrenaline administration, examining the induced vasoconstrictor responses. Sarpogrelate treatment significantly reduced drink intake and urine, whereas BW gain, hyperglycemia, and food intake were not modified in diabetic rats. The platelet activation and plasma 5-HT concentration were decreased (increasing the stored 5-HT platelet) by 5-HT2 blockade in diabetic animals. The sympathetic-induced vasoconstrictions were higher in non-treated than in sarpogrelate-treated diabetic rats. 5-HT inhibited these vasopressor responses, reproduced exclusively by the 5-HT1/5/7 receptor agonist, 5-CT. The 5-CT-produced inhibition was partly reversed by 5-HT1D or 5-HT7 antagonists (LY310762 or SB-258719, respectively), and totally annulled by the mixture of LY310762+SB-258719. Noradrenaline-caused vasoconstrictions were also decreased by 5-CT. In conclusion, our results reveal that 14-day sarpogrelate treatment improves polydipsia and polyuria, reduces platelet hyperactivation, plasma 5-HT and the vascular sympathetic tone, and changes 5-HT receptors inhibiting noradrenergic drive in diabetic rats: pre and/or postjunctional 5-HT1D/7 are involved in the sympatho-inhibition.
Collapse
Affiliation(s)
- Juan Francisco Fernández-González
- Laboratorio de Farmacología, Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo San Vicente 58-182, 37007 Salamanca, Spain
| | - José Ángel García-Pedraza
- Laboratorio de Farmacología, Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo San Vicente 58-182, 37007 Salamanca, Spain
| | - Ana Marín-Quílez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo San Vicente 58-182, 37007 Salamanca, Spain; Departamento de Hematología, Complejo Asistencial Universitario de Salamanca (CAUSA), 37007 Salamanca, Spain
| | - José María Bastida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo San Vicente 58-182, 37007 Salamanca, Spain; Departamento de Hematología, Complejo Asistencial Universitario de Salamanca (CAUSA), 37007 Salamanca, Spain
| | - María Luisa Martín
- Laboratorio de Farmacología, Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo San Vicente 58-182, 37007 Salamanca, Spain
| | - Asunción Morán
- Laboratorio de Farmacología, Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo San Vicente 58-182, 37007 Salamanca, Spain
| | - Mónica García-Domingo
- Laboratorio de Farmacología, Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo San Vicente 58-182, 37007 Salamanca, Spain.
| |
Collapse
|
6
|
Marín‐Quílez A, Vuelta E, Díaz‐Ajenjo L, Fernández‐Infante C, García‐Tuñón I, Benito R, Palma‐Barqueros V, Hernández‐Rivas JM, González‐Porras JR, Rivera J, Bastida JM. A novel nonsense variant in TPM4 caused dominant macrothrombocytopenia, mild bleeding tendency and disrupted cytoskeleton remodeling. J Thromb Haemost 2022; 20:1248-1255. [PMID: 35170221 PMCID: PMC9306899 DOI: 10.1111/jth.15672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Rare inherited thrombocytopenias are caused by alterations in genes involved in megakaryopoiesis, thrombopoiesis and/or platelet release. Diagnosis is challenging due to poor specificity of platelet laboratory assays, large numbers of culprit genes, and difficult assessment of the pathogenicity of novel variants. OBJECTIVES To characterize the clinical and laboratory phenotype, and identifying the underlying molecular alteration, in a pedigree with thrombocytopenia of uncertain etiology. PATIENTS/METHODS Index case was enrolled in our Spanish multicentric project of inherited platelet disorders due to lifelong thrombocytopenia and bleeding. Bleeding score was recorded by ISTH-BAT. Laboratory phenotyping consisted of blood cells count, blood film, platelet aggregation and flow cytometric analysis. Genotyping was made by whole-exome sequencing (WES). Cytoskeleton proteins were analyzed in resting/spreading platelets by immunofluorescence and immunoblotting. RESULTS Five family members displayed lifelong mild thrombocytopenia with a high number of enlarged platelets in blood film, and mild bleeding tendency. Patient's platelets showed normal aggregation and granule secretion response to several agonists. WES revealed a novel nonsense variant (c.322C>T; p.Gln108*) in TPM4 (NM_003290.3), the gene encoding for tropomyosin-4 (TPM4). This variant led to impairment of platelet spreading capacity after stimulation with TRAP-6 and CRP, delocalization of TPM4 in activated platelets, and significantly reduced TPM4 levels in platelet lysates. Moreover, the index case displayed up-regulation of TPM2 and TPM3 mRNA levels. CONCLUSIONS This study identifies a novel TPM4 nonsense variant segregating with macrothrombocytopenia and impaired platelet cytoskeletal remodeling and spreading. These findings support the relevant role of TPM4 in thrombopoiesis and further expand our knowledge of TPM4-related thrombocytopenia.
Collapse
Affiliation(s)
| | - Elena Vuelta
- IBSAL, CICIBMCCUniversidad de Salamanca‐CSICSalamancaSpain
- Transgenic Facility, NucleusUniversity of SalamancaSalamancaSpain
| | | | | | | | - Rocío Benito
- IBSAL, CICIBMCCUniversidad de Salamanca‐CSICSalamancaSpain
| | - Verónica Palma‐Barqueros
- Department of Hematology and OncologyHospital Universitario Morales MeseguerCentro Regional de HemodonaciónUniversidad de MurciaIMIB‐ArrixacaMurciaSpain
| | - Jesús María Hernández‐Rivas
- IBSAL, CICIBMCCUniversidad de Salamanca‐CSICSalamancaSpain
- Department of HematologyComplejo Asistencial Universitario de Salamanca (CAUSA)Instituto de Investigación Biomédica de Salamanca (IBSAL)Universidad de Salamanca (USAL)SalamancaSpain
| | - José Ramón González‐Porras
- Department of HematologyComplejo Asistencial Universitario de Salamanca (CAUSA)Instituto de Investigación Biomédica de Salamanca (IBSAL)Universidad de Salamanca (USAL)SalamancaSpain
| | - José Rivera
- Department of Hematology and OncologyHospital Universitario Morales MeseguerCentro Regional de HemodonaciónUniversidad de MurciaIMIB‐ArrixacaMurciaSpain
- On behalf of “Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC)”SETHMadridSpain
| | - José María Bastida
- Department of HematologyComplejo Asistencial Universitario de Salamanca (CAUSA)Instituto de Investigación Biomédica de Salamanca (IBSAL)Universidad de Salamanca (USAL)SalamancaSpain
- On behalf of “Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC)”SETHMadridSpain
| |
Collapse
|